Texto completo
|
PDF (Document Portable Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (905kB) | Vista Previa |
Almeida, Marcelo Pinho; Muñoz, Mikel; Parra, Iñigo de la; Perpiñan Lamigueiro, Oscar y Narvarte Fernández, Luis (2015). Comparative study of nonparametric and parametric PV models to forecast AC power output of PV plants. En: "31st European Photovoltaic Solar Energy Conference and Exhibition: EUPVSEC 2015", 14/09/2015-18/09/2015, Hamburg, Germany. ISBN 3-936338-39-6. pp. 2230-2234.
Título: | Comparative study of nonparametric and parametric PV models to forecast AC power output of PV plants |
---|---|
Autor/es: |
|
Tipo de Documento: | Ponencia en Congreso o Jornada (Póster) |
Título del Evento: | 31st European Photovoltaic Solar Energy Conference and Exhibition: EUPVSEC 2015 |
Fechas del Evento: | 14/09/2015-18/09/2015 |
Lugar del Evento: | Hamburg, Germany |
Título del Libro: | EU PVSEC Proceedings |
Fecha: | Septiembre 2015 |
ISBN: | 3-936338-39-6 |
Materias: | |
Palabras Clave Informales: | PV output power forecast; Numerical weather prediction; Parametric PV model; Nonparametric PV model |
Escuela: | E.T.S.I. Diseño Industrial (UPM) |
Departamento: | Ingeniería Eléctrica, Electrónica Automática y Física Aplicada |
Licencias Creative Commons: | Reconocimiento - Sin obra derivada - No comercial |
|
PDF (Document Portable Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (905kB) | Vista Previa |
In this paper, a comparison between two approaches to predict the AC power output of PV systems is carried out in terms of forecast performance. Each approach uses one of the two main types of PV modeling, parametric and nonparametric, and both use as inputs several forecasts of meteorological variables from a Numerical Weather Prediction model. Furthermore, actual AC power measurements of a PV plant are used to train the nonparametric model, to adjust the parameters of the different PV components models used in the parametric approach and to assess the quality of the forecasts. The approaches presented similar behavior, although the nonparametric approach, based on Quantile Regression Forests, showed smaller biased errors due to the machine learning tool used.
Tipo | Código | Acrónimo | Responsable | Título |
---|---|---|---|---|
FP7 | 308468 | PVCROPS | Universidad Politécnica de Madrid | PhotoVoltaic Cost reduction, Reliability, Operational performance, Prediction and Simulation |
ID de Registro: | 42462 |
---|---|
Identificador DC: | http://oa.upm.es/42462/ |
Identificador OAI: | oai:oa.upm.es:42462 |
URL Oficial: | http://www.photovoltaic-conference.com/ |
Depositado por: | Memoria Investigacion |
Depositado el: | 08 Jul 2016 08:12 |
Ultima Modificación: | 19 May 2017 12:32 |