Simplified elements for wind-tunnel measurements with type-III-terrain atmospheric boundary layer

Ward De Paepe a,*, Santiago Pindado b, Svend Bram c, Francesco Contino a

a Vrije Universiteit Brussel, Dept. of Mechanical Engineering (MECH), Pleinlaan 2, 1050 Brussels, Belgium
b Universidad Politécnica de Madrid, Instituto Universitario de Microgravidad “Ignacio Da Riva” (IDR/UPM), ETSI Aeronáutica y del Espacio, Pta. Cardenal Cisneros, 3, E-28040 Madrid, Spain
c Vrije Universiteit Brussel, Dept. of Industrial Engineering Sciences (INDS), Nijverheidstraat 170, 1070 Brussels, Belgium

ARTICLE INFO

Article history:
Received 9 December 2015
Received in revised form 23 May 2016
Accepted 24 May 2016
Available online xxx

Keywords:
Atmospheric boundary layer
Hot-wire anemometry
Part-depth ABL wind-tunnel simulation
Truncated vortex generators
Type-III terrain

ABSTRACT

In this work, the results of simulating the ABL over a type III suburban terrain in the industrial wind tunnel of the Department of Mechanical Engineering of the Vrije Universiteit Brussel (VUB) are presented. Two different Roughness Barrier Mixing Device (RBMD) methods for simulating the ABL have been used (firstly, the well known combination of Counihan quarter ellipses and roughness elements, and secondly, a new configuration based on truncated Irwin spires and roughness elements). Counihan quarter ellipses are generally considered as the optimal method for ABL simulation. However, its construction is quite complex. Therefore, an alternative setup, using truncated Irwin spires, was experimentally tested. The results of these two simulations were compared with international standard applicable for type III suburban terrain. Results showed good agreement between standards and experimental results showing that both techniques give a good representation of the ABL. Finally, the proposed truncated Irwin spires method/configuration is confirmed as a proper way to carry out ABL wind tunnel simulations, as the results are practically the same as the ones obtained with the well-established Counihan method to simulate ABL in wind tunnels.

© 2016 Published by Elsevier Ltd.

1. Introduction

It is generally accepted that allowing the flow to run over a rough surface producing a natural growth boundary layer is the best method for simulating the Atmospheric Boundary Layer (ABL) in a wind tunnel [1]. Depending on the surroundings of the studied region, a different roughness must be used. When using this technique, the scale of the simulated ABL depends on the length of the roughness fetch. In order to obtain very large scales for the analysis of wind loads on buildings, a specially constructed wind tunnel with a working section that is much longer than its cross sectional dimension is required [2–4]. The formation of this turbulent boundary layer tunnel can be enhanced by using obstructions upstream that have the ability to absorb energy from the mean flow without introducing large scale disturbance [5]. Many different techniques have been studied since 1960, for instance using spires in combination with roughness elements [6,7], air jets [8,9], fences in combination with chains [10] or rods [11]. Finally, a good review of the different techniques to simulate the ABL in a wind tunnel can be found in [12].

The Roughness Barrier Mixing Device (RBMD) method proposed by Cook has simulated successfully the lower third of the boundary layer using turbulence grid, plane barrier wall and roughness elements [13]. These RBMD techniques are renowned for reproducing mean and fluctuating parameters of the atmospheric boundary layer. The RBMD method, suggested by Counihan [14], using elliptic wedge generators in combination with a castellated wall and roughness elements [14–18] allows full depth boundary layer simulations. This method is widely used for full depth ABL simulation [19–25]. An alternative for the RBMD method of Counihan is given by Irwin [26]. Irwin uses the flat triangular spires from Staden et al. [2] as a vortex generator and roughness elements to reproduce full depth boundary layers with a thickness of about 80% of the spire height. The major advantage of the techniques of Irwin [26] compared to the technique of Counihan [14] is the use of triangular spires as vortex generators, the construction of these elements being much easier compared to quarter ellipses. Finally, the use of the flat triangular spires has been referred as Staden method by some authors [27,28].

* Corresponding author.
E-mail address: wdepaepe@vub.ac.be (W. De Paepe).
http://dx.doi.org/10.1016/j.measurement.2016.05.078
0264-2241/© 2016 Published by Elsevier Ltd.

Please cite this article in press as: W. De Paepe et al., Simplified elements for wind tunnel measurements with type III terrain atmospheric boundary layer, Measurement (2016), http://dx.doi.org/10.1016/j.measurement.2016.05.078
Fig. 1. Suburban terrain at Brussels (Elsene/Ixelles) for which the ABL is simulated. The building Z at the VUB campus is indicated in the image.

Table 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Open circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total tunnel length</td>
<td>25 m</td>
</tr>
<tr>
<td>Testing chamber length</td>
<td>12 m</td>
</tr>
<tr>
<td>Testing chamber height</td>
<td>1 m</td>
</tr>
<tr>
<td>Testing chamber width</td>
<td>2 m</td>
</tr>
<tr>
<td>Turbine power</td>
<td>55 kW</td>
</tr>
<tr>
<td>Maximal wind speed</td>
<td>20 m/s</td>
</tr>
</tbody>
</table>

ABL simulations in a wind tunnel represent a quite complex problem. First of all, the researchers have to deal with the length of the wind tunnel, which normally does not allow for a complete development of the required boundary layer. Therefore, spires and vortex generators need to be installed. Also, the ABL simulations can be performed using full depth simulation or part depth simulation method [13,14,23,26,29,30]. Other problems are the scaling of the Reynolds numbers [31], or the difficulties to simulate the peak suction on a wind tunnel even with simulated ABL [32], as the conical vortices are incompressible flow structures that perform like a suction amplifier for wind turbulence [33,34]. Besides, once the properly scaled ABL simulation has been achieved for a specific wind tunnel, the results of the wind tunnel testing must be carefully scaled, as they are going to be translated to full scale pressure/forces in a situation where the real boundary layer will never be exactly the same as the one simulated in the wind tunnel.

As a consequence, reasonable decisions needs to be taken by researchers when dealing with wind tunnel testing of civil structures, no matter if the facility used is an extremely well equipped one, or a simple facility, even without ABL simulation, is used [35,39].

In the present work, the design and validation of the simulated ABL in the wind tunnel at the VUB are presented. These ABL simulations were developed in order to find a solution to prevent Exhaust Gas Recirculation (EGR) from happening in a micro Gas Turbine (mGT). That research work [40] required simulation of the local ABL at the Elsene/Ixelles municipality of Brussels, this area being a typical example of a suburban terrain in the Benelux. By simulating the ABL in the industrial wind tunnel of the Vrije Universiteit Brussel (VUB), the wind behaviour around the building where the mGT is located (building Z of the VUB campus, see Fig. 1) was analysed (and more in detail around the stack of the mGT).

Wind tunnel experiments with a scale model allowed the authors of the study to find a solution for the recurrent problem of EGR, by properly heightening the stack.

The characterising parameters of the ABL are introduced in Section 2 of this study. These parameters have specific values, defined in international standards on turbulent boundary layers, depending on the roughness of the location to be analysed. The definition of each parameter is presented, together with their specific values, for the ABL around aforementioned building Z of the VUB campus. Out of these values, the dimensions of the experimental wind tunnel set up are also determined in Section 2. For the simulations carried out, both Irwin [26] and Cousinhan [14] RBMD methods were used. In Section 3, the simulated ABLs are validated by measuring and calculating its characteristic parameters and comparing them with the values from the standard codes, in order to select the optimal method to use in wind tunnel simulations. Finally, conclusions are summarised in Section 4.

2. Design of the ABL

The wind tunnel simulations of the ABL were performed in the industrial wind tunnel at the VUB (Table 1). The wind tunnel has a
working section of 12 m longitude. The cross section is 2 m wide
and 1 m high. The wind velocity can be varied from 0 m/s to
20 m/s by changing the rotations speed of the fan. In the floor
of the wind tunnel, a turn table with diameter 2 m is installed to
change the approach of the wind on the scale model. The centre
of this turn table is located 10 m behind the end of the contraction.
The maximum wind speed is 20 m/s, the uniformity of the flow
being quite high (160 mm boundary layer thickness, with less than
1% turbulent intensity outside the boundary layer) at the testing
section (see Fig. 2).

In the past, wind studies have successfully been performed in
this wind tunnel [41,42]. Birinci, Vanboekryck and Hirsch per-
formed a wind study on the “King Baudouin Stadium” (Koning
Boudewijn Stadion) [41] and also used this setup to simulate the wind
load on the tower of the city hall of Brussels [42].

In following subsections, the characteristics of the ABL over the
VUB campus (Fig. 1) are included, the testing setups (roughness/
vortex generators shape and dimensions for the simulation of the
ABL) using Irwin and Cournihan RBMD methods being also
-described and discussed. These testing setups do not include any
testing model. In case of testing experiments of a suburban config-
uration, the surroundings of the studied building/structure would
have to be reproduced.

2.1. Properties of the ABL over the VUB campus

The ABL is defined by several parameters. In his review paper,
Cournihan gives an overview of these parameters [43] and the dif-
ferent attempts made by researchers to determine experimentally
these parameters, for instance by using a captive balloon [44].
These measurements indicated that an inconsistency existed
between the parameters defining the ABL, depending on the rough-
ness of the terrain surrounding the measuring position. By defining
from the data four distinct terrain types, these issues could be
resolved [43]. The most important parameters for ABL simulation
in the wind tunnel are:

- boundary layer height;
- mean velocity profile;
- roughness length;
- intensity of turbulence;
- length scales of turbulence;
- power spectral densities;
- Reynolds stress.

The roughness of the VUB campus surroundings determines the
type of boundary layer and the specific value of the different
parameters of the ABL. As mentioned by Cournihan, four different
types of terrain exist [43]: smooth, moderately rough (rural), rough
(suburban), very rough (urban). This classification is used in
the Belgian-European wind standards [45], with a fifth type terrain

\[
\frac{U(z)}{U(0)} = \left(\frac{z}{\delta}\right)^{-\alpha}
\]

where a suburban wind profile (type III) corresponds to an expo-
nent of the power law $\alpha = 0.21$ [48]. In this paper, the mean velocity
in the x direction U is calculated as

\[
U(z) = \frac{1}{T} \int_0^T U(z, t) \, dt
\]
When simulating the ABL in the wind tunnel, a shift appears in the profile. This shift is indicated by the zero plane displacement, d. This zero plane displacement will slightly change the power law definition from (1) into

$$U(z) = U(0) \left(\frac{z - d}{d} \right)^n$$ \hspace{1cm} (3)

Additionally, the roughness length, z_0, of the wind profile is defined as suggested by Thuillier and Lappe [49]:

$$U(z) = \frac{u_*}{\kappa} \ln \left(\frac{z}{z_0} \right)$$ \hspace{1cm} (4)

where u_* is the friction velocity, and κ is the von Kármán constant ($\kappa \approx 0.41$). Norms indicate a roughness length $z_0 = 0.3$ m for the suburban region (see Table 2).

The turbulence intensity, I_u, in the x direction can be calculated as follows:

$$I_u(z) = \frac{\sigma_u(z)}{U(z)} \sqrt{\frac{u'^2(z)}{U(z)}}$$ \hspace{1cm} (5)

where

$$u(z, t) = U(z) + u'(z, t)$$ \hspace{1cm} (6)

and

$$u'^2(z, t) = \frac{1}{T} \int_0^T u'^2(z, t) \, dt$$

According to Lyengar and Farell, the integral length scale of turbulence, L_u, can be determined in three different ways [50]:

1. the value of the spectrum at frequency $f = 0$;
2. the area under the autocorrelation curve, R_{uu}, which can be calculated using the following formula

$$R_{uu}(\Delta t) = \int_{-\infty}^{\infty} S_u(z, f) \, df$$ \hspace{1cm} (8)

3. the location of the central peak.

Out of the integral length scale of turbulence, the scale of the simulated ABL can be determined using the formula of Cook [51]:

$$L_u = \frac{91.3 \times \left(\frac{z}{d} \right)^{0.491}}{1 + 0.43 \left(\frac{z}{d} \right)^{0.688}}$$ \hspace{1cm} (9)

Both turbulence intensity, I_u, and integral length scale of turbulence, L_u, can be verified in relation to the height over the terrain, z, using international standards [48, 52, 53]. It should also be mentioned that, according to Kozmár, there is a considerable scatter of recommended values for suburban wind characteristics [54].

Finally, the power spectral density of the longitudinal velocity fluctuations at a certain height, $S_u(z, f)$, should match a specific profile. Lungu and Gelder pointed out the existence of numerous proposals for the spectral density of along wind gustiness [55]. In this thesis, the profile of the power spectral density will be validated using the formula given by Kaimal et al. [56] for the lower parts, while the ESDU85020 [53], Eurocode 1 [48] and von Kármán [57] formulas will be used for the entire thickness of the boundary layer.

The wind velocity in the ABL was only measured in the x direction (see Section 3), making it not possible to calculate the Reynolds shear stress

$$\tau = \mu \frac{u'^2}{L}$$ \hspace{1cm} (11)

In addition, the turbulence intensities, I_u, I_v, and integral length scales, L_u, L_v, of turbulence in y direction and z direction could also not be calculated. Nevertheless, some estimations of these variables can be found in the literature [4]: $I_u \sim 0.75 \times L_u$, $I_v \sim 0.5 \times L_u$, $I_w \sim 0.3 \times 0.4 \times L_u$, and $L_w \sim 0.5 \times 0.6 \times L_u$. Besides, it should be also mentioned that quite serious wind tunnel ABL simulation studies, even measuring the three components of the flow velocity, only use as comparison parameters the ones directly related to the x direction of the wind velocity [58].

2.2. Design of truncated Couinhan ellipses

A series of tests was performed using the method of Couinhan [44]. As described by Couinhan, the height of the elliptic wedges should be equal to the height of the simulated ABL. For large scales (thus large ABLs), this requires a high wind tunnel cross section. Kozmár suggested the use of truncated elliptic vortex generators instead of the pure Couinhan elliptic wedges [59]. After further improving on these techniques, this author was able to perform successfully part depth wind tunnel simulations of the urban [58, 60, 61], rural and suburban [58] ABL. Analysis of the obtained results indicated the adequacy of redesigned Couinhan [18] vortex generators for part depth ABL simulations [58].

Both elliptic vortex generators (Fig. 3) and the castellated barrier wall (Fig. 4), were constructed following Couinhan's suggestions [44]. The angle of the elliptic vortex generators is at every height 12° [14], these generators being truncated based on recommendations of Kozmár [58]. The castellated barrier is designed using the properties of the ABL in suburban regions, that is, $\alpha = 0.21$ [48]. For the spacing between the elliptic vortex generators, Couinhan suggested a distance of $\delta/2$ [18]. For the placement of the barrier wall, a distance of $\delta/3$ between the barrier wall and the intersect of the working section and the contraction of the wind tunnel, is recommended. Tests of Couinhan also suggested a $5/6$ distance between the barrier wall and the elliptic vortex generators [18]. However, the industrial wind tunnel at the VUB is short, so the relative positions of the barrier wall and generators were adapted. For the spacing and the size of the roughness elements, recommendations of Couinhan [17], Garthore and Cros [62] and Fang and Sill [63] were used. As a result, 0.05 m cubes were distributed along the wind tunnel floor. The method described by Garthore and Cron is given a centre to centre distance for these elements from 27 to 31 cm [62]. For the construction of the surface roughness, polyurethane cubes were attached to a thin wood plate. The Irwin requires a centre to centre distance of 28 cm (see Section 2.3) [26]. To save construction time, for both methods, 28 cm spacing has been used. The complete adapted experimental set up is shown in Fig. 5. Total occupied cross section by the elliptic vortex generators was below 5%. To mitigate a new smoother internal boundary layer growing over the 500 mm between the end of the roughness elements and the turntable, normally roughness elements need to be placed the upstream edge of the turntable. In the specific setup in the wind tunnel of the VUB, this 500 mm is reserved for a scale model of the surroundings, to get accurate simulation of the local surroundings.

2.3. Design of the Irwin spires

A second series of tests was performed using Irwin spires in combination with roughness elements, according to the recommendations of Wooding, Bradley and Marshall [64]. The necessary height of the spires can be calculated, using the formula from Irwin [26]:

$$h = \frac{1.39\delta}{1 + \alpha/2}$$ \hspace{1cm} (12)
Using $\alpha = 0.21$ and $\delta = 1$ m and for Eq. (12) results in a spine height of 1.25 m. The working section of the wind tunnel is how ever only 1 m height. Therefore, it was necessary to truncate the spires at 0.95 m.

The frontal plate base b can be calculated using the formula suggested by Irwin [26]:

$$b = 0.5 \left(\frac{H}{\delta} \left(\frac{1 + \psi}{1 + \frac{\alpha}{2}} \right) \left(1 + \frac{\alpha}{2} \right) \right)$$ \hspace{1cm} (13)

with ψ and β from Eq. (14) equal to

$$\psi = \frac{2}{1 + \alpha}$$

$$\beta = \frac{1.13}{\left(\frac{1 + 2\alpha}{1 + \alpha} \right)}$$ \hspace{1cm} (14)

and H is equal to the height of the wind tunnel.

Irwin suggests that the boundary layer is fully developed after six times the height of the spires [26]. By reducing the skin friction term $1.13\alpha/[\alpha + (1 + \alpha)(1 + \alpha/2)]$ from Eq. (14), Lopes, Gomes and Ferreira transformed the formulas for the calculation of the thickness of the spires in order to be able to use Irwin spires in a shorter wind tunnel [65]. Lopes, Gomes and Ferreira suggested a proportional coefficient to the distance reduction of $\alpha/6$. By means of an iterative loop, the optimal positioning of the spires and roughness elements in the tunnel was calculated. The goal was to have at least 50 cm between the scale model and the end of the roughness elements on the tunnel floor, but also to have an optimal use of the total tunnel length. Calculations showed an optimal $\alpha/6$, which results in a frontal plate base $b = 0.182$ m. The separated plate (plate perpendicular to the base plane, supporting the base to hold the force of the wind) base is 0.314 m, a quarter of the spires height (Fig. 6).

The equations of Irwin for the design of the spires already take into account the existence of roughness elements along the wind tunnel floor [26]. To define the cubes side, k, and the spacing between the cubes, D, the formula of Wooding, Bradley and Mar shall be used [64]:

$$k = \frac{\exp \left(\frac{2}{3} \log_{10} \left(\frac{D}{\delta} \right) \right) 0.1161 \left(\frac{2}{\sqrt{C_f}} \right) + 2.05^{0.5} }{\delta}$$ \hspace{1cm} (16)

where C_f corresponds to the friction coefficient needed to obtain an α power law velocity profile and is defined as follows:

$$C_f = 0.136(\alpha/(1 + \alpha))^2$$ \hspace{1cm} (17)

For the 0.05 m side cubes used for the simulations, 0.23 m spacing between them is necessary.

Spacing between the different spires is equal to $h/2$ from centerline to centerline. Initial tests were carried out using four spires with a centerline distance of 0.5 m. The initial test results showed that the spires were placed too short to each other, resulting in a too high power law exponent ($\alpha = 0.25$). This value corresponds to urban terrain rather than suburban terrain (see Table 2). For the final experiments, three spires were used with a centerline distance of 0.67 m. The final set up used to simulate the ABL in the wind tunnel using Irwin [26] spires is shown in Fig. 7. The blockage ratio obtained with the Irwin method is 15.7%.

3. Characterisation of the simulated ABL

A Dantec Mini Constant Temperature Anemometry (CTA) (accuracy ±1%) of the reading above 5 m/s when calibrated in the wind tunnel with a pitot static tube [66], with 10 kHz maximal sample rate, was used in the determination of the properties of the ABL. All tests were carried out with a mean free velocity of about 8 m/s. Depending on the application, a different data acquisition rate was used. Sample rate specifications are given when discussing the experimental results. The CTA is calibrated using a pitot tube, a four degree calibration curve was fitted to the data. Since no temperature compensation was foreseen in the calibration, the CTA was calibrated on a daily basis.

