Fast time integration of PDEs combining POD and Galerkin projection based on a limited set of mesh points

Rapun Banzo, Maria Luisa; Vega De Prada, Jose Manuel y Terragni, Filippo (2015). Fast time integration of PDEs combining POD and Galerkin projection based on a limited set of mesh points. En: "Bifurcations and instabilities in fluid dynamics (BIFD 2015)", 15-17 jul 2015, Paris, Francia.

Descripción

Título: Fast time integration of PDEs combining POD and Galerkin projection based on a limited set of mesh points
Autor/es:
  • Rapun Banzo, Maria Luisa
  • Vega De Prada, Jose Manuel
  • Terragni, Filippo
Tipo de Documento: Ponencia en Congreso o Jornada (Lectura)
Título del Evento: Bifurcations and instabilities in fluid dynamics (BIFD 2015)
Fechas del Evento: 15-17 jul 2015
Lugar del Evento: Paris, Francia
Título del Libro: Proceedings of BIFD 2015
Fecha: 2015
Materias:
Escuela: E.T.S. de Ingeniería Aeronáutica y del Espacio (UPM)
Departamento: Matemática Aplicada a la Ingeniería Aeroespacial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Recently, an adaptive method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory has been proposed [3] (see also [1, 2]). The method combines on the fly such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations), and the integration of the reduced system. The strategy is based on a truncation error estimate and a residual estimate, designed to control the truncation error and the mode truncation instability, respectively. These estimates support the selection of the appropiate time intervals in which the numerical solver is run to first construct and then update, on demand, the POD modes. Moreover, to reduce the computational effort needed at the outset to generate the initial POD subspace, information from former simulations or generic libraries (e.g. trigonometric functions or orthogonal polynomials) were also used. To improve the computational efficiency of the method presented in [3] a crucial step is to use a limited number of points (instead of the whole computational mesh used in the spatial discretization) to both perform POD and to Galerkin?project the equations. In this work we will discuss and compare several alternatives in representative examples illustrating that a suitable point selection can make the cost of the reduced order model (associated with POD, Galerkin projection and the integration of the resulting Galerkin system) negligible compared to that of the reference numerical solver.

Más información

ID de Registro: 42547
Identificador DC: http://oa.upm.es/42547/
Identificador OAI: oai:oa.upm.es:42547
Depositado por: Memoria Investigacion
Depositado el: 28 Abr 2017 07:59
Ultima Modificación: 28 Abr 2017 07:59
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM