2-D and 3-D TCAD simulations of defect-tolerant solar cell architectures

- We use 2-D and 3-D TCAD simulations in Sentaurus Device to determine the injection-dependent device performance impacts of point defects (e.g., Fe) and extended defects (e.g., grain boundaries).
- We identify features of device design that contribute to defect tolerance.

References:

Acknowledgements:
This material is based upon work primarily supported by the Engineering Research Center Program of the NSF and the Office of EERE of the DOE under NSF Cooperative Agreement No. EEC-1041895. D. Berney Needleman acknowledges the support of DOD through the NDSEG program.

calculation of grain boundary model

We model grain boundaries in 3-D as mid-gap recombination centers \(N_{deep}\) at an interface 2 nm from the simulated domain boundary [1].

- Modified capture cross-sections account for defect charging.

calculation of heterojunction vs. thick and thin PERC

- Heterojunction more tolerant to \(N_{deep}\) at grain boundary.
- 20 µm thin PERC more defect-tolerant at all decoration concentrations.
- \(\uparrow\) injection \(\rightarrow\) \(\downarrow\) charging \(\rightarrow\) \(\downarrow\) bulk recombination in heterojunction.
- 20 µm thin PERC \textit{not} in high injection.

- Higher injection levels also reduce the impact of point defects.
- Thinner devices:
 1) are higher-injection
 2) have a smaller volume of defective material
 3) require shorter diffusion lengths

- Our simulated Al-BSF device agrees well with experimental results from literature [2].

Grain size (microns)

- Our simulated Al-BSF device agrees well with experimental results from literature [2].

References: