Diseño y simulación del sistema de locomoción de un robot hexápodo para tareas de búsqueda y rescate

Tordesillas Torres, Jesús (2016). Diseño y simulación del sistema de locomoción de un robot hexápodo para tareas de búsqueda y rescate. Proyecto Fin de Carrera / Trabajo Fin de Grado, E.T.S.I. Industriales (UPM).

Descripción

Título: Diseño y simulación del sistema de locomoción de un robot hexápodo para tareas de búsqueda y rescate
Autor/es:
  • Tordesillas Torres, Jesús
Director/es:
  • Barrientos Cruz, Antonio
Tipo de Documento: Proyecto Fin de Carrera/Grado
Fecha: 2016
Materias:
Palabras Clave Informales: Robot, rescate, hexápodo, C-Legs, modelado, elementos finitos, simulación, resistencia, elasticidad.
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Automática, Ingeniería Electrónica e Informática Industrial [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (11MB) | Vista Previa

Resumen

Una de las aplicaciones de mayor actualidad en el campo de la Robótica es el uso de los robots en las situaciones de búsqueda y rescate. Tareas que ni bomberos, ni personal de rescate ni incluso perros pueden llegar a hacer son posibles gracias al uso de robots móviles dotados de sensores adecuados. Robots de este tipo se han usado en numerosos desastres, desde el Atentado en las Torres Gemelas de Nueva York en 2001 hasta las inundaciones en Río Blanco (Texas, 2016), pasando por el terremoto de Haití (2010) y por el accidente nuclear en Fukushima (2011). En estos desastres, robots terrestres aéreos y marítimos han ayudado en numerosas tareas, tales como la búsqueda de víctimas, el reconocimiento y mapeado de la zona, la asistencia médica y la retirada de escombros. Sin embargo, y a a pesar de la importancia de los robots en este campo, la experiencia de desastres ya ocurridos en los que se han usado robots demuestra que los sistemas de locomoción desarrollados para los mismos no son lo suficientemente robustos y versátiles para los tipos de terrenos de las situaciones de emergencia: en dichas situaciones, los terrenos pueden variar desde una montaña de escombros hasta un terreno embarrado, montones de papeles, escaleras derruidas o vegetación apilada. Se aprecia por tanto la necesidad de un sistema de locomoción que permita el uso del robots en ese tipo de terrenos. En la investigación desarrollada hasta la actualidad se hace notar la carencia de un estudio que analice en profundidad un sistema de locomoción determinado desde todos los aspectos que lo componen: la cinemática de dicho sistema de locomoción, la dinámica del mismo, el estudio matemático y preciso de los materiales de las partes que lo componen, así como los diferentes patrones de movimiento (también conocidos como modos de marcha). Este trabajo profundiza en el diseño y simulación del sistema de locomoción de un robot para tareas de búsqueda y rescate. En primer lugar se ha estudiado el estado del arte tanto de los robots de búsqueda y rescate (en adelante robots USAR 1) como en diferentes sistemas de locomoción en robótica. En este análisis, se han recogido todas las actuaciones registradas hasta la fecha de estos robots en desastres, tantos naturales como provocados por el hombre. Además, se han analizado los diferentes sistemas de tracción de un gran número de robots actuales, clasificándolos en función de la complejidad y la versatilidad. Una vez terminado el estado del arte, y viendo las ventajas y desventajas de cada opción, se ha decidido el sistema de locomoción del robot: sistema de locomoción por patas. Se han diseñado cinco modos de marcha del robot, en los cuales el robot va moviendo sus patas en una secuencia determinada. Estos modos de marcha se han programado y simulado usando ROS (Robot Operating System) y Gazebo. Además, se han simulado en cuatro tipo de terrenos: terreno llano, terreno con rampa, terreno abrupto y terreno con obstáculos tipo esféricos y cúbicos. Posteriormente se ha desarrollado un modelo cinemático del robot considerando los diferentes modos de marcha que puede tener. Este modelo cinemático se ha comprobado tanto por simulación con Autodesk Inventor como en la realidad usando la Visión por Computador que proporciona Matlab. Asimismo, se ha estudiado el modelo dinámico del mismo. Se ha realizado tanto un modelo generalista, aplicable a cualquier modelo dinámico de la pata, como un modelo más particular en el que se modela la pata usando el modelo del péndulo invertido (SLIP-Spring Loaded Inverted Pendulum). Además, se ha aplicado el Teorema de Castigliano para hallar la deformación horizontal y vertical del eje de la pata. Los resultados obtenidos se han contrastado usando técnicas de regresión no lineal con los datos obtenidos mediante la aplicación del análisis por elementos finitos (FEA-Finite Element Analysis). Los datos analíticos se ajustan con elevada perfección a los datos obtenidos por FEA. Adicionalmente, se ha aplicado la Teoría de Elasticidad y los criterios de ruptura (Rankine y Von Mises) a diferentes materiales y diferentes formas de pata. En concreto, se han diseñado siete formas distintas de pata y cada una de ellas se ha simulado estáticamente usando FEA. Cada pata se ha simulado con siete materiales distintos: Fibra de vidrio, Fibra de Carbono, plástico ABS, Nylon 6,6, plástico PET, Polímero reforzado con Fibra de Carbono y Resina Termoplástica. A partir de estas simulaciones, se han extraídos los coeficientes de seguridad de cada pata en la situación más desfavorable. También se han realizado simulaciones dinámicas (con la pata en movimiento) en las cuales se comprueba en qué casos la situación más desfavorable es el caso estático. Con el objetivo de analizar la idoneidad de forma de pata ante determinados terrenos, se ha construido un banco de ensayos provisto de motores para simular las patas en terrenos reales. Estos terrenos han sido tierra suelta, barro, paja, grava y terrones. A partir de los resultados obtenidos para cada tipo de terreno, y teniendo en cuenta los coeficientes de seguridad hallados mediante simulación, se ha elegido la pata idónea para cada tipo de terreno. Para concluir el diseño del sistema de locomoción, se ha diseñado el robot en 3D y se han realizado sus planos respectivos. Asimismo, se han elegido y comprado los motores de acuerdo a los resultados obtenidos en simulación en cuanto a par de pico y velocidad máxima. También se han elegido las baterías y la electrónica que finalmente llevará el robot.

Más información

ID de Registro: 42893
Identificador DC: http://oa.upm.es/42893/
Identificador OAI: oai:oa.upm.es:42893
Depositado por: Biblioteca ETSI Industriales
Depositado el: 20 Sep 2016 08:29
Ultima Modificación: 20 Sep 2016 08:29
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM