UNIVERSIDAD POLITECNICA DE MADRID

TESIS

CONSOLIDACION DE ESTRUCTURAS DE MADERA MEDIANTE REFUERZOS EMBEBIDOS EN FORMULACIONES EPOXI

POR

FRANCISCO ARRIAGA MARTITEGUI

ESCUELA TECNICA SUPERIOR DE ARQUITECTURA DE MADRID

MADRID, SEPTIEMBRE DE 1986
RESUMEN:

Este trabajo consiste en el estudio del comportamiento mecánico de los métodos de consolidación de estructuras de madera basados en la aplicación de la tecnología de las resinas epoxi. Estos procedimientos permiten recuperar la capacidad mecánica de piezas deterioradas por ataques xilófagos u otras causas, mediante perfiles de refuerzo embebidos en la madera y conectados a ella a través de una formulación epoxi.

El estudio se desarrolla sobre una base experimental y se puede dividir en los siguientes temas:

En la primera parte se trata de manera general de los materiales que intervienen en el sistema (Madera, formulación y refuerzo), justificando la elección de los utilizados en los ensayos. Así, para la madera se emplearon tres especies distintas: Pino insigne, Pino laricio y Quercus robur; tres formulaciones epoxi de diferentes características; y el refuerzo utilizado está constituido por materiales compuestos (Resina de poliéster y fibra de vidrio).

A continuación se estudian las propiedades mecánicas de los materiales centrándose en aquellas que pueden tener más influencia en la forma de trabajo de estos sistemas, como puede ser el esfuerzo cortante.

El tema siguiente consiste en el estudio de la adherencia tangencial entre la formulación epoxi y los dos materiales: madera y refuerzo. Analizando la influencia en la calidad de la unión de diversos factores como son el tratamiento y la rugosidad de la superficie, el tipo de formulación y su edad, la especie de madera y el tipo de producto del material compuesto.

A continuación se estudia el comportamiento de los tres materiales actuando solidariamente en simulaciones de posibles refuerzos de vigas. Esta parte del trabajo se centra principalmente en la consolidación con refuerzos en forma de placas. Se ensayan soluciones de recuperación de apoyos y de tramos intermedios de vigas en pequeña escala. Así como la consolidación de vigas previamente rotas.

En todos los casos se compara el comportamiento en resistencia y deformación de piezas antes y después de la consolidación. Y se establecen unos modelos teóricos
de cálculo que se contrastan con los resultados experimentales. Se describe además, un procedimiento simplificado que permite dimensionar la longitud de anclaje de la placa en función de la geometría de la viga.

Finalmente se trata de conocer el efecto que puede provocar en estos sistemas la variación de las condiciones de humedad y temperatura. Para ello se someten series de probetas a unos ciclos de condiciones extremas de temperatura y otros de humedad. La importancia de este fenómeno radica en la contracción volumétrica de la madera con la variación del contenido de humedad.

Los movimientos diferenciales de origen higrotérmico entre los tres materiales provocan tensiones normales y tangenciales al encontrarse unidos entre sí. Los resultados experimentales se comparan con las estimaciones teóricas del fenómeno.

Podemos concluir que estos métodos de consolidación basados en la tecnología de las resinas epoxi y los refuerzos con materiales compuestos, aquí tratados, permiten la recuperación de la capacidad portante de estructuras de madera deterioradas con seguridad suficiente.
SUMMARY

This work is an study of the structural behaviour of the timber structures consolidation methods based on the application of the epoxy resins technology. These systems allow to recover the load capacity of deteriorated timber members by the installation of reinforcement profiles jointed to wood with epoxy formulation.

The study is developed over a experimental base and can be divided in the following parts:

The first part treat about the intervening materials in the system (Wood, epoxy resin and reinforcement), in general way, to justify the chosen materials to test. Thus, it were employed three different wood species: Pinus radiata, Pinus nigra and Quecus robur; three epoxy formulations of different characteristics; and the reinforcement is made of composite materials (Polyester resin and glass fiber).

After, the mechanical properties of materials are studied and principally those that are more related with the work way in these systems, like shear strenght.

The following part consist on the study of the tangential adherence (Shear bond) between the epoxy formulation and the other materials: Wood and reinforcement. It is analized the influence in the joint quality of several factors like surface treatment and rugosity, the epoxy formulation kind and age, the wood specie and the composite material kind.

Then, it is analized the behaviour of the three materials working together in simulations of beams reinforcements. The principal purpose of this part is conducted to the consolidation by plates reinforcements. It were tested several test samples on beams bearing and beams intermediate sections consolidations, in a little size. And the consolidation of beams previously broken.

In all cases it is compared the strenght and deformation behaviour of the members before and after consolidation. A design theoretical models are proposed and they are contrasted with the experimental results. Further, a simplificated pro-
ceeding is developed to design the plate anchorage length depending on beam geometry.

Finally, we try to know the effect produced in these systems by the change of the temperature and moisture conditions. For this purpose, test sample series were subjected to temperature and moisture extreme conditions cycles.

The importance of this phenomenon is consequence of the wood volumetric shrink by the moisture content change.

The hygrotermic differential movements between the three materials produce axial and shear stresses because they are working together. The experimental results are confront with the theoretical estimations of the event.

We can conclude that these consolidation methods based on the epoxy resin technology and composite materials, here treated, allow to recover the load capacity of deteriorated timber structures with sufficient security.
AGRADECIMIENTOS:

En primer lugar, he de agradecer al Director de Tesis, Don Cesar Peraza Oramas, Catedrático de Tecnología de la Madera de la Escuela Técnica Superior de Ingenieros de Montes, quien conociendo el interés del tema sugirió este estudio para la realización de la tesis doctoral, y la ha dirigido orientando su desarrollo.

Así como al Tutor de la Tesis, Don Jaime Cervera Bravo, Profesor de Cálculo de Estructuras de la Escuela Técnica Superior de Arquitectura de Madrid, quien ha prestado su ayuda resolviendo los problemas que durante su desarrollo han ido surgiendo.

Asimismo he de agradecer la ayuda prestada por todo el personal de la Cátedra de Tecnología de la Madera, así como de la Asociación de Investigación Técnica de las Industrias de la Madera y Corcho, quienes ofrecieron todos sus medios para la realización del trabajo. En sus laboratorios fueron realizados los ensayos y experiencias de este estudio.

A Carmen Arriaga Martínez por su colaboración desinteresada en la parte gráfica del trabajo. Al laboratorio de materiales de la Escuela de Arquitectura de Madrid al facilitar la realización de determinados ensayos en sus instalaciones.

Por último, he de agradecer al Ministerio de Cultura, la ayuda económica prestada, así como a las empresas Sika S.A., Bremen S.A., Nioco S.A. y Polymec S.A., quienes han cedido el material necesario y su asesoramiento técnico para la realización del proyecto.
ÍNDICE

CAPÍTULO 1.- INTRODUCCION.

1.1. Estado actual del tema ... 1
1.2. Objetivos ... 2
1.3. Colaboración de empresas relacionadas con el tema 3
1.4. Laboratorio para la realización de los ensayos 3

CAPÍTULO 2.- MATERIALES EMPLEADOS.

2.1. Madera ... 5
2.2. Formulación epoxi .. 6
2.3. Elementos de refuerzo ... 11

CAPÍTULO 3.- PROPIEDADES MECÁNICAS DE LOS MATERIALES.

3.1. Formulación epoxi .. 18
3.2. Materiales compuestos ... 29
3.3. La madera ... 35

CAPÍTULO 4.- ADHERENCIA ENTRE FORMULACION EPOXI Y MADERA.

4.1. Metodología de ensayo .. 46
4.2. Descripción de datos reflejados en los estadillos 48
4.3. Factores variables estudiados y conclusiones 50

CAPÍTULO 5.- ADHERENCIA ENTRE FORMULACION EPOXI Y MATERIALES COMPUESTOS.

5.1. Metodología de ensayo .. 59
5.2. Factores variables estudiados y conclusiones 64
5.3. Conclusiones generales ... 68

CAPÍTULO 6.- ESTUDIO DEL COMPORTAMIENTO DE LOS TRES MATERIALES EN CONJUNTO.

6.1. Metodología de ensayo .. 70
6.2. Ensayo de vigas unidas en el centro de la luz, con placas internas .. 72
6.3. Ensayo de vigas unidas en el centro de la luz, con placas externas .. 86
6.4. Ensayo de vigas de pequeña luz, con placas de refuerzo en un apoyo .. 98
6.5. Ensayo de vigas unidas en el centro de la luz, con perfiles de pequeña sección 108
6.6. Consolidación de vigas ensayadas .. 120
6.7. Planteamiento de posibles hipótesis de cálculo, para el refuerzo con placas 131

CAPÍTULO 7.- ESTUDIO DE LA INFLUENCIA DE LAS VARIACIONES DE TEMPERATURA Y HUMEDAD.

7.1. Objetivos .. 175
7.2. Ciclos de condiciones extremas de temperatura .. 176
7.3. Ciclos de condiciones extremas de humedad .. 190
7.4. Planteamiento teórico para la determinación de las tensiones originadas por la variación de las condiciones higrotérmicas .. 203

CAPÍTULO 8.- RESUMEN GENERAL DE LAS CONCLUSIONES.

8.1. Sobre los materiales que intervienen .. 225
8.2. Sobre la adherencia entre los materiales .. 228
8.3. Consolidación de piezas .. 231
8.4. Sobre la variación higrotérmica y sus efectos en el sistema .. 235

APÉNDICES: .. 239

1.- DOCUMENTACION TECNICA DE LOS MATERIALES .. 240

1.1. Formulaciones epoxí .. 241
1.2. Materiales compuestos .. 250

2.- ENSAYOS SOBRE LAS CARACTERÍSTICAS MECANICAS DE LA FORMULACION EPOXI .. 257

2.1. Esfuerzo cortante .. 258
2.2. Flexión y compresión .. 262

3.- ENSAYOS SOBRE LAS CARACTERÍSTICAS MECANICAS DE LOS MATERIALES COMPUESTOS .. 269

3.1. Flexión de barras .. 270
3.2. Flexión de placas ... 277
3.3. Esfuerzo cortante en placas 288

4.- ENSAYO A FLEXION DE PIEZAS DE MADERA DE PINO INSIGNE ... 291

5.- ENSAYOS DE ADHERENCIA TANGENCIAL ENTRE MADERA Y FORMULACION .. 297

6.- ENSAYOS DE ADHERENCIA TANGENCIAL ENTRE FORMULACION Y MATERIALES COMPUESTOS 312
 6.1. Placas .. 313
 6.2. Barras de sección circular 317

7.- ENSAYO DE VIGAS CONSOLIDADAS, A PEQUEÑA ESCALA. 323
 7.1. Vigas unidas en el centro de la luz con placas internas.. 324
 7.2. Vigas unidas en el centro de la luz con placas externas.. 331
 7.3. Vigas de pequeña luz, con placas de refuerzo en un apo-
 yo ... 334
 7.4. Vigas unidas en el centro de la luz, con perfiles de pe-
 queña sección .. 338

8.- CONSOLIDACION Y ENSAYO DE VIGAS PARTIDAS......... 342

9.- CICLOS DE HUMEDAD Y TEMPERATURA 346
 9.1. Ensayos de las probetas sometidas a ciclos de temperatura 347
 9.2. Ensayo de las probetas sometidas a ciclos de humedad... 355

10.- FOTOGRAFIAS ... 363

BIBLIOGRAFIA .. 380

000 O 000
CAPÍTULO 1

1.- INTRODUCCIÓN

1.1.- ESTADO ACTUAL DEL TEMA

La madera es uno de los materiales más utilizados como elemento estructural a través de la historia. Su disponibilidad junto con su capacidad de resistencia a las solicita-
ciones de flexión, hicieron de él un material idóneo para forjados de piso, así como su resistencia a la tracción y compresión unida a su ligereza y trabajabilidad permis-
tieron su utilización en armaduras de cubierta.

Por su naturaleza orgánica, la madera se encuentra sometida al riesgo de ataques de agentes xilófagos. Este riesgo aumenta cuando debido a una falta de conservación o a defectos constructivos, se originan humedades que afectan a la madera, favoreciendo el desarrollo de los agentes xilófagos.

Las técnicas actuales para la conservación de la madera, generalmente mediante pro-
ductos químicos, permiten la aplicación de tratamientos curativos y preventivos, que detienen la degradación y garantizan la durabilidad de la madera. Sin embargo, la recuperación de la resistencia original de la pieza estructural, en las zonas destruidas, es tarea más compleja.

Cuando el grado de deterioro de la madera hace peligrar la seguridad de la estructura, se recurre, generalmente, a alguna de las siguientes soluciones: Sustitución de la ma-
dera por otros materiales estructurales, reposición de las piezas más degradadas por madera nueva, prótesis de refuerzo atornilladas o clavadas, o estructuras auxiliares de apeo con carácter más o menos temporal.

La sustitución de la madera por otros materiales lleva consigo el inconveniente de la pérdida de la estructura original además del coste del desmontado de la misma y
valor de la nueva estructura. Esta opción queda descartada, cuando se trate de estructuras con valor histórico, artístico o tecnológico. La reposición de los elementos más deteriorados presenta la dificultad de encontrar en la actualidad secciones con la longitud suficiente y debidamente curadas. Y las soluciones de refuerzos unidos mediante clavado o atornillado, además de su aspecto estético no deseable a veces, no garantizan un funcionamiento mecánico adecuado.

El desarrollo de la tecnología de las resinas epoxi abre un nuevo campo para la consolidación estructural de la madera. La utilización de esta tecnología en la reparación y esfuerzo de estructuras de hormigón, ya es habitual en nuestros días, y se cuenta con abundantes experiencias prácticas. Su aplicación para el caso de estructuras de madera cuenta las primeras realizaciones en Europa de hace aproximadamente unos 15 años, mediante el sistema "Beto" desarrollado por el "Bureau Beta" en Holanda.

Estos métodos consisten, principalmente, en la instalación de refuerzos dentro de la madera, embebidos en formulaciones epoxídicas. Estos sistemas son ampliamenconocidos en varios países con gran número de aplicaciones prácticas.

1.2.- OBJETIVOS

El objetivo de esta tesis se centra en el estudio del comportamiento mecánico de estos métodos de consolidación, mediante la utilización de refuerzos con materiales compuestos (resina de poliéster y fibra de vidrio) y formulaciones epoxi. Las peculiaridades características físicas de la madera, como son su naturaleza anisotropa, la higrosopicidad y la variación del volumen en relación con su contenido de humedad, presenta aspectos específicos, que no aparecen en otros materiales, al menos en el mismo grado, y que son objeto de análisis en este estudio.

La finalidad práctica, a la cual está dirigido este trabajo, es la consolidación de estructuras de madera, principalmente de interés histórico o artístico, aunque es igual-
mente aplicable en otros casos. Con el objeto de extraer recomendaciones prácticas de aplicación de estos métodos, basadas en la experimentación que puedan servir de guía en cierta medida al profesional.

Puede, también, servir de base para su desarrollo hacia el diseño de métodos de unión y ensamble en estructuras actuales de nueva planta.

1.3.- COLABORACION DE EMPRESAS RELACIONADAS CON EL TEMA

Los primeros movimientos se orientaron hacia la toma de contacto con empresas relacionadas con los productos empleados en estos sistemas. Para la elección del tipo de resina a emplear se partió de referencias de estudios y trabajos en otros países. Así, se tenían datos sobre la utilización de formulaciones de la casa Sika S.A., con resultados satisfactorios, en Canadá (1,2) y Estados Unidos (3,4,5). Dicha empresa mostró interés por el estudio, y pudimos contar con su participación mediante la donación de material necesario para los ensayos y el asesoramiento técnico en sus productos.

En cuanto al material empleado como refuerzo, se optó por aquel que en un principio puede ofrecer mejores resultados, como son los materiales compuestos, consistentes en una matriz de resina de poliéster y un refuerzo de fibra de vidrio. Estos son utilizados ya, por sus adecuadas características mecánicas y su adherencia con las resinas epoxi, por ejemplo en el citado sistema "Beta". Para ello se contacto con empresas fabricantes de estos productos (Bremen S.A., Polymec S.A. y Nioco S.A.) que también participan con la donación del material necesario para los ensayos y su asesoramiento.

1.4.- LABORATORIOS PARA LA REALIZACION DE LOS ENSAYOS

La realización de los ensayos mecánicos y elaboración de las probetas se efectuó en las instalaciones de la Cátedra de Tecnología de la Madera de la Escuela Técnica Superior de Ingenieros de Montes de la Universidad Politécnica de Madrid. En dichas
instalaciones contamos con las siguientes equipos:

- Carpintería: para la elaboración de las probetas o partes de las probetas en madera.
 Con las siguientes máquinas:
 . Cepilladora
 . Sierra de Cinta
 . Regruesadora
 . Sierra de disco
 . Escopleadora
 . Taladradora

- Laboratorio de ensayos:
 . Máquina de ensayos mecánicos con dos bancos de ensayo: uno para pequeñas probetas con carga máxima de 4.000 Kg., y escala mínima de 200 Kg. (con apreciación de 1 Kg.) y escala mayor de 4000 Kg. (con apreciación de 10 Kg.). Y otro banco para ensayo de estructuras de hasta 2,50 m. de luz, con carga máxima de 4000 Kg, y escala menor de 800 Kg. (apreciación de 4 Kg) y escala mayor de 4000 Kg (apreciación de 10 Kg).
 . Accesorios para ensayos mecánicos
 . Estufas
 . Cámara frigorífica
 . Balanzas de precisión 0,1 gr. y 0,005 gr.
 . etc.

Las condiciones higrotérmicas de los ensayos se encuentran en valores próximos a +20º C y 65% de humedad relativa del aire.
CAPÍTULO II

2.- MATERIALES EMPLEADOS

En estos sistemas de consolidación aparecen principalmente, tres materiales diferentes que actuarán de una manera sólida y. Son: la madera, la formulación epoxi y el material constituyente del refuerzo.

En este apartado se describen los materiales, tipos de formulación y especies de maderas que han sido utilizados en este estudio, así como sus propiedades físico-mecánicas y aplicaciones actuales. Se exponen, además, los motivos que han llevado a la elección de determinados productos y especies de madera para la realización de los trabajos.

2.1.- MADERA

Las especies de madera empleadas más comúnmente en la construcción a través de los siglos, son las pertenecientes al orden de las coníferas y principalmente las diversas especies de pinos. Esto es debido a las elevadas características mecánicas que poseen, junto a su baja densidad, una gran facilidad de trabajo y su abundancia. Por esta razón la especie que en este trabajo ha servido de material base es una conífera, concretamente el Pinus radiata D.Don, vulgarmente llamada pino insignis o de Monterrey.

Por otro lado, se cuenta con un estudio en profundidad sobre las características mecánicas y físicas de esta especie en España, "Tecnología del aprovechamiento de la madera del Pino Insignis-Pinus radiata", (6); que será de gran utilidad a la hora de juzgar los resultados obtenidos en los ensayos. De esta forma podemos conocer el campo de variación en el que se mueven estos valores, que como es sabido en la madera tienen gran dispersión.

Sus características físico-mecánicas se tratan más adelante, en el apartado "3.3. La madera", haciéndose una breve relación de ellas.
A esta madera la calificaremos de "nueva" atendiendo al corto periodo de tiempo transcurrido desde su corte y secado hasta su utilización, que oscilará alrededor de uno o dos años. Ahora bien, si consideramos que la madera que forma la estructura en edificios de antigüedad alcanza edades muy elevadas, y sufre por tanto un envejecimiento prolongado, puede hacernos pensar en una modificación de su comportamiento frente a estos sistemas epoxi.

Por esta razón se utilizó otra especie de madera procedente de vigas de derribo, con una antigüedad estimada al menos superior a los 30 años y muy posiblemente superior al siglo. Se identificó microscópicamente en los laboratorios de la Cátedra de Tecnología de la Madera de la ETSIM como la especie Pino Laricio. Así contaremos con otra especie de conífera, que por su edad calificaremos de madera "vieja".

Por fin, como especie perteneciente a las frondosas, se ha utilizado el Quercus robur (Roble), con una edad o periodo transcurrido desde su corte hasta su empleo como probetas, que oscila entre 6 meses y un año. Esta especie es muy frecuente en construcciones antiguas en el norte de España.

2.2.- FORMULACION EPOXI

Se denomina formulación epoxi al conjunto de, por lo menos, una resina epoxi y un endurecedor. Además puede incluir otro componente llamada carga consistente en materiales inertes, y que por tanto no reaccionan con los componentes de la formulación. Reducen el costo como consecuencia de la disminución del procentaje de resina y mejoran alguna de sus propiedades.

La combinación de estos componentes tiene por finalidad obtener un producto con unas características lo más adecuadas posibles a su empleo. Una de sus principales ventajas es su escasísima retracción, lo cual, hará posible su empleo en el
releno de cavidades.

En adelante llamaremos a la resina componente A, al endurecedor componente B, y a la carga, si existe, componente C.

En los ensayos realizados en este trabajo se han empleado tres tipos de formulaciones de la casa Sika S.A., que a continuación se describen:

2.2.1.- Productos utilizados.

2.2.1.2.- Sikadur 42 anclajes:

Se trata de una formulación de tres componentes (Resina, endurecedor y carga de arena de cuarzo). La carga lleva incluida unos pigmentos coloreados que le dan al conjunto un color gris uniforme. Viene en envases separados predosificados y preparados para usar en su totalidad.

Su consistencia, una vez mezclado, es la de un mortero muy fluido y autonivelante.

Características

Soporte: estará limpio y exento de polvo, aceites o grasas. Puede estar seco ó húmedo.

Temperaturas límites del soporte: mínima = +32° C, máxima : + 40° C.

Espesor máximo en una sola capa: 4 cm a 20° C.

Mezcla: se mezclará el componente A y B hasta obtener una masa homogénea; a continuación se añade el componente C prosiguiendo la mezcla hasta obtener una masa homogénea.

Pot-life (Vida de trabajo) a 20° C : aproximadamente 90 minutos para 2 Kg. de mezcla.

Densidad aproximada: 1,9 gr/cm³
Endurecimiento total a 202°C: 48 horas.

Dosificación en peso: A : B : C = 7 : 4 : 40

Envases (empleados en los ensayos): 1 kg. (A +B + C)

Su principal aplicación en los ensayos será ser vertido en los cajeados entre la madera y el refuerzo.

2.2.1.2.- Sikadur 31 adhesivos: (Tipo normal)

Es una formulación de dos componentes, de color gris, con una consistencia de masa tixotrópica, una vez mezclados y se presenta en envases separados predosificados preparados para su empleo.

Su consistencia pastosa permite su aplicación con espátula sin descolgarse en superficies verticales.

Características

Soporte: Estará limpio, exento de polvo, aceites o grasas. Admite soporte seco o húmedo. Temperaturas límites del soporte: mínima: +10°C, máxima = +30°C.

Espesor máximo de capa: 3 cm.

Mezcla: Primero se homogeneizará mediante batido con agitador mecánico, el componente B (color negro). A continuación, se mezcla íntimamente el componente A (color blanco) con el B, hasta obtener un color gris uniforme.

Pot-life (Vida de trabajo) a temperatura de 202°C aproximadamente, 40 minutos, para 2 kg. de mezcla.

Densidad aproximada: 1,67 gr/cm³
Endurecimiento total a temperatura de 202°C: aproximadamente 3 días.

Dosificación en peso: A: B = 3 : 1

Envases (empleados en los ensayos): 1 kg (A + B)

Su aplicación en estas experiencias se orienta hacia el estudio del comportamiento de refuerzos en forma de placas adosadas exteriormente.

2.2.1.3. - Sikadur 52 inyección

Es una formulación de dos componentes, de muy baja viscosidad, exenta de solventes, para inyección o vertido en lugares muy estrechos, y de color ámbar translúcido. Se presenta en envases separados, predosificados y preparados para su empleo.

Características

Soporte: estará limpio, exento de polvo, aceites o grasas. Puede estar seco o húmedo

Temperaturas límites del soporte: mínima = + 50°C, máxima = + 300°C.

Anchura máxima del hueco a rellenar: 5 mm.

Mezcla: se mezclan el componente A con el componente B hasta obtener líquido homogéneo.

Pot-life (Vida de trabajo): a 20ºC: aproximadamente 75 minutos para 1 Kg. de mezcla.

Densidad aproximada: 1,07 gr./cm³

Dosificación en peso: A : B = 2 : 1

Envases (empleados en los ensayos): 0,5 kg. (A + B)

Su aplicación en este trabajo se orienta al vertido en cavidades muy estrechas, inferiores a los 2 mm. de espesor.
2.2.2.- Aplicaciones actuales de estos productos y posibilidades en la madera

Los tres productos antes citados, están destinados a la consolidación y refuerzo de elementos estructurales de hormigón. Son por tanto, capaces de transmitir esfuerzos y de producir uniones resistentes.

Refiriéndonos a cada producto en particular sus aplicaciones actuales son las siguientes: El Sikadur 42 anclajes se utiliza como mortero autonivelante, para anclaje de soportes, fijaciones, tirantes, sujeción de barreras de seguridad y quitamiedos. Anclajes de máquinas y en general para el relleno de cavidades.

El Sikadur 31 adhesivo, se usa principalmente como adhesivo aplicado con llano o espátula entre diversidad de materiales, como hormigón, piedra, acero, vidrio etc. Uniones de elementos de hormigón, dovelas, pilares, bordillos, relleno de huecos y coqueras en bóvedas y paramentos verticales.

Y el Sikadur 52 inyección, es una resina para inyecciones capaz de adherirse sobre hormigón, piedra, acero, madera, etc; que forma uniones monolíticas en fisuras de puentes, muros, pilares o relleno, ó inyección de fisuras estáticas, juntas estrechas no sometidas a movimiento, protección contra la corrosión de las armaduras en zonas de hormigón fisuradas.

Para mayor información sobre las características de estos productos, puede consultarse el apéndice nº 1, "Documentación técnica de los materiales".

El motivo de la elección de estas tres formulaciones para llevar a cabo los ensayos, está en el intento de abarcar un amplio campo de posibilidades de aplicación en función de las características físicas de estos productos. Es decir, desde una formulación muy fluida como Sikadur 52, hasta una formulación de consistencia pastosa como la Sikadur 31. Las características de resistencia mecánica varían de unas a otras, pero en todo caso se mantienen por encima de los valores que se juzgan suficientes para las aplicaciones en estructuras de madera, donde por ejemplo, las tensiones admisi-
bles a cortadura de la propia madera serán las más desfavorables en la unión madera-formulación, en general.

Sin embargo el módulo de elasticidad de la formulación varía en mayor grado según la composición de la formulación y principalmente de su contenido de cargas inertes. Esto nos permitirá deducir conclusiones acerca de sus propiedades elásticas más adecuadas.

De tal forma, que aunque estas formulaciones están predosificadas y orientadas a un uso concreto, pueden modificarse de acuerdo con los resultados de los ensayos, no sólo en cuanto a sus propiedades mecánicas, sino también en relación a su facilidad de aplicación práctica.

La relación de las cantidades de productos disponibles es la siguiente:

- 90 Kg de Sikadur 42 anclajes.
- 35 Kg de Sikadur 31 adhesivo.
- 10 kg de Sikadur 52 inyección.

2.3. - ELEMENTOS DE REFUERZO

Llamaremos refuerzo a aquellos elementos que en la consolidación de una estructura, se introducen en la madera embebidos en formulación epoxi, o se adosan a ella, y que quedan adheridos. Tienen por misión resistir las tensiones concentradas que se originan en una discontinuidad de la pieza de madera a consolidar; y transmitir los esfuerzos desde una zona de madera a otra también resistente o a los apoyos.

En cuanto a la forma de estos refuerzos generalmente se trata de barras de sección circular maciza y placas de sección rectangular. A su vez pueden presentar su superficie lisa, roscada o rugosa.
El material que puede constituir el refuerzo deberá tener unas ciertas características que en principio permitan su utilización; éstas pueden ser las siguientes:

- Elevadas resistencias mecánicas a flexión, tracción, compresión y cortadura.
- Coeficiente de dilatación térmica pequeño. Ya que en la madera, por encima de los 0º C predomina el efecto de merma por pérdida de humedad sobre la dilatación térmica.
- Módulo de elasticidad relativamente bajo. Para que las tensiones de origen higrotérmico sean menores.
- Calidad y seguridad en la adhesión a la resina. El material no deberá tener tratamientos en su superficie que perjudiquen la capacidad de adhesión.
- Facilidad de corte y trabajabilidad. A ser posible en obra, para permitir su replanteo.

2.3.1.- Posibles materiales a utilizar

Básicamente podemos encontrar dos tipos de materiales que pueden utilizarse como refuerzos; estos son los materiales metálicos y los materiales compuestos.

Se pueden encontrar referencias de su aplicación práctica, en el caso de los metales en (7 y 8), donde se utilizaron planchas de acero inoxidable de 6 mm. de espesor en la consolidación de armaduras de cubierta. Y en el caso de los materiales compuestos, existen numerosas obras realizadas mediante el sistema "Beta" de patente Holandesa (9,10,11,12), empleando barras de sección circular compuestas de resina de poliéster y fibra de vidrio.

2.3.1.1.- Metales.

Los metales generalmente empleados como refuerzos son el acero, acero inoxidable,
aluminio y latón. Estos tienen en general unas resistencias mecánicas muy elevadas, pero el acero posee un módulo de elasticidad también muy alto. El aluminio por otro lado, con un módulo de elasticidad mucho más reducido, 650.000 kg/cm², tiene sin embargo un coeficiente de dilatación térmica lineal doble que el acero.

La preparación de la superficie de los metales exige una limpieza total, eliminando herrumbre, aceite, pinturas u otras impurezas. Esto es extremadamente importante, pues la resina epoxi no adhiere en superficies que están grasientas. La resina podría adherirse al óxido o costas de herrumbre, pero estas pueden separarse del metal.

La limpieza o preparación de la superficie puede hacerse con chorro de arena, pulido o con productos químicos. El refuerzo metálico deberá quedar recubierto completamente de formulación, una vez colocado, para evitar la posibilidad de oxidación.

2.3.1.2.-Materiales compuestos.

Los materiales compuestos son aquellos que están constituidos por una matriz, en este caso una resina sintética, y por un refuerzo, como la fibra de vidrio. Tienen unas elevadas resistencias mecánicas y un módulo de elasticidad pequeño comparado con el de los metales como acero o aluminio.

El coeficiente de dilatación térmica del material compuesto, que oscila entre 10 y 25 x 10⁻⁶ m/m°C, será menor cuanto mayor sea el porcentaje de fibra de vidrio que contenga.

Estas razones unidas a la no existencia de fenómenos de corrosión, de los metales, hacen de los materiales compuestos unos adecuados elementos de refuerzo en estos sistemas de consolidación. Y sobre todo la ventaja principal que ofrecen es que podemos modificar su composición buscando determinadas características físico-mecánicas, análogamente a lo que ocurre con las formulaciones epoxi. Podemos añadir la facilidad de trabajo, para su corte en obra. Las barras pueden cortarse con una
sierra manual de metales, y las placas mediante sierras circulares con disco de carborundum.

Estos fueron los motivos por los que se adoptó como elemento de refuerzo a los materiales compuestos, en este trabajo. No obstante muchas de las conclusiones que se obtengan serán válidas para otros materiales diferentes.

2.3.2. - Posibilidades generales en la fabricación de los materiales compuestos:

En este apartado trataremos de mostrar en líneas generales las diversas variedades de los materiales compuestos, que podrían tener alguna aplicación en este campo.

En primer lugar la resina sintética que forma la matriz, suele ser resina de poliéster, vinílester o epoxi, siendo sus propiedades mecánicas progresivamente más elevadas, así como la cantidad de vidrio que se puede incorporar a éstas, siendo respectivamente del orden de: 55-65 % para la de poliéster, 60-70 % la de vinílester y 70-75 % en la epoxi (Porcentajes en peso).

El precio de un mismo producto fabricado con una matriz de resina epoxi dobla el del fabricado con una resina de poliéster. Además es preciso conocer la compatibilidad entre el material compuesto y la formulación epoxi que utilicemos en la consolidación; ya que pueden existir casos en los que no exista calidad de la unión, a veces por recubrimientos superficiales.

En cuanto a la forma en que se puede añadir la fibra de vidrio, podemos diferenciar la posibilidad de emplear la fibra en forma de hilos contínuos o de hilos cortados. Estas dos posibilidades dan origen a diversas formas intermedias de fabricación. Así tenemos:
Roving: es un ensamblado de hilos de vidrio continuo que han recibido un ensembles plástico compatible con las resinas de estratificación. Con este sistema podemos encontrar fabricados todo tipo de perfiles con túñanos, como pueden ser barras de sección circular maciza, de sección rectangular, hueca, etc.

Hilos cortados: resultado de cortar la fibra continua en longitudes que varían de 3 a 50 mm, tienen como aplicación principal la obtención de compuestos de moldeo, o refuerzos de otros materiales como la escayola, morteros, etc.

Mat: es un fieltro constituido por hilos cortados de vidrio aglomerados entre sí mediante un liante químico. Su repartición es uniforme y en todas las direcciones de su plano. Entre sus aplicaciones principales podemos destacar por la relación que tiene con este estudio, la fabricación en continuo de placas planas, formadas por un estratificado de fieltros de mat. Además de su utilización en fabricación por moldeo.

Tejidos: son fieltros formados por tejidos de hilos de vidrio, formando diversas texturas, generalmente cruzados en dos direcciones perpendiculares. Y su aplicación más destacada, para este campo, es la fabricación en continuo de placas armadas con tejido.

Las placas fabricadas con tejido suelen presentar mayores resistencias y módulo de elasticidad que las fabricadas con mat.

2.3.3.- Descripción de los materiales compuestos utilizados en este estudio.

En este trabajo se emplearon materiales compuestos, formados por una matriz de resina de poliéster. Estas resinas son las más usuales, y presentan una buena
relación resistencia / precio.

Los poliésteres pasan del estado líquido al sólido por copolimerización de la resina, y de un monómero que han sido mezclados íntimamente. Esta polimerización que provoca el endurecimiento se efectúa bien con la ayuda de un iniciador activo (catalizador), bien por unión de otro producto químico (acelerador), o por aporte de energía (calor, alta frecuencia, etc.) Esta reacción de polimerización provoca una elevación de temperatura sin eliminación de materia.

A continuación describiremos los diferentes tipos de materiales compuestos utilizados en los ensayos. Se trata de placas y perfiles de sección rectangular y circular maciza. Aunque es posible realizar un roscado en las varillas, o una textura rugosa en las placas, lo cual mejoraría la adherencia mecánica a la formulación epoxi, se descartó en principio, con el fin de estudiar el fenómeno de la adherencia únicamente en superficies lisas, y evitar además el fuerte aumento de precio del producto al precisar una operación posterior a su fabricación.

- Placas de fabricación continua: Resina de poliéster y fibra de vidrio en Mat.

 Con espesores de 13, 15 y 20 mm.
 Porcentajes de fibra de vidrio, en peso: 60 %
 Producto: "Vipol"; Fabricante: Bremen S.A.

- Barras de sección circular maciza: Resina de poliéster y fibra de vidrio en Roving

 Diámetros: 10 y 16 mm.
 Porcentajes de fibra de vidrio, en peso : 70 %
 Fabricante: Bremen S.A.

- Perfiles de sección rectangular estrecha: Resina de poliéster y fibra de vidrio en Roving.
Secciones: 8 x 24, 5 x 70 (mm)
Porcentaje de fibra de vidrio, en peso : 65 %
Fabricante: Nioco S.A.

- Barras de sección circular maciza: Resina de poliéster y fibra de vidrio en Roving.

 Diámetros: 10 y 20 mm.
 Porcentaje de fibra de vidrio, en peso : 65 %
 Fabricante: Nioco S.A.

- Barras de sección circular maciza: Resina de poliéster y fibra de vidrio en Roving.

 Diámetros: 10 y 18 mm.
 Porcentaje de fibra de vidrio, en peso : 50-70 %
 Fabricante: Polymec S.A.

Para una mayor información sobre las características físico-mecánicas de estos productos, puede consultarse el apéndice n°1 "Documentación técnica de los materiales", según la información ofrecida por el fabricante.
CAPÍTULO III

3.- PROPIEDADES MECÁNICAS DE LOS MATERIALES

3.1.- FORMULACIÓN EPOXI

Las características mecánicas de estos productos, ya determinadas por el fabricante en su mayoría, pueden consultarse en el anexo nº 1. Sin embargo se juzgó interesante realizar algunos ensayos sobre determinados esfuerzos de los que no existía información.

3.1.1.- Resistencia al esfuerzo cortante

El esfuerzo cortante siempre aparece en la forma de trabajo de un refuerzo adherido a la madera. La transmisión de los esfuerzos entre la madera y el refuerzo se efectúa a través de la formulación epoxi, que debe ser capaz de resistir las tensiones tangenciales originadas.

Aunque no existe una normativa española que fije los métodos de ensayo para determinar las características de las formulaciones epoxi, si se recomiendan algunos métodos de ensayo más frecuentes, en "Las resinas epoxi en la construcción" (13), basado en las normas existentes para otros materiales, como el hormigón o el yeso.

La probeta para el ensayo de esfuerzo cortante es un prisma de 4 x 4 x 16 cm., en la que una parte de la probeta queda en voladizo y se produce la rotura en la sección transversal de 4 x 4 cm.

Sin embargo en los ensayos, aquí realizados, se emplearon probetas de formulación realizadas sobre moldes que reproducen la forma de la probeta que en madera se usa
para el esfuerzo cortante paralela a la fibra, de la norma ASTM D 143-52. El motivo era que en el laboratorio se disponía del accesorio preciso para su realización; y por otra parte la sección de rotura es la misma, y la forma de aplicación de la carga muy parecida.

La forma de la probeta y su rotura se describen en la figura 3.1. El accesorio para el ensayo de esfuerzo cortante puede verse en la figura 3.2.

![Cotas en cm.](image)

Figura 3.1

Los datos de realización de los ensayos y resultados concretos se encuentran en el apéndice n° 2 "Ensaios sobre las características mecánicas de la formulación epoxi". El resumen de esos ensayos puede verse en el cuadro 3.1.

Se realizaron ensayos en las tres formulaciones y variando la edad de la formulación, (tiempo transcurrido entre la elaboración de las probetas y el momento del ensayo), para 1, 7 y 21 días. En la figura 3.3, se representa gráficamente los resultados.
RESISTENCIA A ESFUERZO CORTANTE DE LA FORMULACION:

<table>
<thead>
<tr>
<th>FORMULACION</th>
<th>EDAD</th>
<th>NUMERO ENSAYOS</th>
<th>TENSION ROTURA MEDIA Kp/cm²</th>
<th>DESVIACION TIPICA</th>
<th>DESVIACION Estandar</th>
<th>COEF. VARIACION %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sikadur 42</td>
<td>1</td>
<td>4</td>
<td>140,2</td>
<td>11,01</td>
<td>12,71</td>
<td>9</td>
</tr>
<tr>
<td>Sikadur 42</td>
<td>7</td>
<td>4</td>
<td>162,3</td>
<td>11,22</td>
<td>12,95</td>
<td>7,9</td>
</tr>
<tr>
<td>Sikadur 42</td>
<td>21</td>
<td>4</td>
<td>189,6</td>
<td>18,71</td>
<td>21,6</td>
<td>11</td>
</tr>
<tr>
<td>Sikadur 31</td>
<td>1</td>
<td>4</td>
<td>111,6</td>
<td>24,69</td>
<td>28,81</td>
<td>25,5</td>
</tr>
<tr>
<td>Sikadur 31</td>
<td>7</td>
<td>4</td>
<td>184,1</td>
<td>7,72</td>
<td>8,92</td>
<td>4,8</td>
</tr>
<tr>
<td>Sikadur 31</td>
<td>21</td>
<td>4</td>
<td>199,0</td>
<td>24,6</td>
<td>28,4</td>
<td>14,2</td>
</tr>
<tr>
<td>Sikadur 52</td>
<td>1</td>
<td>3</td>
<td>95,7</td>
<td>1,14</td>
<td>1,40</td>
<td>1,4</td>
</tr>
<tr>
<td>Sikadur 52</td>
<td>7</td>
<td>3</td>
<td>166,6</td>
<td>5,21</td>
<td>6,39</td>
<td>3,8</td>
</tr>
<tr>
<td>Sikadur 52</td>
<td>21</td>
<td>3</td>
<td>193,5</td>
<td>3,38</td>
<td>4,14</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Cuadro 3.1

Figura 3.3
De los resultados de los ensayos podemos extraer las siguientes conclusiones: Si consideramos como resistencia final la correspondiente a las 21 días de edad, podemos ver la formulación Sikadur 42 anclajes alcanza el 74 % de su resistencia final al cabo de 24 horas, mientras que las formulaciones Sikadur 31 y 52 respectivamente alcanzan el 56 % y el 50 %. Lo que indica que la de Sikadur 42 aumenta su resistencia más rápidamente al principio que las demás.

A los 7 días de edad los porcentajes se igualan, tomando valores de un 85, 92 y 86 % respectivamente, para llegar a los 21 días a unos valores muy parecidos; sólo difieren respecto a la media en ± 5 %.

Por otro lado las coefficients de variación de los resultados muestran mayores valores en el Sikadur 31 y los mínimos en el Sikadur 52. Una explicación de este fenómeno puede darse si tenemos cuenta que la menor dispersión aparece en la S.52, en la que dada su baja viscosidad en ambos componentes, permiten un mezclado más homogéneo que en los otros casos como el S. 31, donde la consistencia es pastosa.

Las resistencias obtenidas en estos ensayos son suficientemente elevadas para su empleo como transmisor esfuerzos entre la madera y otros materiales de refuerzo; Ya que las tensiones de rotura media a esfuerzo cortante de la madera en la dirección paralela a la fibra varían, en coníferas, entre 90 y 130 kg/cm², pero con una dispersión muy superior; con lo cual quedan reducidas a unas tensiones admisibles entre 8 y 15 Kg/cm². Y en todo caso las tensiones límites de adherencia siempre resultarán del orden de 130 a 200 kg/cm², dependiendo del material, como veremos más adelante.

3.1.2 - Ensayos de flexión, compresión y módulo de elasticidad.

3.1.2.1. Según la Norma DIN 1164
En este caso los ensayos se realizaron conforme a los métodos recomendados y de mayor aplicación, basados en las normas existentes para hormigones y morteros.

Se emplean probetas prismáticas de $4 \times 4 \times 16$ cm. confeccionadas con la formulación a estudiar. Los moldes se rellenan en tres capas compactando adecuadamente cada una de ellas para evitar huecos o burbujas de aire.

Las roturas se hacen a siete días, rompiendo primero a flexión con carga centrada y separación entre apoyos de 10 cm., aplicando la carga a una velocidad de $1,5$ Kp/cm2 seg.

Las medias probetas resultantes del ensayo a flexión se rompen a compresión sobre bases de 4×4 cm. La velocidad de carga será de $12,5$ kP/cm2 seg.

El número de probetas de flexión es de 3 para cada formulación (Se realizó para S. 42 y S. 31), y de 6 para compresión. El módulo de elasticidad a flexión se obtuvo midiendo las deformaciones en el centro del vano, en el ensayo de flexión, con un micrómetro de precisión de $0,01$ mm.

Estos ensayos se ajustan a la norma DIN 1164. En el Cuadro 3.2 se resumen los resultados de estos ensayos, y en el apéndice nº 2 "Ensayos sobre las características mecánicas de la formulación epoxi (2.2.)", pueden consultarse los datos concretos de su realización.

<table>
<thead>
<tr>
<th>FORMULAC.</th>
<th>FLEXION</th>
<th>COMPRESION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO ENSAYOS</td>
<td>TENSION ROTURA MEDIA Kp/cm2</td>
<td>DESVIA. TIPICA</td>
</tr>
<tr>
<td>Sikadur 42</td>
<td>3</td>
<td>342,3</td>
</tr>
<tr>
<td>Sikadur 31</td>
<td>3</td>
<td>327,6</td>
</tr>
</tbody>
</table>

Cuadro 3.2
La interpretación de los resultados muestra unas parecidas resistencias a la flexión y una menor resistencia a la compresión en el S. 31 que en el 42. El valor del coeficiente de variación, quizás excesivamente alto en el S. 31, hace pensar en algún defecto en la elaboración de las probetas; lo que se apoya en el hecho de que si observamos los estadillos, en el apéndice nº 2, una de las probetas, la nº 2 da resultados muy bajos frente al resto.

No obstante, lo que si podemos comprobar es que el módulo de elasticidad a flexión en el S. 42 vale 44.000 kg/cm², en el S 31 24.000 Kp/cm², aproximadamente, y eliminando los resultados de la probeta nº 2.

3.1.2.2. Según las recomendaciones de las Normas UNE para flexión y compresión paralela a la fibra en madera.

Además de los anteriores ensayos se juzgó interesante realizar otros siguiendo el formato y dimensiones que se definen en las normas UNE 56-537-79 y 56-535-77, para la determinación de la resistencia a la flexión estática y a la compresión axial, respectivamente (ver apéndice nº 2).

Las probetas de flexión tienen unas dimensiones de 20 x 20 x 300 mm., con una luz entre apoyos de 240 mm. Al tratarse de probetas con mayor luz y menor sección, las deformaciones por flexión son muy superiores a las correspondientes al formato anterior. Y es posible una mayor precisión en la medida.

Las probetas de compresión son de igual sección, 2 x 2 cm.cm, y de longitud 6 cm. A continuación se resumen los resultados, en valores medios. (Cuadro 3.3)

Podemos observar como en el caso del Sikadur 42 los resultados son parecidos a los anteriores, incluso en el coeficiente de variación. En el S.31, aún teniendo un coeficiente de variación superior al de S. 42, es mucho menor la dispersión frente al formato anterior. Esto indica una mayor fiabilidad.
<table>
<thead>
<tr>
<th>FORMULACIÓ</th>
<th>FLEXIÓN</th>
<th>COMPRESIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TENSION</td>
<td>ROTURA</td>
</tr>
<tr>
<td></td>
<td>Kp/cm²</td>
<td>%</td>
</tr>
<tr>
<td>Sikadur 42</td>
<td>292</td>
<td>5,8</td>
</tr>
<tr>
<td>Sikadur 31</td>
<td>323</td>
<td>7,9</td>
</tr>
<tr>
<td>Sikadur 52</td>
<td>392</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Cuadro 3.3

Las resistencias a compresión son inferiores en este caso (probetas de 2 x 2 x 6) a las anteriores. Esto es lógico, pues se trata de piezas comprimidas en todas la sección y con esbeltez superior.

El comportamiento en flexión del S. 42 y S. 31 es prácticamente elástico en la mayor parte de su deformación. Presenta un diagrama de deformación lineal hasta valores muy próximos al de rotura.

Sin embargo el comportamiento del S. 52 es completamente diferente. La gráfica de deformación en flexión presenta un tramo recto y luego una parte curva con un comportamiento plástico. El valor de rotura media es de 392 Kp/cm² mientras que el límite elástico medio es de 228 Kp/cm², es decir, un 60% del valor de rotura. Es un material muy deformable, con un módulo de elasticidad a flexión de 5.500 kp/cm².
Los ensayos de compresión, en el S. 52, mostraron un comportamiento análogo, con una gran deformabilidad que permitió una fácil lectura de las deformaciones.

Estas mostraban un módulo de elasticidad a compresión de 7800 Kp/cm^2, un valor de rotura medio de 502 Kp/cm^2 y un límite elástico medio de 233. Es decir el periodo elástico era inferior a la mitad del valor de rotura, lo que muestra un marcado comportamiento plástico.

El coeficiente de variación en compresión, un 28 %, resulta excesivamente elevado y se debe al fenómeno de pandeo que se produce en el ensayo. Así en la figura 3.4 vemos la diferente forma de rotura de las formulaciones S. 42 y S. 31 (a) con respecto a las roturas del S. 52 (b).

![Diagrama de ensayo de compresión](image)

Figura 3.4

3.1.3.- Consideraciones sobre estos resultados

En primer lugar destacan las grandes diferencias que existen en el comportamiento elástico de unas formulaciones frente a otras. El módulo de elasticidad de la formulación es mayor en los sistemas que incluyen cargas y menor en los que están formados exclusivamente por una resina y un endurecedor como es el caso del S. 52.
A su vez los sistemas cargados muestran un comportamiento mucho más lineal ó elástico en su deformación.

El módulo de elasticidad de la madera en coníferas puede oscilar entre 80.000 y 100.000 Kg/cm², como valor medio. Y el de la formulación S.42 alcanza unos 50.000 Kg/cm², en el S.31, unos 40.000 Kg/cm² y en el S.52 unos 6.000 Kg/cm².

La fluencia: Consiste en el aumento de la deformación del material bajo la aplicación de una carga constante a lo largo del tiempo. Es un fenómeno que se presenta en alto grado en las resinas epoxi, al que se deberá prestar atención especial.

La deformación diferida depende en estos materiales de las condiciones de temperatura y de las tensiones a que se encuentran sometidas durante largo tiempo. De las notas técnicas del fabricante, Sika S.A., extraemos las gráficas que representan la fluencia del Sikadur 31 adhesivo, en función de la temperatura y sometido a una tensión de compresión de 400 Kg/cm² (figura 3.5). Y en la figura 3.6 se representa la fluencia de la misma formulación en función del nivel de tensiones de compresión para una temperatura constante de 20°C.

Fluencia del SIKADUR 31 ADHESIVO en función de la temperatura cuando se halla sometido a una compresión de 400 Kg/cm².

Figura 3.5
Fluencia del SIKADUR 31 ADHESIVO en función de la compresión a una temperatura constante de 20° C.

Figura 3.6

Puede admitirse, por lo tanto, que cuando la temperatura se sitúa entre ± 10° y ± 30° C la deformación de las resinas reactivas debida a la fluencia, es entre tres y cuatro veces mayor que la del hormigón. Se acerca a la de la madera, aunque el fenómeno de la fluencia en la madera se estudia generalmente e nivel de la flexión.

Para reducir en la medida de lo posible los efectos de la fluencia, el espesor previsto en las uniones solidarias deberá ser el menor posible.

En la literatura técnica al respecto se recomienda para las formulaciones epoxi, fijar un margen de seguridad más elevado que el utilizado en los materiales de construcción tradicionales, como el acero o el hormigón.

Los coeficientes de seguridad admitidos para estos materiales tradicionales, varían entre 1,8 a 2,5, como relación entre el esfuerzo de rotura en ensayos de corta duración y el esfuerzo admitido en la práctica. Tratándose de formulaciones epoxi,
estos coeficientes deberán en ciertos casos multiplicados por dos. De esta forma el coeficiente variará entre 4 a 5, resultando a modo orientativo unas tensiones admisibles en Kp/cm\(^2\), de:

<table>
<thead>
<tr>
<th>Formulación</th>
<th>Flexión</th>
<th>Compresión</th>
<th>Cortante</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.42</td>
<td>65</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>S.31</td>
<td>65</td>
<td>120</td>
<td>35</td>
</tr>
<tr>
<td>S.52</td>
<td>50</td>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>

En el S. 52 se ha tomado en vez del valor de rotura el correspondiente al límite elástico.

Podemos comparar estos valores con las tensiones admisibles de la madera conífera, que orientativamente y para una calidad habitual en construcción son: en flexión 100 Kp/cm\(^2\) en compresión 80 Kp/cm\(^2\) y en cortadura 10 Kp/cm\(^2\).

3.2. MATERIALES COMPUESTOS

Estos materiales compuestos constituyen el elemento de refuerzo en la consolidación. Quedan unidos a través de la formulación a la madera, y deberán resistir los esfuerzos que se originan en una discontinuidad de la pieza de madera.

Aquéllos elementos que tengan forma lineal trabajarán principalmente a tracción o a compresión y los de forma plana se encontrarán sometidos a flexión y a cortadura.

Aunque los fabricantes aportan las características mecánicas de estos materiales de manera más o menos precisa, se ha estudiado el comportamiento a la flexión incluyendo las gráficas de la deformación, y las resistencias a cortadura en los elementos de tipo plano.
Como se indicó en la descripción de materiales utilizados en el proyecto, todos ellos contienen una resina de poliéster y un refuerzo de fibra de vidrio en diferentes formatos (hilos paralelos y mat).

Ensayos:

Los ensayos de flexión se realizaron siguiendo aproximadamente las directrices de la norma VSM 77 103 (Normes de la Société Suisse des Constructeurs de Machines). Estos son aplicables a estratificados, placas y perfiles termoplásticos, y termoendurecibles. Las indicaciones de esta norma corresponden a las definiciones de la recomendación ISO/178 - 1961, publicada por el Organismo Internacional de Normalización ISO.

Y los ensayos de resistencia al esfuerzo cortante se efectuaron para los materiales compuestos en forma de placa. En estos casos la forma de la probeta se adecuó a las dimensiones de la placa y a las características del accesorio para ensayo de esfuerzo cortante, de la figura 3.2.

3.2.1.-Ensayos de flexión de barras de sección circular maciza

Los productos estudiados consisten en perfiles de sección circular maciza de resina de poliéster y fibra de vidrio en hilos paralelos (roving), según se describen en el apartado 2.3.3. Se ensayaron en dos diámetros (10 mm. y 16, 18 ó 20 mm) para cada uno de los tres fabricantes.

La relación detallada de los ensayos se encuentra en el anexo n.º 3.1 "Ensayos sobre las características mecánicas de los materiales compuestos", y en el cuadro 3.4 se muestra un resumen de los resultados.

De los resultados del citado cuadro resumen, se puede comprobar como las diferencias de resistencia y módulo de elasticidad, entre productos de distintos fabricantes son pequeñas.
Cuadro 3.4

Por otro lado las varillas de menor diámetro alcanzan valores siempre superiores a las de mayor sección. Este es un fenómeno lógico, sobre todo en materiales de estructura fibrosa.

Como valores orientativos medios tenemos una resistencia a la flexión de 5.000 a 6.000 Kp/cm² y un módulo de elasticidad de 300.000 Kp/cm².

Por otro lado de las gráficas de carga-deformación se deduce en todos los casos un comportamiento elástico durante prácticamente todo el ensayo.

3.2.2.-Ensayos de flexión de placas de resina de poliéster reforzada con fibra de vidrio.

Aquí nos encontramos con dos tipos de placas de constitución muy diferente. Uno de ellos es un estratificado con fibra de vidrio de tipo "mat", es decir, con fibras cortas orientadas en todas las direcciones del plano. De esta forma las propiedades mecánicas del material son las mismas en cualquier dirección del plano de la placa (figura 3.7 a)
Sin embargo se podría esperar un comportamiento diferente según las cargas actúen en un plano paralelo o perpendicular al plano de estratificado. De aquí que se hayan realizado ensayos en ambas posiciones. (figura 3.7 b)

A este tipo de producto corresponde el "Vipol" fabricado por Bremen S.A. (Resina de poliéster con fibra de vidrio en mat). Y se ha ensayado en tres espesores diferentes: 13, 15 y 20 mm. En el caso de cargas actuando en planos paralelos al de la placa (que será el más frecuente en su utilización práctica), se obtienen resultados muy próximos en todos los espesores, alrededor de 2.600 Kp/cm2 de tensión de rotura media en flexión. Y un módulo de elasticidad en flexión de unos 150.000 Kp/cm2.

Igualmente los ensayos con cargas en dirección perpendicular al plano de la placa ofrecen resultados muy próximos a los de dirección paralela.

El otro tipo de producto consiste en una resina de poliéster reforzado con fibra de vidrio en hilos paralelos (Roving) de fabricación continua. Fabricante: Nioco. SA (figura 3.8 a). Esta constitución implica una mayor resistencia a los esfuerzos de compresión, tracción y flexión en la dirección de la fibra, que cuando los esfuerzos
actúen en dirección perpendicular.

Los ensayos fueron realizados con cargas perpendiculares al plano de la placa, debido al pequeño espesor de las muestras; aunque en este caso el comportamiento sería, en principio, el mismo que con las cargas en planos paralelos al de la placa. (figura 3.8b)

![Figura 3.8](image)

La relación detallada de estos ensayos se encuentra en el apéndice no 3.2, y en el cuadro 3.5 se muestra un resumen de los resultados.

RESISTENCIA A LA FLEXION DE PLACAS DE RESINA DE POLIESTER Y FIBRA DE VIDRIO:

<table>
<thead>
<tr>
<th>FABRICANTE</th>
<th>PRODUCTO</th>
<th>TIPO DE SOLICITACION</th>
<th>NUMERO ENSAYOS</th>
<th>TENSION ROTURA MEDIA Kp/cm²</th>
<th>DESVIAC. TIPICA</th>
<th>DESVIAC. ESTANDAR %</th>
<th>COEF. VARIAC. %</th>
<th>MÓDULO ELASTICIDAD MÉRTIDO Kp/cm²</th>
<th>COEF. VARIAC. M.ELAS. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bremen S.A.</td>
<td>Vipol e= 2cm F.V. = mat</td>
<td>⊥ al plano de la placa</td>
<td>4</td>
<td>2,474</td>
<td>168,2</td>
<td>194,2</td>
<td>7,8</td>
<td>147,549</td>
<td>3,5</td>
</tr>
<tr>
<td>Bremen S.A.</td>
<td>...</td>
<td></td>
<td></td>
<td>al plano de la placa</td>
<td>8</td>
<td>2,570</td>
<td>137,0</td>
<td>148,4</td>
<td>5,6</td>
</tr>
<tr>
<td>Bremen S.A.</td>
<td>Vipol e=1,5cm F.V. = mat</td>
<td>...</td>
<td>8</td>
<td>2,723</td>
<td>240,0</td>
<td>258,9</td>
<td>9,4</td>
<td>155,948</td>
<td>7,2</td>
</tr>
<tr>
<td>Bremen S.A.</td>
<td>Vipol e=1,3cm F.V. = mat</td>
<td>...</td>
<td>8</td>
<td>2,523</td>
<td>333,6</td>
<td>358,6</td>
<td>14</td>
<td>134,898</td>
<td>7,8</td>
</tr>
<tr>
<td>Nico S.A.</td>
<td>4,75 x 70 mm F.V. = roving</td>
<td>⊥ al plano de la placa</td>
<td>4</td>
<td>8,883</td>
<td>309</td>
<td>357</td>
<td>4</td>
<td>78,527</td>
<td>2,8</td>
</tr>
<tr>
<td>Nico S.A.</td>
<td>8 x 24 mm F.V. = roving</td>
<td>...</td>
<td>4</td>
<td>4,990</td>
<td>190</td>
<td>219</td>
<td>4,3</td>
<td>99,517</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Cuadro 3.5
Por último cabe comentar el comportamiento elástico de estos materiales, deducido de las gráficas de deformación. La mayor parte de la gráfica es una recta.

3.2.3. Ensayos a esfuerzo cortante de las placas de resina de poliéster y fibra de vidrio.

Como hemos dicho anteriormente la resistencia al esfuerzo cortante puede resultar decisiva en el caso de emplear placas en consolidación de apoyos de vigas, donde el cortante es elevado. Aunque este fenómeno se puede encontrar también en las barras de sección circular, en estos casos suele tener menor relevancia la propia resistencia del refuerzo, ya que el punto crítico, se traslada a un posible aplastamiento de la madera que lo rodea.

Así se han estudiado los siguientes casos: esfuerzo cortante en placas con fibra de vidrio en mat (Vipol de Bremen S.A.). Y esfuerzo cortante en placas con fibra en hilos paralelos con solicitación de corte de fibras y de deslizamiento de fibras. (Nioco S.A.) Ver figura 3.9 a, b y c respectivamente.

Figura 3.9
La relación detallada de los ensayos se encuentra en el apéndice n° 3.3., y en el cuadro 3.6 se muestra un resumen de los resultados.

RESISTENCIA A ESPUERZO CORTANTE DE PLACAS DE RESINA DE POLIESTER Y FIBRA DE VIDRIO:

<table>
<thead>
<tr>
<th>FABRICANTE</th>
<th>PRODUCTO</th>
<th>SOLICITACION</th>
<th>NUMERO ENSAYOS</th>
<th>TENSION DE ROTURA MEDIA Kp/cm²</th>
<th>DESVIACION TIPICA</th>
<th>DESVIACION Estandar</th>
<th>COEFICIEN. VARIACION %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bremen S.A.</td>
<td>Vipol e = 1,5 cm F.V. = mat</td>
<td>Corte fibras</td>
<td>6</td>
<td>934,8</td>
<td>79,8</td>
<td>87,5</td>
<td>9,3</td>
</tr>
<tr>
<td>Nisco S.A.</td>
<td>e = 8 mm F.V. - rov</td>
<td>Corte de fib.</td>
<td>6</td>
<td>434</td>
<td>15,5</td>
<td>17,1</td>
<td>3,9</td>
</tr>
<tr>
<td>Nisco S.A.</td>
<td>, , , ,</td>
<td>Desliz. fibra</td>
<td>6</td>
<td>212,6</td>
<td>28,8</td>
<td>31,4</td>
<td>14,7</td>
</tr>
</tbody>
</table>

Cuadro 3.6

Como comentarios sobre estos ensayos cabe destacar la elevada resistencia a cortadura de placas con fibra de vidrio en mat, alrededor de los 900 Kp/cm², como valor medio. Y por otro lado en placas con fibra en hilos paralelos, la resistencia baja notablemente a unos 400 Kp/cm² en el corte de fibras y a los 200 Kp/cm² en el deslizamiento de fibras.

Este hecho deberá tenerse en cuenta a la hora de elegir un material de refuerzo cuando vaya a estar sometido a elevadas solicitaciones de cortadura.

3.3. LA MADERA

3.3.1.- Datos conocidos sobre las características mecánicas de las especies empleadas.

Pino Insignis

Como se dijo en el apartado 2 "Materiales empleados", la especie de madera utilizada principalmente es el Pinus radiata (Pino Insignis). Sobre esta especie existe un estudio sobre sus características - físico-mecánicas (Tecnología del aprovechamiento de la madera del Pino Insignis - Pinus radiata), (6)
Del citado estudio se recoge en el cuadro 3.8, el resumen de sus características físico-mecánicas. Además en el siguiente cuadro 3.7 se incluyen las tensiones básicas de esta madera para humedades del 12%, 18% y en verde, ≥ 35%, calculadas de acuerdo con las normas UNE.

<table>
<thead>
<tr>
<th>E S P U E R Z O</th>
<th>(H = 12 %)</th>
<th>(H = 18 %)</th>
<th>(H \geq 35 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLEXION PARALELA</td>
<td>170</td>
<td>155</td>
<td>110</td>
</tr>
<tr>
<td>TRACCION PARALELA</td>
<td>191</td>
<td>174</td>
<td>123</td>
</tr>
<tr>
<td>COMPRESION PARALELA</td>
<td>140</td>
<td>123</td>
<td>77</td>
</tr>
<tr>
<td>COMPRESION PERPENDICULAR</td>
<td>23</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>CORTANTE PARALELO</td>
<td>16</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>MOD. ELAST. MEDIO</td>
<td>88.000</td>
<td>80.000</td>
<td>58.000</td>
</tr>
<tr>
<td>MOD. ELAST. MINIMO</td>
<td>23.000</td>
<td>21.000</td>
<td>15.000</td>
</tr>
</tbody>
</table>

Cuadro 3.7.- Tensiones básicas y constantes elásticas del Pino Insigne, en Kp/cm²

Entresus características físicas podemos destacar su relativamente alta densidad y su dureza; y una clasificación según la norma UNE de madera medianamente nerviosa, en cuanto a contracción volumétrica.

En cuanto a sus características mecánicas, si bien los valores de rotura son bajos, sus cotas indican la buena disposición de esta madera a esfuerzos mecánicos; es resiliente, elástica, medianamente tenaz y adherente.

Pino Laricio

De esta especie los datos obtenidos sobre sus características mecánicas proceden de la obra "Estudio de las maderas de coníferas españolas y de la zona norte de Marruecos"(14).
<table>
<thead>
<tr>
<th>CARACTERISTICAS</th>
<th>MEDIA</th>
<th>DESVIACION ESTANDAR</th>
<th>DESVIACION TIPICA</th>
<th>NUMERO DE ENSAYOS</th>
<th>INTERPRETACION SEGUN LA NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso especifico anhido P_0</td>
<td>0,466</td>
<td>0,063</td>
<td>0,0625</td>
<td>138</td>
<td>Entre ligero y semipesado.</td>
</tr>
<tr>
<td>Peso específico al 12 % P_2= D</td>
<td>0,495</td>
<td>0,064</td>
<td>0,0640</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Higroscopacidad</td>
<td>2,7 x 10^-3</td>
<td>1,29 x 10^-3</td>
<td>1,28 x 10^-3</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Punto de saturacion de la fibra P,S,F</td>
<td>34,58</td>
<td>7,93</td>
<td>7,89</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Contracc. total</td>
<td>B</td>
<td>16,53</td>
<td>3,79</td>
<td>3,77</td>
<td>91</td>
</tr>
<tr>
<td>Volume- total</td>
<td>V</td>
<td>0,478</td>
<td>0,145</td>
<td>0,146</td>
<td>138</td>
</tr>
<tr>
<td>Contracción lineal total</td>
<td>B_TG</td>
<td>7,15</td>
<td>2,04</td>
<td>2,04</td>
<td>183</td>
</tr>
<tr>
<td>a) Tangencial total</td>
<td>V_TG</td>
<td>0,206</td>
<td>0,058</td>
<td>0,058</td>
<td>183</td>
</tr>
<tr>
<td>b) Radial</td>
<td>Br</td>
<td>4,77</td>
<td>1,7</td>
<td>1,7</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>V_r</td>
<td>0,137</td>
<td>0,049</td>
<td>0,049</td>
<td>183</td>
</tr>
<tr>
<td>Dureza a) Tangencial</td>
<td>valor de N</td>
<td>3,16</td>
<td>1,64</td>
<td>1,64</td>
<td>132</td>
</tr>
<tr>
<td>cota de dureza N/D²</td>
<td>13,13</td>
<td>6,81</td>
<td>6,78</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>b) Radial</td>
<td>valor de N'</td>
<td>4,15</td>
<td>2,495</td>
<td>2,486</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>cota de dureza N'/D²</td>
<td>17,80</td>
<td>11,271</td>
<td>11,676</td>
<td>132</td>
</tr>
<tr>
<td>Compresión axial</td>
<td>valor al 12%</td>
<td>C_12</td>
<td>407,49</td>
<td>90,58</td>
<td>90,43</td>
</tr>
<tr>
<td></td>
<td>cota de calidadd específica</td>
<td>C_12/1000</td>
<td>8,20</td>
<td>1,76</td>
<td>1,76</td>
</tr>
<tr>
<td>Tracción paralela a la fibra</td>
<td>H</td>
<td>954,23</td>
<td>1,98</td>
<td>1,98</td>
<td></td>
</tr>
<tr>
<td>Flexión Estático</td>
<td>valor al 12%</td>
<td>850,13</td>
<td>199,43</td>
<td>198,81</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>cota de rigidez</td>
<td>C_p</td>
<td>35,14</td>
<td>13,13</td>
<td>13,09</td>
</tr>
<tr>
<td></td>
<td>cota de flexión</td>
<td>C_f,D²</td>
<td>17,13</td>
<td>3,92</td>
<td>3,91</td>
</tr>
<tr>
<td></td>
<td>cota de tenacidad</td>
<td>C_t,C</td>
<td>2,05</td>
<td>0,41</td>
<td>0,41</td>
</tr>
<tr>
<td>Módulo de elasticidad</td>
<td>E</td>
<td>883,36,05</td>
<td>27,993,41</td>
<td>27,877,5</td>
<td>121</td>
</tr>
<tr>
<td>Flexión resistencia unitaria al choque</td>
<td>K</td>
<td>0,38</td>
<td>0,19</td>
<td>0,19</td>
<td>132</td>
</tr>
<tr>
<td>Dinámica. cota dinámica</td>
<td>K/D²</td>
<td>1,64</td>
<td>0,82</td>
<td>0,81</td>
<td>132</td>
</tr>
<tr>
<td>Esfuerzo cortante</td>
<td>Z</td>
<td>108,45</td>
<td>18,71</td>
<td>18,18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Z'</td>
<td>111,89</td>
<td>29,13</td>
<td>28,35</td>
<td>19</td>
</tr>
<tr>
<td>Hidraulica a) Tangencial</td>
<td>resistencia unitaria</td>
<td>P_H</td>
<td>8,36</td>
<td>2,21</td>
<td>2,20</td>
</tr>
<tr>
<td></td>
<td>cota de limitabilidad</td>
<td>C_p</td>
<td>0,17</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>resistencia unitaria</td>
<td>P_p</td>
<td>13,62</td>
<td>5,65</td>
<td>5,62</td>
</tr>
<tr>
<td></td>
<td>cota de limitabilidad</td>
<td>C_p</td>
<td>8,24</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Tracción a) Tangencial</td>
<td>resistencia unitaria</td>
<td>H</td>
<td>17,96</td>
<td>4,74</td>
<td>4,73</td>
</tr>
<tr>
<td></td>
<td>cota de adherencia</td>
<td>C_p</td>
<td>0,36</td>
<td>0,097</td>
<td>0,097</td>
</tr>
<tr>
<td></td>
<td>resistencia unitaria</td>
<td>H'</td>
<td>18,69</td>
<td>5,05</td>
<td>5,03</td>
</tr>
<tr>
<td></td>
<td>cota de adherencia</td>
<td>C_p</td>
<td>0,38</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Compresión perpendicular a las fibras</td>
<td>C'</td>
<td>64,22</td>
<td>18,53</td>
<td>18,30</td>
<td>40</td>
</tr>
</tbody>
</table>

NOTA: todas las tensiones vienen expresado en Kg/cm²

Cuadro 3.8 - Características físico-mecánicas del Pino Insignis.
Respecto a la resistencia al esfuerzo cortante no hay datos en el referido estudio, siendo ésta la característica que más relación tiene con los ensayos realizados. No obstante a continuación, se muestran algunas de sus propiedades, en sus valores medios:

<table>
<thead>
<tr>
<th>Densidad (al 12 %)</th>
<th>0,520 t/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracción total</td>
<td>12</td>
</tr>
<tr>
<td>Flexión estática (12 %)</td>
<td>1070 Kp/cm²</td>
</tr>
<tr>
<td>Tracción perpendicular (12 %)</td>
<td>20 "</td>
</tr>
<tr>
<td>Compresión paralela (12 %)</td>
<td>430 "</td>
</tr>
</tbody>
</table>

Roble (Quercus robur)

De la obra "Estudio de las principales maderas comerciales de frondosas peninsulares" (15), se extraen las siguientes propiedades físico-mecánicas de esta especie, en valores medios:

Densidad al 12 % : 0,839 t/m³

Contracción lineal:

- Contracción tangencial total : 5,96
- Coeficiente de contracción tangencial : 0,21
- Contracción radial total : 3,33
- Coeficiente de contracción radial : 0,12

Contracción volumétrica:

- Contracción volumétrica total : 15
- Coeficiente de contracción volumétrica : 0,47

Compresión paralela : 589 Kp/cm²
Compresión perpendicular : 149 Kp/cm²
Flexión estática : 1520 "
Módulo de elasticidad : 108.200 Kp/cm²
Tracción perpendicular : 39 "

Tampoco en este caso tenemos datos sobre su resistencia al esfuerzo cortante, que sería el valor que más relación tiene con los ensayos realizados.

3.3.2.- Ensayos de flexión de pequeñas vigas de madera de pino insignis.

Se han realizado ensayos de flexión sobre diez piezas de pino insignis, con una sección de 67 x 100 mm y una longitud de 105 cm., con el objeto de obtener una serie de datos que sirvan de referencia para los ensayos de consolidación de piezas con estas dimensiones, que se refieren en el capítulo 62.

Metodología

La norma que se ha seguido como referencia en los ensayos, es la ASTM: D 198 "Método de ensayos de piezas de madera en tamaño estructural".

Módulo de elasticidad

Los ensayos que se encuentran detallados en el apéndice n° 4 "Ensayo a flexión de piezas de madera de pino insignis", se efectuaron con cargas en los puntos que dividen la luz entre apoyos en tres partes iguales, tomando medidas de deflexión en varios puntos. (ver figura 3.10)

- Desplazamiento del punto D, (parte móvil de la máquina), respecto al punto E, (parte fija de la máquina). Esta medida se efectúa a través de la gráfica que relaciona la carga con la deformación dibujada por el dispositivo de la propia máquina.
Figura 3.10.- Esquema del ensayo a flexión

Evidentemente incluirá las deformaciones que por aplastamiento perpendicular a la fibra se producen en los apoyos y en las piezas que transmiten la carga.

- Desplazamiento del punto A (en el centro de la luz y en el plano neutro), con respecto al cunto C (en el plano neutro y en el apoyo).

- Desplazamiento del punto B (en el plano neutro y en la sección que se encuentra debajo de una de las cargas), con respecto al punto C.

Estos dos últimos se toman de la lectura de dos micrómetros de precisión de una centésima de milímetro, colocados en un dispositivo adecuado, indicado en la figura anterior. Las lecturas se tomaron cada escalón de 200 Kp de carga. En el citado anexo se incluye la representación gráfica de estas lecturas.

El proceso de cálculo seguido para la determinación de las constantes elásticas, fué el siguiente:

- Obtención del módulo de elasticidad "aparente" a partir de las gráficas dadas por la máquina.

- Determinación del módulo de elasticidad que resulta de las lecturas de los micrómetro. Para ello de adoptó el valor medio de los módulos resultantes para cada micrómetro.
Este valor es superior al anterior y más exacto, al no incluir las deformaciones debidas al aplastamiento en los apoyos.

\[E_B = \frac{P \cdot L^3}{64,8 \cdot I \cdot f_B} \]

\[E_A = \frac{P \cdot L^3}{56,3 \cdot I \cdot f_A} \]

Siendo:

- \(P \) = carga total en el límite elástico.
- \(I \) = momento de inercia de la sección.
- \(f_A \) = deformación del punto A respecto del C.
- \(f_B \) = deformación del punto B respecto del C.
- \(E_A, E_B \) = módulo de elasticidad a flexión, obtenido a partir de la deflexión del punto A ó B.

Las dimensiones de la probeta y la precisión de la medida no resultan suficientes para determinar el módulo de elasticidad a flexión —"verdadero"—, (es decir, sin la influencia del cortante), y el módulo de elasticidad transversal o de cortante, \(G \).

Por este motivo los módulos de elasticidad que emplearemos incluyen la deformación por cortante, según el ensayo efectuado.

A continuación resumiremos los resultados de los ensayos, referidos a la determinación del módulo de elasticidad. (cuadro 3.9).
<table>
<thead>
<tr>
<th>VIGA</th>
<th>CALIDAD</th>
<th>E_g</th>
<th>E_B</th>
<th>E_m</th>
<th>$R = E_g/E_m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,75</td>
<td>78.805</td>
<td>115.490</td>
<td>111.240</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>106.990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,50</td>
<td>69.864</td>
<td>91.475</td>
<td>92.382</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93.289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,65</td>
<td>60.751</td>
<td>71.485</td>
<td>71.216</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70.947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,65</td>
<td>61.969</td>
<td>79.203</td>
<td>79.071</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78.940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,50</td>
<td>51.850</td>
<td>84.845</td>
<td>87.957</td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>91.069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,65</td>
<td>56.750</td>
<td>77.087</td>
<td>77.734</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77.382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>< 0,40</td>
<td>48.773</td>
<td>68.283</td>
<td>70.496</td>
<td>0,69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72.710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,40</td>
<td>66.358</td>
<td>78.068</td>
<td>81.430</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84.792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>< 0,40</td>
<td>52.982</td>
<td>70.958</td>
<td>71.746</td>
<td>0,74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,40</td>
<td>54.037</td>
<td>76.143</td>
<td>75.599</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75.056</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Val. medios: 60.214, 81.887, 0,736

Cuadro 3.9

Donde:

- Calidad = grado de clasificación estructural de la pieza de madera, de acuerdo con la norma "B.S. Code of Practice CP 112", (16).
- E_g = módulo de elasticidad "aparente" a flexión, deducido de las gráficas dibujadas por la máquina.
- E_B, E_A = módulos de elasticidad a flexión de las lecturas sobre micrómetros colocados en los puntos B y A, respectivamente. Según se describió en la figura anterior.
- E_m = valor medio de el par de valores E_B, E_A, para cada pieza.
Como se puede comprobar el módulo de elasticidad, como valor medio es de 81.887 Kp/cm². Pero las deducciones de las medidas en la gráfica de la máquina dan un módulo "aparente" de 60.214 Kp/cm². Este valor representa un 73,6% del anterior.

Resulta inferior debido a que las mediciones de las deflexiones en este caso, incluyen los aplastamiento por compresión perpendicular a la fibra en los apoyos y elementos de carga.

En los ensayos que más adelante se comentan, en el Capítulo 69, sobre vigas de estas dimensiones, y con el mismo tipo de carga, se obtendrá el módulo de elasticidad a partir de la gráfica de la máquina. Esto resulta más sencillo de realizar y además se obtiene la representación gráfica del ensayo de una manera contínua.

De esta forma determinamos un módulo "aparente", que será corregido por el factor R, aquí deducido, para eliminar la influencia de la deformación en apoyos.

Resistencia de la pieza y coeficiente de seguridad.

Se procedió, antes de los ensayos, a clasificar visualmente en grados de calidad estructural cada una de las piezas, según la norma Británica del "Code of Practice CP 112" (16).

Esta clasificación atiende a la existencia, posición y tamaño relativo de los nudos, fendas, desviación de la fibra, número de anillos y gemas. Existen cuatro clases: 0,75, 0,65, 0,50 y 0,40

Se determinó la carga total (a repartir en los dos puntos del tercio de la luz) que se considera admisible. Para ello se siguieron las recomendaciones de la citada norma CP 112. De tal forma, que se partió de los siguientes datos:
- Tensión básica a flexión del pino insignis al 12% = 170 Kp/cm²
- Coeficiente de modificación por la duración de la carga = 1,50
 (Duración del ensayo 6 - 15 mn = "muy corta duración")
- Factor de altura de la sección = 1,128
 (Para 7 < d < 30 = \(K_H = \left(\frac{30}{d} \right)^{0.11} \), según la norma BS 5268 (17)
 Esta norma es posterior a la CP 112 e incluye la posibilidad del aumento de la tensión admisible para alturas de la sección inferiores a 30 cm. Recogemos aquí la recomendación para ajustar lo más posible la carga admisible.
- Modificación de la tensión admisible por el grado de calidad estructural =
 \[C = 0,75 - 0,65 - 0,50 - 0,40. \]
- Tensión admisible a flexión = 170 x 1,50 x 1,128 x C = 287 x C Kp/cm²
 \[C = 0,75 - 0,65 - 0,50 - 0,40 \Rightarrow Tadm = 215 - 186 - 143 - 115 \text{ Kp/cm}^2 \]

Después se sometieron al ensayo de flexión, determinando su carga de rotura. La relación entre la carga de rotura y lo admisible nos da el coeficiente de seguridad respecto a la rotura. (ver cuadro 3.10).

Las probetas 1 y 2 no rompieron pues la carga máxima de la máquina de ensayo, no fue suficiente. Las probetas 7 y 9 no daban la clasificación mínima de la norma del 0,40.

Si descontamos estas cuatro piezas y hallamos la media de las relaciones entre la carga de rotura, \(P_r \), y la carga admisible, \(P_a \), obtenemos el valor \(P_r/P_a = 2,58 \)

Se puede comprobar como los valores de rotura no son siempre acordes con la clasificación previa. Esto puede deberse a defectos no visibles en la pieza, como pueden ser nudos interiores o fendas no visibles. Y también en algún caso podría deberse a errores en la clasificación. En todo caso estos factores deben quedar cubiertos por la seguridad.
<table>
<thead>
<tr>
<th>PROBETA</th>
<th>CALIDAD</th>
<th>(P_{adm})</th>
<th>(P_{rotura})</th>
<th>(Pr/P_{adm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td></td>
<td>Kp</td>
<td>Kp</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>1.773</td>
<td>> 3.900</td>
<td>> 2.20 (No rompió)</td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
<td>1.155</td>
<td>> 3.900</td>
<td>> 3.37</td>
</tr>
<tr>
<td>3</td>
<td>0.65</td>
<td>1.154</td>
<td>2.590</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
<td>1.137</td>
<td>1.950</td>
<td>1.71</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>1.105</td>
<td>2.750</td>
<td>2.48</td>
</tr>
<tr>
<td>6</td>
<td>0.65</td>
<td>1.194</td>
<td>3.230</td>
<td>2.70</td>
</tr>
<tr>
<td>7</td>
<td>< 0.40</td>
<td>< 778</td>
<td>1.700</td>
<td>> 2.18</td>
</tr>
<tr>
<td>8</td>
<td>0.40</td>
<td>898</td>
<td>3.400</td>
<td>3.78</td>
</tr>
<tr>
<td>9</td>
<td>< 0.40</td>
<td>< 925</td>
<td>1.820</td>
<td>> 1.96</td>
</tr>
<tr>
<td>10</td>
<td>0.40</td>
<td>762</td>
<td>2.000</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Cuadro 3.10
CAPÍTULO IV

4. ADHERENCIA ENTRE FORMULACIÓN EPOXI Y MADERA

En este capítulo se describen los resultados de los ensayos realizados para conocer las tensiones de adherencia tangencial entre la madera y la formulación. La adherencia tangencial es el modo de trabajo más habitual en estos sistemas de consolidación, en donde los esfuerzos axiales a que se encuentra sometido el refuerzo se transmiten a la madera mediante un esfuerzo de tipo tangencial.

4.1. DESCRIPCIÓN DE LOS ENSAYOS: METODO Y NORMAS

En la relación de los ensayos se ha seguido la Norma ASTM: D 905 - 49 - (Propiedades resistentes de adhesivos o cortadura mediante carga de compresión). Este método se aplica para la determinación de las adherencias tangenciales utilizando adhesivos para madera u otros materiales similares.

La forma de las probetas se define en la figura 4.1, disponiendo la dirección de la fibra paralela al esfuerzo. Estas son ensayadas en el dispositivo para esfuerzo cortante de la figura 3.2. La probeta se apoya en una de sus mitades, y sobre la otra asienta en el rebaje existente la cuchilla que transmite la carga de compresión. Este esfuerzo se comunica al resto de la probeta a través de un esfuerzo de cizalladura que debe transmitir la junta encolada.

La manera descrita en la norma para la obtención de las probetas, consiste en elaborar unas piezas de madera sin defectos (nudos, fendas, exudaciones de resina, etc.) de dimensiones 19 x 64 x 300, mm. La dirección de la fibra debe seguir la mayor de las dimensiones de pieza.
Después se encolan entre sí dos de estas piezas siguiendo las instrucciones del fabricante de la cola. Y luego se cortan cinco probetas con la forma de la figura 4.1. Además el espesor de la junta de cola es mínimo, ya que las dos piezas se encuentran en contacto.

Es en este aspecto donde el procedimiento que hemos seguido en la elaboración de las probetas unidas con formulaciones epoxi, difiere del de la norma. Por un lado la junta tiene un espesor que varía entre 0,8 - 1 - 2,5 mm., según el tipo de formulación ensayado. Y por otra parte está la dificultad de cortar la formulación, que normalmente se encuentra cargada con arena de cuarzo, con sierras para madera. Esto obligó a elaborar las probetas por unidades con la forma ya final, preparada para ensayar.

La velocidad de carga se establece en la norma ASTM D.905, en un avance contínuo de 0,38 mm/min con una variación admisible de ± 25 %. Dado que la máquina de ensayos no dispone de regulación del desplazamiento de la carga, se obtuvo la velocidad en Kp/min, que aproximadamente era equivalente al avance fijado en la norma.
Esto se realizó con un tanteo previo ensayando probetas y midiendo el avance con un micrómetro de precisión de 0,01 mm. De esta forma se determinó la velocidad de 750 Kp/min.

4.2. DESCRIPCIÓN DE LOS DATOS REFLEJADOS EN LOS ESTADILLOS

En el apéndice n° 5 "Ensayos de adherencia tangencial entre madera y formulación", se encuentran los resultados concretos de cada uno de los ensayos realizados. A continuación se explican los datos referidos en el estadillo, así como la forma de obtención:

Humedad: Se trata del contenido de humedad de la madera de la probeta en el momento del ensayo. Se da en porcentaje con respecto al peso seco de la madera. Es únicamente una medida de control.

Para la obtención del valor de humedad se ha seguido el siguiente proceso: De cada serie de probetas ensayadas se extraen cinco mitades de probetas. (Se entiende por serie de probetas un grupo de 16 de éstas, elaboradas a la vez y referidas en un estadillo). Una vez eliminados los restos de formulación que tienen adheridos las cinco piezas, se determina su humedad mediante secado en estufa. Y el valor medio es el aceptado como contenido de humedad de la serie.

Anillos/cm: Se toma el valor medio aproximado del número de anillos de crecimiento de la madera a ensayar. Se miden en la dirección radial de una sección transversal. Es un dato de tipo informativo.