3.1. Mean velocity profile

Measurements of the simulated ABL using the truncated ellipses were performed over a measuring period of 20 s, averaged over four periods, using a sample ratio of 10 kHz, while the measurements using the proposed truncated spires configuration were performed over a larger measuring period of 200 s with a sample ratio of 2.5 kHz. Also, the wind profile corresponding to the truncated spires configuration was measured with a quite high density of points, that is, with measurements taken every cm. The wind profile regarding the truncated Counihan ellipses configuration was measured with a lower density of points (every 2.5 cm, except the lower part, below 0.25 m, where measurements were taken every cm). The height of the ABL is equal to the height of the tunnel. In the upper part of the ABL, a second boundary layer, due to the ceiling is formed. It is thus not possible to use the free wind velocity as reference for the power law. The reference height is...
taken at $z_{ref} = 0.20$ m. This height was arbitrary chosen: high enough to eliminate local effects from the roughness elements and low enough since the ABL is there the strongest. Measurement along the entire wind tunnel height indicated that the effect of the upper boundary layer was noticeable from a height of 0.8 m. Therefore, all measurements above 0.8 m were discarded.

Both methods show good accordance with the power law profile in the lower part of the wind tunnel (Figs. 8 and 9). For the upper part of the simulated ABL, it is clear to see that the profile simulated using truncated Irwin [26] spires keeps following the power law, while measurements with the truncated ellipses of Kozmar [58] start to divert from the profile at a certain height, around $z = 0.28$ m. From this height results indicate a more linear behaviour of the average wind speed. This indicates that not enough vorticity is introduced in the boundary layer due to a too low energy absorption by the ellipses.

It should also be mentioned that, to achieve the power law exponent, Eq. (1) needed to be modified, since u_∞ is not known. Modifying the power law results in the formula given by Wang et al. [67]:

$$\frac{u}{u_{ref}} = \left(\frac{z}{z_{ref}} \right)^{\alpha} \left(\frac{d}{d_{ref}} \right)^{\beta} \quad (18)$$

Fitting the above equation to the measurements, indicated a power law exponent for both methods of $\alpha = 0.21$ and a displacement height of $d = 15$ mm for the Irwin method and $d = 1$ mm using the truncated ellipses from Kozmar. As aforementioned, a power law exponent of $\alpha = 0.21$ corresponds to suburban wind profiles (type III terrain, see Table 2). Within this curve fit, both power law exponent α and displacement height d were obtained simultaneous.

On the other hand, fitting the profiles to the logarithmic law allows the determination of the roughness length z_0 (Figs. 10 and 11), resulting in $z_0 = 1.2$ mm for the Irwin method and $z_0 = 1.4$ mm for the Kozmar method. When using the scales calculated from the integral length scale (see Section 3.3), full scale roughness length for both methods are 0.43 m and 0.55 m, which is close to the 0.3 m given in the Eurocode1 for the suburban terrain category (see Table 2). The friction velocity u_τ in both cases is equal to 0.526 m/s and 0.554 m/s respectively. Both profiles...
show good accordance to the logarithmic law for the lower part of
the simulated boundary layer, as was indicated in literature [13].
For higher values, the measurements start to diverge from the log
arithmic law, as it was indicated by Cook [13], since the logar-
ithmic law is only valid in the lower part of the ABL. Similar to the
curve fit with the power low, for the log law curve fit, again both
roughness length z_0 and friction velocity u_* were obtained simula-
taneously. For the value of the displacement height d, the value
obtained in the power low curve fit was used.

As said in Section 2.1, next to the correct average wind speed
profile it is necessary to produce a correct turbulence intensity pro-
file in order to perform a correct ABL simulation. Using the mea-
surements taken for the velocity profile, the turbulence intensity
$u'_*\text{max}$ was calculated in both studied cases, see Figs. 12 and 13. These
results are compared with turbulence intensity data from
ESDU74031 and ESDU85020 international codes [52,53], for the
respective roughness of the terrain. In both standards, the tur-
bulence profile is defined within two boundaries.
For the comparison with ESDU74031 and ESDU85020 standards, the measurement data was scaled to actual height. The scaling factor obtained for the Cournihan method is 1:390, while a scale of 1:363 was obtained for the Irwin method. These scaling factors were calculated from the measurement data. More details about the scale determination are included in the following subsection. Both measurement data from Figs. 12 and 13 show good correspondence to the standards. Both profiles follow the given trend. However, results are close to the lower boundary defined in the aforementioned standards, indicating that a minimum of turbulence is introduced in the simulated boundary layer.

In order to compare more precisely the results from both configurations studied the following variable has been defined:

$$\phi = \frac{I_u}{I_{u,ESDU} / 0.2 \cdot I_{v,ESDU}} \quad (19)$$

where I_u is the measured turbulence intensity, and $I_{u,ESDU}$ is the turbulent intensity defined in the ESDU standard. Obviously, if the measured turbulence profile is between the upper and lower limits of the ESDU standards data from Figs. 12 and 13, the value of ϕ will be in the bracket [1, 1]. In Fig. 14 the values of ϕ, calculated for both ESDU74031 and ESDU85020 data are plotted as a function of the full scale height. It is quite clear from Fig. 14 that results obtained with the configuration based on the proposed truncated Irwin spires, are closer to the data from the aforementioned ESDU standards.

3.3. Integral length scale of turbulence

The integral length scale of turbulence is important to determine the final length scale of the simulated ABL. As previously mentioned, the integral length scale of turbulence, L_u, can be determined in three different ways: Method I: the value of the spectrum at frequency $f = 0$; Method II: the area under the autocorrelation curve; and Method III: the location of the central peak.

According to Tyngar and Farell, the errors involved in the determination of the sample spectral values at $f = 0$ (Method I) are quite

Please cite this article in press as: W. De Paepe et al., Simplified elements for wind tunnel measurements with type III terrain atmospheric boundary layer, Measurement (2016), http://dx.doi.org/10.1016/j.measurement.2016.05.078
significant unless one has adequate resolution and definition of the spectra at low frequencies [50]. In their work, these authors measured the velocity fluctuations over three intervals of 2, 0.2 and 0.05 ms with inline low pass filters set at frequencies of 0.2, 1 and 5 kHz. Such filters were not available. Therefore, the integral length scale of turbulence was calculated using Methods II and III.

The autocorrelation curve (Method II) and the location of the central peak (method III) were obtained using Matlab®. The measurement intervals were split in different additional intervals of 2 s, using a Hamming window. The final autocorrelation was calculated using the `pwoelch` function [68]. Ideally, the integral turbulence length scales are calculated taking the complete surface under the autocorrelation curve. This means taking the integral between limits zero and infinity (Eq. (10)). However, since velocity was measured over a finite period, the autocorrelation curve was cut off after 1000 samples, given that it seemed to be sufficiently converged (see in Fig. 15 the autocorrelation curve of velocity measurements taken at three different heights of the wind profile corresponding to the truncated Irwin spires configuration). Regarding Method III, rather than directly taking the central frequency, which introduces errors due to the noise, the frequency was determined by fitting the data to the von Kármán spectrum [57]. This allowed for a more correct determination of the maximum frequency.

The integral length scale profiles of the simulated ABL using the analysed Counihan and truncated Irwin spires configurations correspond with each other (Figs. 16 and 17). The simulation results agree moderately with the ESDU74031 data, even when taking into account the 30% spread on the standard data. The experimental results are not compared with ESDU85020 data, since Kozmar indicated that the recommended turbulence length scales are much larger in the ESDU85020 standards, compared to other standards [54]. A linear increase of the turbulence integral length scales with height, similar to full scale results, is however not observed. Experimental results increase strong in the near ground region, but with further increase in height, the turbulence length scale remains nearly constant. This trend was reported in other wind tunnel studies as well [50,54]. The different mechanisms of boundary layer development in wind tunnel simulations and in full scale is indicated as a possible explanation by Kozmar [60].

Integral length scales from Figs. 16 and 17 are shown on full scale using the same scales as for Figs. 12 and 13 (1:390 and 1:363). These scales were obtained by using Eq. (9) to calculate the scale [51], using the integral length scales from Figs. 16 and 17. Since the results of the integral length scales show some significant variation, rather than calculating the scale for one single value (at 0.2 m height), as final scale value, an average value over an interval around this reference height was taken to reduce the effect of this variation.

3.4. Power spectral density

For the comparison with the wind power spectral density, several formulas are formulated by different authors in literature [45,53,56,57].

