ESTUDIA DEL INCENDIO DEL CALENTADOR ELÉCTRICO DE FUEL DE UNA CENTRAL TÉRMICA Y SUS POSIBLES CAUSAS.
(CARACTERIZACIÓN, PROCESOS DE DEGRADACIÓN TÉRMICA Y COMBUSTIÓN).

Rosa Mª Oses López

Junio 2016
Titulación: INGENIERO TÉCNICO DE MINAS

Especialidad: ENERGÍA, COMBUSTIBLES Y EXPLOSIVOS

Autorizo la presentación del proyecto

Estudio del incendio del calentador eléctrico de fuel de una central térmica y sus posibles causas. (Caracterización, procesos de degradación térmica y combustión).

Realizado por

Rosa Mª Oses López

Dirigido por

Ana Mª Al-Lal Baeza

Firmado: Prof. Ana Mª Al-Lal Baeza
Fecha: Junio 2016
ÍNDICE

ÍNDICE...III
LISTADO DE TABLAS..V
LISTADO DE FIGURAS Y SÍMBOLOS...V
NOTACIONES Y SÍMBOLOS...VI
RESUMEN Y ABSTRACT...VII

DOCUMENTO 1. MEMORIA

INTRODUCCION...2

CAPITULO I. OBJETIVO Y ALCANCE..3

1.1 Objetivo...3
1.2 Alcance...3

CAPITULO II. EL FUEL OIL COMO COMBUSTIBLE..4

CAPITULO III. PROCESOS DE DESCOMPOSICIÓN DEL FO..14

3.1. Descomposición a bajas temperaturas ...14
3.2. Descomposición térmica a altas temperaturas...15
3.3. Procesos de combustión..16
3.4. Tipos de combustión..18

3.4.1. Deflagración..19
3.4.2. Detonación...20
CAPITULO IV. MECANISMOS DE DESCOMPOSICIÓN TÉRMICA EN PRODUCTOS PETROLÍFEROS

4.1 Destilación
4.2 Craqueo térmico
4.3 Pirólisis
4.4 Coquización
4.5 Gasificación

CAPITULO V. LA COMBUSTIÓN DE LOS PRODUCTOS PETROLÍFEROS

CAPITULO VI. CONCLUSIONES

CAPITULO VII. BIBLIOGRAFÍA

DOCUMENTO 2. ESTUDIO ECONÓMICO

CAPITULO I. ANÁLISIS DE COSTES

1.1. Introducción
1.2. Presupuesto de desarrollo y puesta en marcha
1.3. Coste medio por muestra ensayada

DOCUMENTO 3. ANEXOS

ANEXO I
Listado de tablas

DOCUMENTO 1. MEMORIA

Tabla 1. Valores recogidos en la especificación del FO según el R.D. 61/2006 y resultados obtenidos en los análisis efectuados en el LCP...5
Tabla 2. Reacción de los productos del petróleo frente a la temperatura y la presión......27

DOCUMENTO 2. ESTUDIO ECONÓMICO

Tabla 3. Presupuesto: partida de personal...34
Tabla 4. Presupuesto: partida de materiales, fungibles y equipos............................35
Tabla 5. Presupuesto global del proyecto...36

Listado de Figuras y Gráficos.

DOCUMENTO 1: MEMORIA.

Figura 1. Baño de agua a 50 ° C. Ostwald-Cannon-Fenske (ASTM D 445).............7
Figura 2. Equipo de determinación del contenido de azufre (EN ISO 8754)............8
Figura 3. Punto de inflamación (ASTM D 93)...9
Figura 4. Equipo de Destilación a vacío (ASTM D 1160)..10
Figura 5. Mufla para la realización del contenido en cenizas (ASTM D 482)..........10
Figura 6. Densímetro digital DMA 48 (Anton Para GmbH) ASTM D 1298).........11
Figura 7. Equipo para la medición del poder calorífico. (ASTM D 240)...............12
Figura 8. Análisis elemental LECO (ASTM D 5291)...12
Figura 9. Mecanismos de oxidación en varias etapas...15
Figura 10. Formación de gases versus temperatura del sistema............................16
Figura 11. Modelo de combustión normal...19
Figura 12. Curva de destilación a vacío del FO. (Efectuado en el LCP).................21
NOTACIONES Y SIMBOLOS

FO: Fuel Oil.

LCP: Laboratorio de Combustibles y Petroquímica
RESUMEN

El objetivo del presente proyecto es determinar las posibles causas del incendio producido en el calentador eléctrico de una central térmica llevando a cabo un estudio teórico del comportamiento del Fuel Oil en distintas condiciones de presión y temperatura, tanto en atmósfera oxidante como reductora.

Al tratarse de un proyecto de carácter experimental y enfocado a la investigación, se han analizado en el laboratorio cinco muestras de Fuel Oil procedente del calentador eléctrico en el que tuvo lugar el incendio para su caracterización según la normativa, lo que nos permite finalmente establecer una hipótesis de lo ocurrido. Se incluye el presupuesto de los costes del ensayo para su puesta en marcha así como los costes unitarios para su desarrollo y realización y el coste medio por unidad ensayada, con lo que obtenemos el presupuesto global del proyecto.

ABSTRACT

The aim of this project is to determine the possible causes of the fire occurred in the electric heater of a thermal power plant engaged in a theoretical study of the behaviour of the Fuel Oil under different conditions of pressure and temperature, both in oxidizing atmosphere as reducing.

It is an experimental and focused research project, five samples of Fuel Oil from the heater where the fire took place were analysed in the laboratory for its characterization according to the regulations, allowing us to finally establish a hypothesis of what happened. Includes the budget of the costs of the trial to put up, unit costs for their development and implementation and tested unit-average cost, so we get the total budget of the project.
ESTUDIO DEL INCENDIO DEL CALENTADOR ELÉCTRICO DE FUEL DE UNA CENTRAL TÉRMICA Y SUS POSIBLES CAUSAS. (CARACTERIZACIÓN, PROCESOS DE DEGRADACIÓN TÉRMICA Y COMBUSTIÓN).

DOCUMENTO 1: MEMORIA

Rosa Mª Oses López

Mayo 2016
INTRODUCCIÓN

El proyecto que se plantea, surge de la incertidumbre generada en una central térmica en la cual se produjo un incendio en un calentador eléctrico de fueloil, empleado en los arranques del grupo térmico.

Por este motivo y con el objetivo de diagnosticar las posibles causas que originaron el incendio el proyecto pretendió realizar un estudio teórico de los distintos compuestos obtenidos durante la descomposición del fueloil según se van incrementando las condiciones de operación: presión, temperatura (entre 30º a 700-800ºC aprox.), tanto en atmósfera inerte (sin oxígeno) como en atmósfera oxidante. El concepto principal del estudio desarrollado es evaluar si en estas condiciones, el fuel puede destilar, coquizar, fraccionarse en distintos productos y/o vapores y por lo tanto, si en condiciones de escasez de oxígeno, alta temperatura o presión, puedan llegar a incendiarse. Finalmente se quería determinar qué mecanismo de incendio es el que a priori puede darse en estos casos: explosión, deflagración o detonación.

Por el carácter del proyecto, el estudio comprende una búsqueda de información bibliográfica sobre la descomposición térmica del fuel en las condiciones anteriormente descritas,: cromatografía de gases, espectroscopia de masas, caracterización por así como una analítica completa utilizando diferentes técnicas de laboratorio descomposición a temperatura programada con detección termogravimétrica e IR, ...

Por todo lo anteriormente descrito, surge la necesidad de realizar un proyecto, no demasiado extenso, analizando las causas potenciales del incendio y la rotura del calentador eléctrico.

El proyecto planteado en el presente documento, se ha llevado a cabo en el Laboratorio de Combustibles y Petroquímica (LCP) de la Fundación Gómez Pardo, durante la estancia de prácticas en empresa., Es por ello, que este documento adquiere un carácter confidencial por demanda expresa de la empresa solicitante de los trabajos y por el compromiso que exige el sistema de calidad a la de protección de datos de sus clientes.
CAPITULO I. Objetivos y alcance

1.1. 1.1 Objetivo

El objetivo principal de este proyecto es analizar el comportamiento del Fuel Oil (en adelante FO) en distintas condiciones de operación, relacionando éstas con los procesos de degradación térmica y combustión que pueden tener lugar a diferente presión, temperatura y atmósfera oxidante o reductora. Con esta información se pretende aportar datos que contribuyan a explicar los posibles mecanismos físico-químicos habidos en el calentador eléctrico de FO en una Central Térmica.

1.2 Alcance

El alcance del proyecto comprende los siguientes puntos básicos:

- Determinación de los productos de combustión del FO así como de las diferentes reacciones químicas que pudieran producirse durante este proceso.
- Conocer las condiciones de presión y temperatura para la combustión de un FO en ausencia o presencia de oxígeno.
- Realizar una hipótesis de lo ocurrido en el incendio del calentador eléctrico alimentado por fuelóleo.
CAPITULO II. El Fuel Oil como combustible.

Las especificaciones actuales para el fuelóleo han sido emitidas en el Real Decreto 61/2006, de 31 de enero (BOE nº. 341 de 17 de febrero de 2006, con sus modificaciones recogidas en el RD 1088/2010 de fecha 4 de septiembre de 2010).

Estas pretenden conseguir el buen uso en los quemadores y evitar la emisión de inquemados. Tradicionalmente han estado basadas en su viscosidad y en su contenido en azufre, características ligadas con la facilidad de pulverización y con la contaminación atmosférica por SO$_2$.

El combustible que se utiliza en la Central Térmica evaluada es Fuel Oil BIA con un 1 % de azufre, según la especificación recogida en la Tabla 1, si bien las características del Fuel almacenado pueden ser ligeramente diferentes por los motivos que se detallan más adelante. En la misma tabla se presentan los resultados obtenidos para las analíticas realizadas sobre la muestra enviada desde la Central Térmica, cuya procedencia es un tanque de FO de uso diario (con cambios habituales). Desde dicho tanque el FO es bombeado a los calentadores para reducir su viscosidad y facilitar su atomización posterior en los quemadores de caldera. El FO que no se consume en la caldera es enviado nuevamente al tanque diario y se mantiene recirculando en circuito cerrado para conservar su temperatura y fluidez.

Para obtener una mayor información sobre las propiedades del FO, se han realizado determinaciones, no recogidas en la especificación, pero que permiten conocer mejor el comportamiento del producto a elevadas temperaturas, tales como temperatura de autoinflamación, curva de destilación y otras.
Tabla 1. Valores recogidos en la especificación del FO según el R.D. 61/2006 y resultados obtenidos en los análisis efectuados

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Unidades</th>
<th>R.D. 61/2006 (límite)</th>
<th>Resultado</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>-</td>
<td>negro</td>
<td>negro</td>
<td>Visual</td>
</tr>
<tr>
<td>Agua por destilación</td>
<td>% v/v</td>
<td>máx. 0,5</td>
<td>0</td>
<td>ASTM D 95</td>
</tr>
<tr>
<td>Agua y sedimentos</td>
<td>% v/v</td>
<td>máx. 1,0</td>
<td>0,1</td>
<td>UNE 51082</td>
</tr>
<tr>
<td>Contenido de azufre</td>
<td>% m/m</td>
<td>máx. 1,0 (1)</td>
<td>1,17</td>
<td>EN ISO 8754</td>
</tr>
<tr>
<td>Contenido de cenizas</td>
<td>% m/m</td>
<td>máx. 0,15</td>
<td>0,04</td>
<td>ASTM D 482</td>
</tr>
<tr>
<td>Estabilidad (sedimentos potenciales)</td>
<td>% m/m</td>
<td>máx. 0,15</td>
<td>0,02</td>
<td>ISO 10307-2</td>
</tr>
<tr>
<td>Poder calorífico superior</td>
<td>kcal/kg</td>
<td>min. 10.000</td>
<td>10.203,0</td>
<td>ASTM D 240</td>
</tr>
<tr>
<td>Poder calorífico inferior</td>
<td>kcal/kg</td>
<td>min. 9.500</td>
<td>9.740,5</td>
<td>ASTM D 240</td>
</tr>
<tr>
<td>Punto de inflamación</td>
<td>ºC</td>
<td>min. 65</td>
<td>89,5</td>
<td>ASTM D 93</td>
</tr>
<tr>
<td>Vanadio</td>
<td>mg/kg</td>
<td>máx. 300</td>
<td>0,20</td>
<td>ASTM D 5708</td>
</tr>
<tr>
<td>Viscosidad cinemática a 50 ºC</td>
<td>mm²/s</td>
<td>máx. 380</td>
<td>616</td>
<td>ASTM D 445</td>
</tr>
<tr>
<td>Aluminio + silicio (2)</td>
<td>mg/kg</td>
<td>máx. 80</td>
<td>0,1</td>
<td>ASTM D 5708</td>
</tr>
<tr>
<td>Densidad a 15 ºC (2)</td>
<td>kg/L</td>
<td>anotar</td>
<td>0,9901</td>
<td>ASTM D 1298</td>
</tr>
<tr>
<td>Punto de fluidez (2)</td>
<td>ºC</td>
<td>+30</td>
<td>-9</td>
<td>ASTM D 97</td>
</tr>
<tr>
<td>Análisis elemental (3)</td>
<td>% m/m</td>
<td></td>
<td></td>
<td>ASTM D 5291</td>
</tr>
<tr>
<td>carbono</td>
<td>-</td>
<td>86,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hidrógeno</td>
<td>-</td>
<td>10,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrógeno</td>
<td>-</td>
<td>0,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destilación a vacío (3)</td>
<td>ºC</td>
<td></td>
<td></td>
<td>ASTM D 1160</td>
</tr>
<tr>
<td>Punto inicial</td>
<td>-</td>
<td>179,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% v/v recogido</td>
<td>-</td>
<td>204,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% v/v recogido</td>
<td>-</td>
<td>225,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% v/v recogido</td>
<td>-</td>
<td>270,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40% v/v recogido</td>
<td>-</td>
<td>300,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% v/v recogido</td>
<td>-</td>
<td>359,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60% v/v recogido</td>
<td>-</td>
<td>369,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70% v/v recogido</td>
<td>-</td>
<td>398,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80% v/v recogido</td>
<td>-</td>
<td>406,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punto final (4)</td>
<td>-</td>
<td>450-460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metales por ICP-OES (1)</td>
<td>mg/kg</td>
<td></td>
<td></td>
<td>ASTM D 5708 (método A)</td>
</tr>
<tr>
<td>hierro</td>
<td>-</td>
<td>0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>níquel</td>
<td>-</td>
<td>0,47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sodio</td>
<td>-</td>
<td>3,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td>-</td>
<td>0,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punto de combustión (3)</td>
<td>ºC</td>
<td></td>
<td>209</td>
<td>ASTM D 92</td>
</tr>
<tr>
<td>Punto de autoconsumición (3)</td>
<td>ºC</td>
<td></td>
<td>490</td>
<td>Proc. interno</td>
</tr>
<tr>
<td>Residuo carbonoso (3)</td>
<td>% m/m</td>
<td></td>
<td>15,4</td>
<td>ASTM D 4530</td>
</tr>
</tbody>
</table>

Notas al contenido de la tabla:
(1) Con las excepciones siguientes:

(1.a) Grandes plantas de combustión contempladas en el Real Decreto 430/2004, de 12 de marzo.
(1.b) Otras plantas de combustión no incluidas en la letra a), cuando sus emisiones de SO₂ sean iguales o inferiores a 1.700 mg/Nm³, con un contenido de oxígeno en los gases de combustión del 3 por ciento en volumen, en base seca.
(1.c) Refinerías de petróleo, cuando la media mensual de las emisiones de SO₂ entre todas las instalaciones de la refinería, excluidas las del apartado a), sean iguales o inferiores a 1.700 mg/Nm³.

(2) Ensayos recogidos en la ficha del proveedor ESP-FO-09.07.

(3) Información complementaria.

(4) Temperaturas extrapoladas

Como complemento a esta información en el anexo 1 figura la ficha técnica suministrada por el proveedor del FO.

Hasta la década de los 70, el FO estaba constituido por el residuo de la destilación atmosférica. Actualmente una gran parte de esta corriente se destila a vacío y los destilados y el residuo de vacío obtenido se utilizan como carga a las unidades de conversión (craqueo catalítico, viscorreducción, coquización, etc.). En estos procesos se obtienen evidentemente productos más ligeros (gases y gasolinas) pero también productos muy pesados y viscosos, que se incorporan al FO, diluidos con otros productos ligeros (gasóleo, etc.)

El FO se utiliza para dos tipos de aplicaciones: combustible industrial (centrales térmicas, hornos, calderas) y como combustible o alimentación a grandes navíos propulsados por motores Diesel lentos y de gran potencia.

En general el fuelóleo es un sistema complejo constituido por:
- Hidrocarburos líquidos con un número de átomos de carbono comprendido entre 20 y 70.
- Hidrocarburos sólidos, tales como parafinas disueltas en la matriz hidrocarbonada,
- Asfaltenos o componentes de alto peso molecular, sólidos cuando están aislados pero peptizados en la parte aromática de dicha matriz.
- Pequeñas cantidades de agua disuelta y residuos sólidos inorgánicos
- Metales presentes en las moléculas más pesadas de asfaltenos, principalmente: vanadio, níquel, y hierro formando compuestos organometálicos.
- Compuestos de azufre, en muy variada forma. Los sulfuros, sulfonas, sulfóxidos y tiofenos, son los más frecuentes

A continuación se revisan algunas propiedades del FO y su importancia para la aplicación a que se destina.

- La **viscosidad** es una de sus propiedades que más influyen en la facilidad o dificultad de pulverizar los combustibles en finas gotas a una determinada temperatura, para posibilitar su adecuada combustión. Residuos muy viscosos (denominados “bunker oils”) sólo pueden ser utilizados en quemadores de diseño especial a altas temperaturas. La preparación de los distintos tipos de FO en las refinerías exige la mezcla de distintos residuos con productos destilados de baja viscosidad (denominados “cutter-stocks”) de modo que el producto resultante tenga su viscosidad dentro del margen especificado. La variación de la viscosidad con la temperatura constituye por lo tanto un dato indispensable para el cálculo de la pérdida de carga y poder fijar la temperatura de calentamiento necesaria.

![Figura 1. Baño de agua a 50 ° C. V Ostwald-Cannon-Fenske (ASTM D 445)](image)
Su contenido de azufre se limita por razones de defensa del medioambiente principalmente, pero también, en ciertos casos, para evitar corrosiones excesivas en las partes frías de las instalaciones en contacto con los humos de la combustión o con los gases de escape.

Figura 2. Equipo de determinación del contenido de azufre (EN ISO 8754)

El concepto de combustibles limpios, es decir que contribuyen a una mejor protección del medio ambiente se desarrolló a principios de la década de los 80, primero en Estados Unidos y luego en Europa.

La disminución del contenido de azufre ha afectado profundamente al FO, debido a la legítima preocupación por reducir las emisiones de SO2, especialmente en las proximidades de las grandes aglomeraciones urbanas, motivo por el que la reglamentación europea ha fijado valores límites de emisión de SO2, en los sistemas de combustión industrial.

- La temperatura de congelación o punto de fluidez es la mínima temperatura a la que el producto se mantiene fluido. Su valor se utiliza para garantizar la distribución del FO en condiciones de bajas temperaturas.

- El punto de inflamación es la temperatura mínima a la cual los vapores del producto forman con el aire una mezcla capaz de originar, para un corto periodo, llama, al introducir en esta mezcla una fuente externa de inflamación (llama, chispa eléctrica, etc.).
Se denomina **punto de combustión** la temperatura mínima a la cual los vapores del producto, al introducir una fuente externa de inflamación, forman una llama estable que no se extingue. La temperatura de combustión siempre es más alta que la de inflamación, alcanzando frecuentemente la diferencia entre ambas varias decenas de grados.

El **punto de autoignición** (combustión espontánea) es la temperatura mínima a la cual los vapores del producto mezclados con aire se inflaman sin fuente externa alguna de ignición. La temperatura de autoignición es muy superior a la de inflamación, tal y como puede comprobarse en las Tablas 2 y 3.

Curva de destilación. Se ha destilado a vacío el FO, empezando su destilación a 180 ºC y destilando el 80 % a 406 ºC. Esto pone de manifiesto la presencia de componentes ligeros utilizados para fluidificar residuos más pesados presentes en el FO de manera que sea manipulable y pulverizable en sus condiciones de utilización.
El contenido de cenizas depende de la tecnología de su producción (la profundidad del desalado del petróleo durante su preparación en las explotaciones y refinerías, y el grado de depuración de los residuos inorgánicos procedentes de catalizadores y reactivos). La ceniza del FO, contiene sales de vanadio, níquel y de otros metales pesados, procedentes del crudo, que pueden depositarse en las superficies de las calderas, intercambiadores y de otros equipos, reduciendo el plazo de servicio entre las reparaciones de las instalaciones.
- El vanadio está limitado porque forma con el sodio sales que pueden ser fuertemente corrosivas cuando se depositan en forma líquida, aunque en los hornos industriales, la combustión con excesos mínimos de aire mantiene a las sales vanádicas en forma sólida, lo que frecuentemente es suficiente para evitar la corrosión. El aluminio reacciona formando silicato de aluminio cuyo contenido debe controlarse ya que estos productos ejercen una fuerte abrasión sobre los sistemas de inyección.

- La densidad, usada para la conversión entre la masa del producto y su volumen, es para el FO superior a 0,920 kg/l a 15 ºC.

![Figura 6. Densímetro digital DMA 48 (Anton Para GmbH) ASTM D 1298)](image)

- El poder calorífico en peso o en volumen representa la cantidad de energía liberada por unidad de peso o volumen de combustible como consecuencia de la reacción química de combustión completa, conducente a la formación de CO2 y H2O. Salvo indicación en contra, el combustible se considera en estado líquido y a una temperatura de referencia, generalmente de 25 ºC. El aire y los productos de combustión se consideran a esta misma temperatura.

Se distingue entre el poder calorífico superior (PCS) y el poder calorífico inferior (PCI) según que el agua obtenida en la combustión se encuentre en estado líquido o en estado de vapor. La única magnitud verdaderamente útil en la práctica es el PCI ya que el agua producida en la combustión se encuentra en estado de vapor en los gases emitidos en los motores, y los quemadores.
El **residuo carbonoso** de un FO alcanza con frecuencia valores del 5 al 10 % (m/m), llegando incluso al 20 % (m/m), siendo esta característica la que determina la calidad de la combustión, principalmente en los quemadores de pulverización por medio de copa rotatoria. Productos con alta relación de C/H y alto contenido en asfaltenos dan un residuo carbonoso elevado. El contenido de asfaltenos se determina directamente por precipitación con la ayuda de n-heptano.

Las concentraciones de **nitrógeno**, en función del origen del petróleo de procedencia, están frecuentemente comprendidas entre 3.000 y 5.000 mg/kg. Análisis efectuados mediante el equipo de análisis elemental.
La contaminación del FO puede quedar evidenciada por la presencia de una excesiva cantidad de agua y materias inorgánicas tales como arena y óxidos. Una cantidad apreciable de sedimentos puede ensuciar las instalaciones y dar problemas en los quemadores. Ambos contaminantes pueden ser determinados conjuntamente por centrifugación en presencia de un disolvente (tolueno) y el agua puede medirse de manera más precisa mediante destilación con un compuesto que forma una mezcla azeotrópica con esta.

Como puede verse, el FO suministrado cumple con los requisitos de la especificación nacional, según lo dispuesto en el R.D. 61/2006, así como los requisitos fijados por el productor, según su documento ESP-FO-09.07, salvo para dos de las características analizadas. Por un lado se ha detectado una viscosidad elevada, dato que puede explicarse por el hecho de que al recircularse y almacenarse el FO a temperaturas superiores a la ambiente, éste va perdiendo los compuestos más volátiles y envejece por oxidación, contribuyendo ambos aspectos a que la viscosidad aumente y no sea representativa de la del fuelóleo original, y a que el azufre sea superior al 1 % (m/m) ya que los compuestos de azufre se concentran en las fracciones más pesadas en las que se va enriqueciendo el FO al perder componentes volátiles. Por estas mismas razones, también aumentará el punto de inflamación, y la curva de destilación se hará más pesada.

El aumento de viscosidad conllevará que haya que calentar cada vez más para conseguir la viscosidad recomendada por el fabricante para una buena pulverización, con la consiguiente perdidas de ligeros y aumento paralelo de viscosidad, cayendo así en una espiral no deseada.

La cuantificación del aumento de los anteriores parámetros dependerá de varios factores: de la temperatura a la que se recircula el FO, de la temperatura de almacenamiento (temperatura del depósito) y del tiempo en que se tenga en dichas condiciones.
CAPITULO III. Procesos de descomposición del FO.

El FO, como todos los productos hidrocarbonados procedentes del petróleo se degrada por la acción combinada del oxígeno y la temperatura, pudiendo diferenciarse las descomposiciones que tienen lugar a temperaturas moderadas, desde temperatura ambiente hasta 100 °C, que transcurren vía radicales libres y que constituyen los llamados procesos de oxidación y las que tienen lugar a temperaturas superiores que pueden dar lugar a la combustión del producto.

3.1 Descomposición a bajas temperaturas.

Los productos del petróleo a temperaturas comprendidas entre la ambiente y 100 °C (dependiendo del producto) experimentan procesos de degradación conducentes a su oxidación, con la subsiguiente formación de productos ácidos, esteres, cetonas, alcoholes y otros grupos oxigenados que pueden dar lugar a fenómenos de corrosión, y polímeros que dan lugar a gomas o residuos, que después pueden ser origen de la formación de depósitos.

El mecanismo químico de la oxidación transcurre, vía radicales libres en varias etapas:

1º) Iniciación, con formación de radicales libres.

2º) Propagación, en la que los radicales libres formados pueden combinarse con el oxígeno para formar radicales peróxidos, los cuales, a su vez, pueden reaccionar con otras moléculas de hidrocarburo generando nuevos radicales libres e hidroperóxidos.

3º) Reacción en cadena, por descomposición de una molécula de hidroperóxido en dos radicales que inician nuevas reacciones.

4º) Terminación, cuando dos radicales libres se unen entre sí formando hidrocarburos de alto peso molecular y productos oxigenados finales.
Mecanismo de oxidación

<table>
<thead>
<tr>
<th>Fase de Iniciación:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH + O₂ → ROOH → R• + •OOH</td>
</tr>
<tr>
<td>RH + O₂ → RO• + •OH</td>
</tr>
<tr>
<td>RH + O₂ → ROO• + •H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fase de Propagación:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R• + O₂ → ROO•</td>
</tr>
<tr>
<td>ROO• + RH → ROOH + R•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reacción en cadena:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOH → RO• + •OH</td>
</tr>
<tr>
<td>RO• + RH → ROH + R•</td>
</tr>
<tr>
<td>•OH + RH → H₂O + R•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminación:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROO• + •OH → ROH + O₂</td>
</tr>
<tr>
<td>R• + R• → R-R</td>
</tr>
<tr>
<td>R• + ROO• → ROOR</td>
</tr>
<tr>
<td>2 ROO• → ROOR + O₂</td>
</tr>
</tbody>
</table>

Figura 9. Mecanismos de oxidación en varias etapas

3.2 Descomposición térmica a altas temperaturas.

Generación de gases bajo estrés térmico

Tipo T1 (< 300 ºC)

Por definición, los defectos térmicos se definen como las temperaturas excesivas alcanzadas por el FO, y que pueden ocurrir por refrigeración insuficiente, corrientes circulatorias lentas, etc. El resultado final de estas descargas de energía es la formación de gases debido a diversas reacciones químicas en el combustible. El mecanismo de estas reacciones es vía radicálica ya que se produce, en una primera fase de iniciación, la ruptura homolítica de los enlaces C-C y C-H de los hidrocarburos, dando lugar a radicales libres del tipo H•, CH₃•, −CH₂•, =CH• y ≡C• y en una segunda fase de propagación, la rápida recombinación entre los radicales formados para dar lugar a moléculas gaseosas tales como el H₂, CH₄, C₂H₆…

Tipo T2 (300 ºC < T₂ < 700 ºC)

Tal y como aparece reflejado en la siguiente figura, el tipo de gases generados y la proporción de cada uno de ellos depende de la temperatura a la que se encuentre el sistema.
Como puede verse cuando se incrementan las temperaturas de contacto con el combustible aparecen como gases de descomposición el etileno y el acetileno ya que requiere para su formación mayores energías.

![Figura 10. Formación de gases versus temperatura del sistema](image)

3.3 Procesos de combustión

La combustión es una reacción química de oxidación, relativamente rápida, que consiste en la unión de un material combustible (en el caso que nos ocupa, el FO) con un comburente (el oxígeno) y una energía de activación aportada por el calor suministrado al FO. La reacción es exotérmica siendo acompañada por desprendimiento de calor y habitualmente emisión de luz. La velocidad de combustión y la integridad de la reacción de combustión dependen de la afinidad que presente el elemento combustible con el oxígeno y de las condiciones en que se realice dicha combustión (el tiempo, la temperatura y el grado de contacto entre la masa del FO y el oxígeno, dependiente del grado de turbulencia existente en la mezcla de ambos)
Una combustión es completa cuando se logra oxidar todo el combustible y se libera toda la energía, mientras que una combustión incompleta puede deberse a insuficiencia de oxígeno, mezcla imperfecta del combustible con el oxígeno, tiempo insuficiente o temperatura demasiado baja para mantener la combustión. Que se produzca un tipo de combustión u otra es un indicador de la eficiencia de la misma.

La composición de los productos de combustión depende del tipo de combustible utilizado, de la relación aire/combustible, del estado de operación del equipo y de las condiciones en que se efectúa la combustión. Dichos productos están formados por gases: dióxido de carbono (CO₂), monóxido de carbono (CO), oxígeno, nitrógeno, vapor de agua y dióxido de azufre (SO₂), así como pequeñas cantidades de sólidos en forma de partículas constituidas por átomos de carbono inquemados, sulfatos metálicos, agua emulsionada con hidrocarburos de elevado peso molecular que son los más difíciles de quemar. La mayor parte de estos productos son invisibles, y la aparición de humos oscuros, formados por partículas, es señal de que se opera a baja temperatura, con insuficiencia de oxígeno o con exceso de combustible.

La reacción general de combustión de un hidrocarburo parafínico es la siguiente:

\[C(n)H(2n+2) + (1,5n + 0,5) O_2 \rightarrow (n) CO_2 + (n+1) H_2O \]

Analizamos a continuación las reacciones individuales:

- **Productos de combustión del carbono:**

 \[C + \frac{1}{2} O_2 \rightarrow CO \]

 \[CO + \frac{1}{2} O_2 \rightarrow CO_2 \]

- **Productos de combustión del hidrógeno:**

 \[H_2 + \frac{1}{2} O_2 \rightarrow H_2O \]

- **Productos de combustión del azufre:**

 \[S + O_2 \rightarrow SO_2 \]

 Reacción que puede continuar según:

 \[SO_2 + \frac{1}{2} O_2 \rightarrow SO_3 \]

 \[SO_3 + H_2O \rightarrow H_2SO_4 \]

- **Productos de combustión del nitrógeno:**

 \[N_2 + O_2 \rightarrow 2 NO \]

 \[2 NO + O_2 \rightarrow 2 NO_2 \]
- Productos de combustión del vanadio:
 \[
 \begin{align*}
 VO_{(gas)} + \frac{1}{2} O_2 & \rightarrow VO_2{_{(gas)}} \\
 2 \ VO_2{_{(gas)}} & \rightarrow V_2O_3{_{(liq)}} + \frac{1}{2} O_2 \\
 2 \ VO_2{_{(gas)}} & \rightarrow V_2O_4{_{(liq)}} \\
 V_2O_3 + O_2 & \rightarrow V_2O_5 \\
 V_2O_4 + \frac{1}{2} O_2 & \rightarrow V_2O_5
 \end{align*}
 \]

3.4 Tipos de combustión.

Los fenómenos de combustión pueden clasificarse por el espacio-tiempo en que se produce la reacción o por la velocidad a la que tiene lugar.

Según espacio-tiempo:

- **Localizada.** Se caracteriza por existir una discontinuidad espacial, localizada en el frente de llama que va progresando, aunque evidentemente también hay discontinuidad temporal. Para su generación (ignición) se requiere una fuente externa.

- **Combustión generalizada o autoencendido.** Se caracteriza por una discontinuidad temporal, pero no espacial. Cualquier volumen diferencial está en las mismas condiciones en un momento determinado (pe. explosión).

Según la velocidad:

- **Combustión lenta** (sin emisión de luz y poca emisión de calor). Habitualmente se producen en lugares con escasa aireación, en el carbón y los cigarrillos, y en algunos metales (oxidación).

- **Combustión rápida** (con fuerte emisión de luz, calor y llamas). Se consideran combustiones instantáneas y dentro de ellas se puede distinguir dos tipos de explosiones:

 - **Subsónica.** La velocidad de propagación de la llama es inferior a la del sonido (deflagración).
 - **Supersónica.** La velocidad de propagación de la llama es superior a la del sonido (detonación).
3.4.1 Deflagración.

La velocidad de combustión es en este caso mucho menor que la del sonido, por lo que se considera que las variaciones de presión se transmiten instantáneamente. Por tanto se caracterizan por su discontinuidad de temperatura, localizada en el frente de llama.

Este es el caso de la combustión en un motor de encendido provocado (motor de gasolina) en el que desde el punto de encendido la reacción se propaga a través de la cámara de combustión mediante un frente de llama que avanza con velocidad subsónica.

El frente de llama, zona más o menos ancha en donde tiene lugar el proceso de combustión, separa en cada instante la masa quemada de la masa sin quemar.

![Figura 11. Modelo de combustión normal](image)

Al progresar el frente de llama se va incrementando la presión en la cámara de combustión, comprimiéndose progresivamente la masa sin quemar existente en cada instante. Si la mezcla sin quemar no entra en autoinflamación permitiendo que el frente complete su recorrido a través de la cámara de combustión, tenemos lo que se llama combustión normal. En estas circunstancias la variación de presión dentro de la cámara de combustión se produce de manera regular y sin brusquedades.
3.4.2 Detonación

La detonación es un modo de combustión anormal de la combustión localizada en la que una fracción de la mezcla aire-combustible explota de manera violenta, antes de ser alcanzada por el frente de llama.

Antes de producirse la detonación la mezcla inicia su combustión de manera normal, el frente de llama se desplaza a través de la cámara de combustión, pero la presión y el calor procedentes de los gases en combustión calientan y comprimen a los gases que aun no se han inflamado. Cuando la presión y la temperatura son lo suficientemente altas, la totalidad de los gases no inflamados explota violentamente, resultando unas ondas de choque que se desplazan a velocidades superiores a las del sonido, que producen un sonido fácilmente audible y decimos que tenemos combustión detonante o simplemente detonación.

Esta autoinflamación más o menos simultánea de la mezcla sin quemar realizada prácticamente a volumen constante, y en la que no existe frente de llama, tiene una velocidad de combustión de un orden muy superior al de la combustión normal. El fuerte desequilibrio local de presiones se propaga a través de la cámara de combustión por ondas de presión, haciendo vibrar el gas con una frecuencia dependiente de la velocidad de las ondas y del tamaño y forma de la cámara de combustión.

Son procesos de combustión muy rápidos en los que no se puede considerar homogeneidad de presión, siendo necesario tener en cuenta la onda de choque generada. Se caracterizan, pues, por una discontinuidad de presión.

La detonación es un proceso indeseado en los motores de combustión interna de encendido provocado (motores de gasolina).
CAPITULO IV. Mecanismos de descomposición térmica en productos petrolíferos.

A continuación se tratará de aclarar algunos conceptos relacionados con los procesos físicos y químicos a los que puede someterse a un hidrocarburo y que dan lugar a una modificación esencial en la estructura de las moléculas y, por tanto, un cambio sustancial en todas sus características y propiedades (pe. peso molecular, número de octano, viscosidad, etc.), particularizándose para el caso del FO.

4.1. Destilación.

Dado que los productos petrolíferos se descomponen a temperaturas de 370 ºC por inicio de craquing, los productos que destilan por encima de esta temperatura, como es el caso del FO, se destilan a vacío, aunque los resultados se expresen en temperaturas atmosféricas equivalentes.

Como puede observarse, véanse los datos numéricos en la tabla 1, el producto empieza a destilar a temperaturas próximas a los 180 ºC, lo que indica que a temperaturas superiores a este valor habrá hidrocarburos que pasen de la fase líquida a fase vapor, fenómeno que se irá incrementando a medida que el valor de la temperatura aumente. No es probable que se haya producido este proceso porque los hidrocarburos en fase de vapor se condensan rápidamente cuando encuentran zonas con temperaturas inferiores a las que destilan y la instalación tendría restos líquidos en numerosos lugares.

![Figura 12. Curva de destilación a vacío del FO. (Efectuado en el LCP)](image-url)
Por otro lado estos hidrocarburos se encontrarían a temperaturas inferiores a las de autoignición (490 °C) por lo que no podrían entrar espontáneamente en combustión.

4.2 Craqueo térmico.

Es la descomposición que se produce cuando se somete al crudo o a sus fracciones a una temperatura superior a 370 °C a presión atmosférica. Este fenómeno fue observado inicialmente cuando se forzaba el calentamiento de los hornos previos a la columna de destilación del crudo, comprobándose los siguientes efectos:

a) Formación de coque, depositado en las paredes de los tubos de los hornos y en la zona de “flash” de la torre atmosférica.

b) Aumento de las fracciones ligeras, con aparición de componentes olefinicos, a costa de las más pesadas.

c) Producción de gases, detectándose la presencia de etileno, propileno e, incluso, acetileno, además de aumentar la cantidad de los hidrocarburos saturados de bajo peso molecular. La explicación resulta evidente desde el punto de vista estequiométrico: se produce una ruptura de las moléculas de gran tamaño en otras menores (de aquí el término “cracking”), a la vez que tiene lugar reacciones de deshidrogenación, que originan los gases insaturados y el coque, según reacciones del tipo:

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH-CH-CH}_2\text{-CH}_2\text{-CH}_2 \rightarrow \text{CH}_3\text{-CH}_2\text{-CH-CH=CH}_2 + \text{CH}_3\text{-CH}_3 \\
\text{CH}_3\text{-CH}_3 \rightarrow \text{CH}_2=\text{CH}_2 + \text{H}_2 \rightarrow \text{CH}=\text{CH} + 2\text{H}_2
\end{align*}
\]

ETSI Minas y Energía

Rosa María Oses López
4.3 Pirólisis.

Se denomina así a la descomposición de un hidrocarburo cuando éste es sometido a temperaturas de entre 500 y 1.000 °C en ausencia de oxígeno. Según la teoría de Rice, las reacciones de pirólisis de hidrocarburos siguen un mecanismo de reacciones en cadena en el que juegan un papel preponderante los radicales libres, es decir, grupos de átomos que disponen de electrones desapareados. Benson desarrolló y amplió dicha teoría, cuyas premisas básicas se resumen en la coexistencia y simultaneidad de tres tipos de reacciones que, en el caso de las parafinas, pueden concretarse de la siguiente forma:

1. **Reacciones de iniciación de la cadena.** Los radicales se forman por la ruptura de un enlace C-C o C-H. En el caso de las parafinas, la ruptura se producirá preponderantemente en los enlaces C-C (347 kJ/mol), que requieren menor nivel energético que los enlaces C-H (414 kJ/mol), aunque más difícil será la ruptura de los dobles y triples enlaces C-C (620 y 812 kJ/mol respectivamente).

2. **Reacciones de propagación de la cadena.** Los radicales libres son muy reactivos (tanto más cuanto más pequeños), por lo que su vida media es muy corta y están presentes en concentraciones muy bajas, tomando parte en múltiples reacciones que dan lugar a productos distintos:
 - Reacciones de activación.
 - Reacciones de fisión β, produciendo principalmente olefinas.
 - Reacciones de isomerización.

3. **Reacciones de terminación de la cadena.** Aunque la concentración de radicales libres es muy pequeña, se produce la colisión entre ellos de forma que queden neutralizados, finalizando así la reacción en cadena. Pueden considerarse tres casos diferentes:
 - Reacciones de saturación con hidrógeno.
 - Reacciones de saturación mutua.
 - Reacciones de desproporción.
Estas reacciones se diferencian de las de oxidación descrita en el punto 3.1 en que en este caso no hay presencia de oxígeno por lo que se trata de un craquing a altas temperaturas para forzar el proceso, ya que lo que se persigue es obtener productos ligeros, de alto valor añadido, a partir de productos pesados de menor valor.

La pirólisis de hidrocarburos es un fenómeno claramente endotérmico, siendo las reacciones de iniciación muy endotérmicas y las de terminación exotérmica con una energía de activación prácticamente nula, y por tanto casi independientes de la temperatura. La energía de activación, considerando el proceso de manera global, es positiva (endotérmico) por lo que la velocidad de las reacciones de ruptura aumenta notablemente con la temperatura.

El aumento de presión influye en la velocidad global de las reacciones de craquéo que se realizan en fase gaseosa, aumentándola, aunque lógicamente produce mayor cantidad relativa de moléculas saturadas (etano, propano y butano).

4.4 Coquización.

Se produce a temperaturas inferiores a los 500 ºC, donde prevalecen las reacciones de isomerización y “cracking” que dan lugar a parafinas y olefinas de menor peso molecular que sus compuestos de partida. En estas condiciones las resinas se craquean en parte, aunque resulta inevitable su parcial condensación con los asfaltenos y de estos entre sí, a la vez que se deshidrogenan hasta convertirse en coque en proporción tanto mayor cuanto mayor sea la duración del tratamiento.

Temperaturas excesivamente altas, además de favorecer la formación de coque en las paredes de los tubos de los hornos o en las líneas de transferencia, producen un coque excesivamente duro, difícil de extraer de dichos lugares. Temperaturas excesivamente bajas producen un coque blando, con un alto contenido de volátiles, parecido al alquitrán, de difícil manejo y utilización.

La presión de trabajo debe ser lo más baja posible (entre 1 y 3 kg/cm²) de manera que los compuestos más ligeros (con menos de 20 átomos de carbono) se vaporicen y escapen
antes de que vuelvan a craquearse, mientras que los menos volátiles prolongan su permanencia, aumentando así la probabilidad de su craqueo.

4.5 Gasificación.

Se trata de una reacción de pirólisis en presencia de oxígeno:

\[
\begin{align*}
C_nH_m + (2n + m)/4 O_2 &\rightarrow n CO + m/2 H_2O \\
C_nH_m + n H_2O &\rightarrow n CO + (2n + m)/2 H_2
\end{align*}
\]

De esta manera puede conseguirse la gasificación de cualquier hidrocarburo, convirtiéndolo en monóxido de carbono (CO) e hidrógeno (H₂).

Este proceso se está desarrollando industrialmente para obtener gas de síntesis y biogas a partir de residuos industriales, urbanos y biomasas y posteriormente aprovechar el contenido energético de dicho gas.
CAPITULO V. La combustión de los productos petrolíferos.

El modo de combustión de los productos petrolíferos, entre los que se encuentra el FO, está estrechamente ligado a su composición química, responsable de su volatilidad y su presión de vapor. Dentro de la composición química, el parámetro más importante es el número de átomos de carbono de las moléculas: cuantos menos carbonos existen mayor es la volatilidad y con mayor facilidad se produce su combustión, y viceversa.

En cuanto a la influencia de las condiciones externas, la temperatura ejerce un papel predominante con relación a la presión. Como referencia podemos tomar el caso del motor diesel donde el aire debe ser comprimido en la cámara de combustión a presiones del orden de los 30-40 bares (los valores concretos depende del tipo de motor y su relación de compresión) para que el gas oil inyectado se autoinflame, aunque hoy día la tendencia es a la reducción de la presión para reducir las emisiones de NOx. Al ser el FO un producto más pesado que el gas oil, las presiones necesarias tendrían que ser superiores y por lo tanto muy difíciles de alcanzar en un sistema abierto.

En la tabla 2 se resume el tipo de combustión y condiciones de las mismas en función del número de átomos de carbono o peso molecular del producto.
<table>
<thead>
<tr>
<th>Producto</th>
<th>Átomos de carbono</th>
<th>Temperatura</th>
<th>Necesidad de fuente externa</th>
<th>Presión</th>
<th>Reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Natural</td>
<td>1-2</td>
<td>Ambiente</td>
<td>Llama, chispa, punto caliente, cortocircuito, etc.</td>
<td>Atmosférica</td>
<td>Explosión</td>
</tr>
<tr>
<td>GLP (botella de butano)</td>
<td>3-4</td>
<td>Ambiente</td>
<td>Llama, etc.</td>
<td>Atmosférica</td>
<td>Explosión</td>
</tr>
<tr>
<td>Gasolina</td>
<td>5-10</td>
<td>Ambiente</td>
<td>Llama, etc.</td>
<td>Atmosférica</td>
<td>Combustión</td>
</tr>
<tr>
<td>Gasolina</td>
<td>5-11</td>
<td>> Ambiente</td>
<td>Autoinflamación sin llama, etc.</td>
<td>>Atmosférica</td>
<td>Detonación</td>
</tr>
<tr>
<td>Gas oil</td>
<td>12-20</td>
<td>Ambiente</td>
<td>Llama, etc.</td>
<td>Atmosférica</td>
<td>No hay combustión</td>
</tr>
<tr>
<td>Gas oil</td>
<td>12-20</td>
<td>Altas temperaturas</td>
<td>Autoinflamación, sin llama, etc.</td>
<td>Altas presiones de 30-40 bares</td>
<td>Combustión</td>
</tr>
<tr>
<td>FO</td>
<td>20-70</td>
<td>Ambiente</td>
<td>Llama, etc.</td>
<td>Atmosférica</td>
<td>No hay combustión</td>
</tr>
<tr>
<td>FO</td>
<td>20-70</td>
<td>150-370 ºC</td>
<td>Con llama inflamación autoextingible</td>
<td>Atmosférica</td>
<td>Destilación, sin combustión</td>
</tr>
<tr>
<td>FO</td>
<td>20-70</td>
<td>370-500 ºC</td>
<td>Formación de gases inflamables</td>
<td>Atmosférica</td>
<td>Sigue destilación. Sin llama, escasa posibilidad de combustión</td>
</tr>
<tr>
<td>FO</td>
<td>20-70</td>
<td>370-500 ºC</td>
<td>Formación de gases inflamables</td>
<td>Atmosférica</td>
<td>Combustión en presencia de llama, puntos calientes, cortocircuito, etc.</td>
</tr>
<tr>
<td>FO</td>
<td>20-70</td>
<td>> 500 ºC</td>
<td>Gases y vapores autoinflamables</td>
<td>Atmosférica</td>
<td>Autocombustión</td>
</tr>
</tbody>
</table>

Como puede apreciarse para el caso del FO, a temperatura ambiente y presión atmosférica el producto no experimenta ningún cambio en su composición.

A temperaturas comprendidas entre 150 y 370 ºC el producto destila pero los vapores no son autoinflamables por lo que no debe haber combustión, solamente en caso de presencia de llama pueden estos vapores inflamarse, pero esta inflamación se autoextinguiría sin dar lugar a una combustión prolongada.

A partir de los 370 ºC, y hasta los 500 ºC sigue produciéndose destilación y empiezan a formarse gases procedentes del “craquing” de moléculas pesadas y coque procedente de la coquización, que sin la presencia de llama, etc. no suelen presentar problemas de combustión. Esta hipótesis se basa en que estas circunstancias se dan en otros productos hidrocarbonados sin producirse incendios. Por otro lado se ha comprobado
experimentalmente que la temperatura de autoinflamación del FO es de 490 ºC. Cuando a estas temperaturas hay presencia de llama, chispas, puntos calientes, cortocircuitos, etc., el riesgo de incendio es muy elevado por la naturaleza de los gases producidos en los procesos mencionados.

Temperaturas superiores a 500 ºC. Para llegar estas temperaturas pueden seguirse caminos diferentes:

- Calentamiento gradual de toda la masa de combustible. El calor suministrado al producto se transmite a toda su masa porque ésta está sometida a agitación o fuerte turbulencia. En este caso el producto se iría evaporando y cerca de los 500 ºC se habría evaporado casi totalmente de acuerdo con su curva de destilación. Esto es muy improbable que suceda por las circunstancias requeridas y porque sus efectos serian muy patentes: generación de gran cantidad de vapores, pérdida del líquido en casi su totalidad, descebado y parada de las bombas, necesidad de reponer grandes cantidades del FO evaporado, etc.

La otra posibilidad es la ya comentada, es decir que se produzcan incrementos de temperatura puntuales localizados en puntos calientes con descomposición del FO y generación de gases autoinflamables. Estos puntos calientes pueden estar a temperaturas superiores a 500º C como ya se indicó en el apartado 3.2 y más concretamente en “Generación de gases bajo estrés térmico” del tipo T2.
CAPITULO VI. Conclusiones.

- El calentamiento del FO durante su recirculación y almacenamiento conduce a una elevación de la viscosidad y del contenido de azufre por pérdida de los componentes más volátiles.

- Para que se haya producido la combustión de este FO han debido de producirse varias circunstancias simultáneas. Presencia de puntos calientes, chispas o cortocircuito, etc. Todo ello podría haber dado lugar a:

 - Elevaciones locales de la temperatura hasta valores de 370-500 ºC y por lo tanto:
 - Craqueo del producto.
 - Formación de gases inflamables (pe. Hidrógeno)

 - En el caso de que la temperatura haya superado los 500 ºC, autoinflamación de los vapores producidos tal y como se observa en la figura 11. Cuanto mayor sea la temperatura del sistema, los gases que se generan por “cracking” térmico suelen ser etileno y acetileno. Dichos gases son inflamables.
CAPITULO VII. Bibliografía.

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS Y ENERGÍA

DEPARTAMENTO DE ENERGÍA Y COMBUSTIBLES

ESTUDIO DEL INCENDIO DEL CALENTADOR ELÉCTRICO DE FUEL DE UNA CENTRAL TÉRMICA Y SUS POSIBLES CAUSAS. (CARACTERIZACIÓN, PROCESOS DE DEGRADACIÓN TÉRMICA Y COMBUSTIÓN).

DOCUMENTO 2: ESTUDIO ECONÓMICO

Rosa Mª Oses López

Junio 2016
CAPÍTULO I. Análisis de costes

1.1 Introducción

Al encontrarnos en un proyecto de carácter experimental y enfocado a la investigación, en el presente documento se detalla el presupuesto de los costes del ensayo para su puesta en marcha así como de los costes unitarios para su desarrollo y realización, no estimando un retorno del capital invertido, pero si obteniendo un valor añadido como es el avance tecnológico, así como un aporte a la implantación de soluciones a una situación puntual de un accidente en las instalaciones de la central térmica.

Por otra parte, es conveniente resaltar que a la hora de realizar el análisis económico del proyecto no es posible basarse únicamente en el estudio del presupuesto, pues al tratarse de un proyecto de carácter experimental y enfocado a la investigación deben tenerse en cuenta otros factores, difícilmente cuantificables como por ejemplo el valor añadido que representa para la empresa contar con el conocimiento del origen del incendio y la implantaciones de soluciones preventivas.

1.2 Presupuesto de desarrollo y puesta en marcha

El estudio económico se ha realizado considerando tres de los factores principales: gastos de personal, gastos en materiales y gastos en fungibles (estas últimas asignadas al coste medio por muestra evaluada).

En primer lugar se desarrolla una estimación de lo que ha supuesto el proyecto, desde el punto de vista de personal y teniendo en cuenta datos figurativos del coste hora (no considerándose datos reales, pues estos se consideran confidenciales dentro de la organización donde se realizan los trabajos).

La tabla 3, resume los datos asociados al personal, donde se han tenido en cuenta el número de horas dedicadas a ello y el precio/hora estimado para cada categoría:

| Tabla 3. Presupuesto: partida de personal |
En la tabla se contabiliza el trabajo destinado a la recopilación de bibliografía además de las horas destinadas al diseño del ensayo, optimización y puesta en marcha de equipos y realización de ensayos de prueba.

Dado que este procedimiento es necesario realizarlo al comienzo del proyecto y no depende de las muestras que vayan a ser ensayadas, se clasifica como un coste fijo y no se contabilizará en el siguiente apartado donde se analiza el coste medio por unidad ensayada.

1.3 Coste medio por muestra ensayada

Para determinar este coste medio por unidad ensayada se ha optado por analizar los costes de materiales, fungibles y de equipos utilizados con una amortización lineal. En los equipos y materiales que no han sido comprados para el ensayo porque ya pertenecían al laboratorio se ha hecho una estimación del coeficiente de uso o de la proporción de coste de mantenimiento. En otros casos, el coste mostrado es el precio estipulado por el laboratorio a ciertos ensayos.

La tabla 4 resume el coste medio para todas las muestras y a partir de ahí se calcula el coste medio para cada una de las muestras evaluadas. Se han considerado por un lado los fungibles utilizados y por otro lado el coste del material para la realización de los mismos, éste último solo se ha considerado en su partida de amortización estimada para la realización de los ensayos.

<table>
<thead>
<tr>
<th>Técnico de laboratorio, auxiliar</th>
<th>Horas dedicadas (h)</th>
<th>Precio unitario (€/h)</th>
<th>Importe neto, €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefe de proyecto</td>
<td>200 (nota 1)</td>
<td>10</td>
<td>2.000</td>
</tr>
<tr>
<td>Direccion técnica del proyecto</td>
<td>150 (nota 2)</td>
<td>30</td>
<td>4.500</td>
</tr>
<tr>
<td>Direccion técnica del proyecto</td>
<td>50 (nota 3)</td>
<td>50</td>
<td>2.500</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>9.000</td>
</tr>
</tbody>
</table>

Tabla 4. Presupuesto: partida de materiales, fungibles y equipos

(Coste medio por muestra)
Materiales y fungibles

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades por muestra ensayada</th>
<th>Precio medio unitario, €</th>
<th>Importe neto, €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botellas de Aire</td>
<td>2</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Materias primas</td>
<td>10</td>
<td>100</td>
<td>1.000</td>
</tr>
<tr>
<td>Disolventes de limpieza para muestras</td>
<td>2</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Otros materiales fungibles (filtros, viales, crisoles, etc)</td>
<td>3</td>
<td>150</td>
<td>450</td>
</tr>
</tbody>
</table>

Ensayos de laboratorio estandarizados

<table>
<thead>
<tr>
<th>Ensayos</th>
<th>Número de muestras</th>
<th>Precio unitario catálogo, €</th>
<th>Importe neto, €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua por destilación</td>
<td>5</td>
<td>63,45</td>
<td>317,25</td>
</tr>
<tr>
<td>Agua y sedimentos</td>
<td>5</td>
<td>46,00</td>
<td>230</td>
</tr>
<tr>
<td>Análisis elemental (CHNS)</td>
<td>5</td>
<td>76,30</td>
<td>381,5</td>
</tr>
<tr>
<td>Contenido de azufre por FRX</td>
<td>5</td>
<td>42,40</td>
<td>212</td>
</tr>
<tr>
<td>Contenido de cenizas</td>
<td>5</td>
<td>52,00</td>
<td>260</td>
</tr>
<tr>
<td>Densidad a 15 ºC</td>
<td>5</td>
<td>38,70</td>
<td>193,5</td>
</tr>
<tr>
<td>Estabilidad (Sedimentos potenciales)</td>
<td>5</td>
<td>116,10</td>
<td>580,5</td>
</tr>
<tr>
<td>Poder calorífico superior</td>
<td>5</td>
<td>83,40</td>
<td>417</td>
</tr>
<tr>
<td>Poder calorífico inferior</td>
<td>5</td>
<td>102,50</td>
<td>512,5</td>
</tr>
<tr>
<td>Punto de inflamación Pensky-Martens</td>
<td>5</td>
<td>35,60</td>
<td>178</td>
</tr>
<tr>
<td>Residuo carbonoso micro</td>
<td>5</td>
<td>54,50</td>
<td>272,5</td>
</tr>
<tr>
<td>Vanadio</td>
<td>5</td>
<td>26,70</td>
<td>133,5</td>
</tr>
<tr>
<td>Viscosidad cinemática a 50 ºC</td>
<td>5</td>
<td>30,20</td>
<td>151</td>
</tr>
<tr>
<td>TOTAL, para el proyecto</td>
<td></td>
<td></td>
<td>3.839,25</td>
</tr>
</tbody>
</table>
Una vez obtenidos los precios globales del proyecto, desde la puesta a punto y el estudio bibliográfico puede estimarse un coste global aproximado de realización de 14.789,25, tal y como muestra la tabla 5.

Tabla 5. Presupuesto global del proyecto

<table>
<thead>
<tr>
<th>Partida evaluada</th>
<th>Importe neto, €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastos personal</td>
<td>9.000</td>
</tr>
<tr>
<td>Gastos materiales y fungibles</td>
<td>1.950</td>
</tr>
<tr>
<td>Gastos ensayos estandarizados</td>
<td>3.839,25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14.789,25</td>
</tr>
</tbody>
</table>
ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE MINAS Y ENERGÍA

DEPARTAMENTO DE ENERGÍA Y COMBUSTIBLES

ESTUDIO DEL INCENDIO DEL CALENTADOR ELÉCTRICO DE FUEL
DE UNA CENTRAL TÉRMICA Y SUS POSIBLES CAUSAS.
(CARACTERIZACIÓN, PROCESOS DE DEGRADACIÓN TÉRMICA Y COMBUSTIÓN).

DOCUMENTO 3: ANEXOS

Rosa Mª Oses López

Junio 2016
Anexo I. Ficha técnica del fuel oil comercial

Ficha técnica del FO comercial

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Unidades</th>
<th>ESP-FO-09.07 (límite)</th>
<th>Resultado</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminio + silicio</td>
<td>mg/kg</td>
<td>máx. 80</td>
<td>0,1</td>
<td>UNE 51082</td>
</tr>
<tr>
<td>Análisis elemental</td>
<td>% m/m</td>
<td></td>
<td></td>
<td>ASTM D 5291</td>
</tr>
<tr>
<td>carbono</td>
<td></td>
<td>-</td>
<td>86,2</td>
<td></td>
</tr>
<tr>
<td>hidrógeno</td>
<td></td>
<td>-</td>
<td>10,7</td>
<td></td>
</tr>
<tr>
<td>nitrógeno</td>
<td></td>
<td>-</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td>Densidad a 15 ºC</td>
<td>kg/L</td>
<td>anotar</td>
<td>0,9901</td>
<td>ASTM D 1298</td>
</tr>
<tr>
<td>Destilación a vacío</td>
<td>ºC ó</td>
<td>ver apdo.</td>
<td>3</td>
<td>ASTM D 1160</td>
</tr>
<tr>
<td>Metales por ICP-OES</td>
<td>mg/kg</td>
<td></td>
<td></td>
<td>ASTM D 5708</td>
</tr>
<tr>
<td>hierro</td>
<td></td>
<td>-</td>
<td>0,06</td>
<td>(método A)</td>
</tr>
<tr>
<td>níquel</td>
<td></td>
<td>-</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>sodio</td>
<td></td>
<td>-</td>
<td>3,32</td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td>-</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>Punto de combustión</td>
<td>ºC</td>
<td>-</td>
<td>209</td>
<td>ASTM D 92</td>
</tr>
<tr>
<td>Punto de autoconsumo</td>
<td>ºC</td>
<td>-</td>
<td>490</td>
<td>Proc. interno</td>
</tr>
<tr>
<td>Punto de fluido</td>
<td>ºC</td>
<td>+30</td>
<td>-9</td>
<td>ASTM D 97</td>
</tr>
<tr>
<td>Residuo carbonoso</td>
<td>% m/m</td>
<td>-</td>
<td>15,4</td>
<td>ASTM D 4530</td>
</tr>
</tbody>
</table>