Close to the surface, the power spectral density should correspond to the Kaimal spectrum [56]:

![Fig. 19. ABL simulation using truncated Irwin spires in combination with roughness elements. Power spectral density measured at three different heights. Kaimal et al. [56], Eurocode 1 [48] and Von Kármán spectrums [57] and the Kolmogorov – 2/3 slope [69] have been included in the graphs.](http://dx.doi.org/10.1016/j.measurement.2016.05.078)
\[F_s (f) \equiv \frac{6.8 f_i}{\sigma_i^2 (1 + 50 f_i^2)^{3/5}} \]

where \(f_i \), the reduced frequency, is defined as \(f_i \equiv \frac{f}{u} \).

The Kaimal spectrum gives a good approximation of the power spectral density, up to 50 m [56]. For heights above 50 m, it is more appropriate to compare the power spectral density curve with the spectrum given in Eurocode [45]:

\[F_s (f) \equiv \frac{6.8 f_i}{\sigma_i^2 (1 + 10.2 f_i^2)^{3/5}} \]

where \(f_i \equiv \frac{f}{u} \). This spectrum is similar to the von Kármán spectrum [57]:

\[F_s (f) \equiv \frac{4 f_i}{\sigma_i^2 (1 + 70.8 f_i^2)^{3/5}} \]

The ESDU74031 standard proposes the von Kármán spectrum to be used to match the power spectral density [53], while ESDU85020 proposes the use of the theoretical model of Kolmogorov [69], where the power spectral density follows a 2/3 slope in the inertial subrange.

Power spectral density results regarding both studied ABL simulation methods (Figs. 18 and 19) show good correspondence to the norm close to the ground [56] and overall the boundary layer [45, 52, 53]. For the determination of the power spectral density of the two simulation methods (truncated Irwin spires and truncated Coullnian ellipses) at different heights of 5, 45, and 70 cm, additional measurements were performed. For each simulation method and at each different height, 10 additional time series of 200 s, using a sample frequency of 2.5 kHz were recorded and processed. The power spectral densities show maxima between frequencies of 0 and 10 Hz and they follow the Kolmogorov 2/3 slope [69] in the inertial subrange indicating a similar path in turbulent boundary layer structure not dependent on the simulation length scale. With increasing height, the power spectral density maximum shifts to higher frequency. For both analysed ABL simulation methods and the different height, the power spectra die off at the same frequency.

4. Conclusions

In the present work two different wind tunnel ABL simulations are compared. The full scaled ABL was identified as urban (ter rain type III). The ABL was simulated in the wind tunnel using two simulations techniques: truncated Coullnian ellipses in combination with a castellated barrier wall and roughness elements, and truncated Irwin spires in combination with roughness elements. Despite the limitations of measuring only the x direction of the wind velocity, the different characteristics of the simulated ABLs showed good correspondence to data from international standards. These ABLs are enough to performed quite accurate wind load analysis on buildings if the proper scaling of the mock up is achieved. However, if more sophisticated testing is planned (i.e., smoke diffusion) checking of the proper vertical and lateral turbulence levels would be required (\(\lambda_u \approx 0.3 \), \(\lambda_v \approx 0.4 \)), together with the horizontal pressure gradient compensation.

Both analysed methods showed to be able to simulate a representative boundary layer with scales of around 1:390 (Coullnian method) and 1:363 (Irwin method). The ABL simulated with the truncated Irwin spires showed slightly better results than the ones from the truncated Coullnian spires, when compared to velocity and turbulence intensity profiles from the standard code of practice. Therefore, it can be said that the more simple method to develop the wind tunnel ABL simulation seems to be a good, quick and inexpensive solution. Besides, the testing configuration setups might be a starting point for other researchers when doing wind tunnel testing with ABL simulation.

Acknowledgements

The research was funded by the National Fund for Scientific Research (FWO). Authors are grateful to the Reviewers, whose wise comments helped to improve this work.

References

Please cite this article in press as: W. De Paepe et al., Simplified elements for wind tunnel measurements with type III terrain atmospheric boundary layer, Measurement (2016), http://dx.doi.org/10.1016/j.measurement.2016.05.078