Edad de la madera: (En el cajetín de encabezamiento). Se refiere al tiempo transcurrido desde la corte del árbol, hasta el momento de la elaboración de las probetas. En este caso se distinguen dos tipos: lo que hemos llamado "nueva" (como el pino insigne y el roble), que es madera cortada
hace menos de uno o dos años. Y la denominada madera "vieja", como es el caso del pino Laricio con una antigüedad elevada.

E: Espesor de la junta de encolado: Se dan los valores inferior y superior entre los que oscilan las juntas del conjunto de las probetas.

Para las probetas realizadas con Sikadur 52 se adoptó una junta de 0,8 mm. Esta, era la misma en todas las probetas, ya que se separaban mediante una pieza calibrada que hacía de separador. La formulación era vertida en la junta.

En el caso del Sikadur 31, la formulación se aplicaba como una pasta en una de las mitades y se presionaban ambas, manualmente, hasta tener una junta de espesor aproximado de 0,5 a 1 mm. Y en el Sikadur 42, también aplicado como en el caso anterior, el espesor resultante era algo mayor debido a la granulometría de su carga; así resultaba ser de 1,5 a 2,5 mm.

Textura de la superficie de contacto: Se trata de la textura que tienen las caras de las medias probetas que van a formar la junta encolada. Puede ser de dos tipos: rugosa o lisa. Se denomina rugosa a aquella superficie que ha salido directamente de la sierra de cinta; y por tanto, adquiere un perfil ligeramente dentado, como se muestra en la figura 4.2.
Y la textura llamada lisa es la correspondiente al acabado dado por la cepilladora.

Edad de la formulación: Es el periodo de tiempo en días, transcurridos desde la elaboración de las probetas, y por tanto, de la formulación, hasta el momento del ensayo. En estos ensayos es de 7 ó 21 días.

Carga de rotura: Es la carga máxima que se alcanza en el momento del fallo de de la unión. Ya sea por fallo en la adherencia, o por fallo de la madera, en cortadura.

Tensión de rotura: Es la carga de rotura dividida por la superficie de contacto.

Observaciones: % de madera arrancada: Después de la rotura de la probeta se mide, con una cuadrícula en soporte transparente, el porcentaje de fibras de madera que son arrancadas en la rotura.

La rotura puede producirse por tres motivos: fallo de la madera al esfuerzo cortante; fallo en la interfase madera-formulación; y, rotura de la propia formulación.

Cuando el fallo se produce por la madera se anota también si éste ha sido una rotura a cortante radial, tangencial ó intermedio, con las siglas r, t, rt, respectivamente. No obstante en el corte de de la madera no se pretendido conseguir una determinada orientación tangencial o radial de la fibra.

4.3. FACTORES VARIABLES ESTUDIADOS: SU INFLUENCIA EN LA ADHERENCIA Y CONCLUSIONES.

En el cuadro 4.1 se resumen los resultados obtenidos en los ensayos de adherencia tangencial entre madera y formulación epoxi. Los estadillos de los ensayos en concreto se encuentran en el apéndice nº 5.
<table>
<thead>
<tr>
<th>FORMULARIO</th>
<th>ESPECIE DE MADERA</th>
<th>SUPERFICIE DE CONTACTO</th>
<th>EDAD FORMULA</th>
<th>HUMEDAD MEDIA %</th>
<th>ESPESOR L. COLA mm</th>
<th>NUMERO ENSAYOS</th>
<th>TENSION ROT. MEDIA Kp/cm²</th>
<th>DESVIAC. TIPICA</th>
<th>DESVIAC. ESTANDAR</th>
<th>COEF. VARIAC. %</th>
<th>% MEDIO FIBRAS ARRANCA</th>
<th>COEF. VARIAC. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.42 anc.</td>
<td>Pino Insigne</td>
<td>Lisa</td>
<td>7</td>
<td>10,3</td>
<td>1,5-2,5</td>
<td>16</td>
<td>97,5</td>
<td>31,4</td>
<td>32,4</td>
<td>33</td>
<td>32</td>
<td>63</td>
</tr>
<tr>
<td>S.42 anc.</td>
<td>Pino Insigne</td>
<td>Lisa</td>
<td>21</td>
<td>11,5</td>
<td>1,3-2,5</td>
<td>8</td>
<td>118,3</td>
<td>27,8</td>
<td>29,7</td>
<td>25</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>S.42 anc.</td>
<td>Pino Insigne</td>
<td>Rugosa</td>
<td>7</td>
<td>10,6</td>
<td>1,5-2,5</td>
<td>16</td>
<td>96,7</td>
<td>14,8</td>
<td>15,3</td>
<td>15</td>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>S.42 anc.</td>
<td>Pino Insigne</td>
<td>Rugosa</td>
<td>21</td>
<td>11,5</td>
<td>1,5-2,5</td>
<td>8</td>
<td>138,8</td>
<td>14,6</td>
<td>15,6</td>
<td>11</td>
<td>72</td>
<td>18</td>
</tr>
<tr>
<td>S.42 anc.</td>
<td>Pino Laricio</td>
<td>Lisa</td>
<td>7</td>
<td>8,8</td>
<td>1,5-2,5</td>
<td>16</td>
<td>79,5</td>
<td>12,4</td>
<td>12,8</td>
<td>16</td>
<td>91</td>
<td>14</td>
</tr>
<tr>
<td>S.42 anc.</td>
<td>Pino Laricio</td>
<td>Rugosa</td>
<td>7</td>
<td>8,8</td>
<td>1,5-2,5</td>
<td>16</td>
<td>84,2</td>
<td>14,3</td>
<td>14,8</td>
<td>17</td>
<td>88</td>
<td>23</td>
</tr>
<tr>
<td>S.42 anc.</td>
<td>Roble</td>
<td>Lisa</td>
<td>7</td>
<td>7</td>
<td>1,5-2</td>
<td>7</td>
<td>114,9</td>
<td>25,8</td>
<td>27,8</td>
<td>24</td>
<td>56</td>
<td>44</td>
</tr>
<tr>
<td>S.42 anc.</td>
<td>Roble</td>
<td>Rugosa</td>
<td>7</td>
<td>7</td>
<td>1,5-2</td>
<td>7</td>
<td>154,4</td>
<td>10,3</td>
<td>11,1</td>
<td>7</td>
<td>79</td>
<td>19</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Pino Insigne</td>
<td>Lisa</td>
<td>7</td>
<td>13,7</td>
<td>0,5-1</td>
<td>15</td>
<td>103,6</td>
<td>10,0</td>
<td>10,3</td>
<td>10</td>
<td>60</td>
<td>28</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Pino Insigne</td>
<td>Lisa</td>
<td>21</td>
<td>11,3</td>
<td>0,5-1</td>
<td>8</td>
<td>117,3</td>
<td>14,1</td>
<td>15,0</td>
<td>12</td>
<td>54</td>
<td>53</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Pino Insigne</td>
<td>Rugosa</td>
<td>7</td>
<td>9,9</td>
<td>0,5-1</td>
<td>16</td>
<td>116,9</td>
<td>13,4</td>
<td>13,8</td>
<td>11</td>
<td>53</td>
<td>46</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Pino Insigne</td>
<td>Rugosa</td>
<td>21</td>
<td>11,3</td>
<td>0,5-1</td>
<td>8</td>
<td>135,8</td>
<td>12,2</td>
<td>13,1</td>
<td>10</td>
<td>82</td>
<td>10</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Pino Laricio</td>
<td>Lisa</td>
<td>7</td>
<td>8,7</td>
<td>0,5-1</td>
<td>16</td>
<td>96,1</td>
<td>9,6</td>
<td>9,9</td>
<td>10</td>
<td>97</td>
<td>3</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Pino Laricio</td>
<td>Rugosa</td>
<td>7</td>
<td>8,7</td>
<td>0,5-1</td>
<td>16</td>
<td>89,8</td>
<td>13,8</td>
<td>14,2</td>
<td>16</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Roble</td>
<td>Lisa</td>
<td>7</td>
<td>7,3</td>
<td>1-2</td>
<td>7</td>
<td>133,7</td>
<td>14,6</td>
<td>15,8</td>
<td>12</td>
<td>40</td>
<td>57</td>
</tr>
<tr>
<td>S.31 adh.</td>
<td>Roble</td>
<td>Rugosa</td>
<td>7</td>
<td>7,3</td>
<td>1-2</td>
<td>7</td>
<td>140,8</td>
<td>15,5</td>
<td>16,7</td>
<td>12</td>
<td>87</td>
<td>17</td>
</tr>
<tr>
<td>S.52 iny.</td>
<td>Pino Insigne</td>
<td>Lisa</td>
<td>7</td>
<td>10,8</td>
<td>0,8</td>
<td>8</td>
<td>97,0</td>
<td>11,8</td>
<td>12,6</td>
<td>13</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>S.52 iny.</td>
<td>Pino Insigne</td>
<td>Rugosa</td>
<td>7</td>
<td>10,8</td>
<td>0,8</td>
<td>8</td>
<td>121,8</td>
<td>12,1</td>
<td>12,9</td>
<td>10</td>
<td>87</td>
<td>27</td>
</tr>
<tr>
<td>S.52 iny.</td>
<td>Pino Laricio</td>
<td>Lisa</td>
<td>7</td>
<td>9,3</td>
<td>0,8</td>
<td>8</td>
<td>82,3</td>
<td>6,4</td>
<td>6,8</td>
<td>8</td>
<td>75</td>
<td>38</td>
</tr>
<tr>
<td>S.52 iny.</td>
<td>Pino Laricio</td>
<td>Rugosa</td>
<td>7</td>
<td>9,3</td>
<td>0,8</td>
<td>8</td>
<td>90,5</td>
<td>13,4</td>
<td>14,3</td>
<td>16</td>
<td>99</td>
<td>3</td>
</tr>
</tbody>
</table>

Cuadro 4.1
4.3.1.- El tipo de formulación epoxi.

En el cuadro 4.2 se resumen las tensiones medias de rotura y porcentajes de fibras de madera arrancadas, con sus respectivos coeficientes de variación, para los tres tipos de formulaciones utilizadas.

Se puede comprobar como en el caso de superficies de contacto lisas, las tensiones de adherencia de rotura difieren muy poco en cualquiera de las formulaciones. Es decir, se puede considerar independiente del tipo de formulación.

<table>
<thead>
<tr>
<th>MADERA</th>
<th>TEXTURA SUPERFICIE ENCOLADO</th>
<th>SIKA DUR 42</th>
<th>SIKA DUR 31</th>
<th>SIKA DUR 52</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEN. ROT. % FIBR. C.V.</td>
<td>TEN. ROT. % FIBR. C.V.</td>
<td>TEN. ROT. % FIBR. C.V.</td>
<td></td>
</tr>
<tr>
<td>INSIGNE</td>
<td>LISA</td>
<td>97,5 32</td>
<td>103,6 60</td>
<td>97 55</td>
</tr>
<tr>
<td></td>
<td>33 63</td>
<td>10 28</td>
<td>13 43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>96,7 37</td>
<td>116,9 53</td>
<td>121,6 87</td>
</tr>
<tr>
<td></td>
<td>15 31</td>
<td>11 46</td>
<td>16 27</td>
<td></td>
</tr>
<tr>
<td>LARICIO</td>
<td>LISA</td>
<td>79,5 91</td>
<td>96,1 97</td>
<td>82,3 75</td>
</tr>
<tr>
<td></td>
<td>16 14</td>
<td>10 3</td>
<td>8 38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>84,2 88</td>
<td>89,8 100</td>
<td>90,5 99</td>
</tr>
<tr>
<td></td>
<td>17 23</td>
<td>16 0</td>
<td>16 3</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 4.2.- Tensiones medias de rotura en Kp/cm2, de adherencia tangencial entre madera y formulación, y para una edad de la formulación de 7 días, y porcentaje de fibras arrancadas en la rotura. Con sus correspondientes coeficientes de variación.

Sin embargo, si consideramos el caso de la superficie de contacto rugosa, se observan unas diferencias ya apreciables en el pino insigne, siendo superiores para el S.31 y S.52 que en el S.42. Esto puede deberse a la diferente aptitud para llenar las irregularidades de la superficie de cada formulación.
Esto no se aprecia en el Pino Laricio, debido a que la rotura llega antes por fallo de cortante de la madera.

Igualmente se refleja una mayor variación de los resultados en la formulación S.42.

4.3.2.- La especie de madera.

En el cuadro 4.3 resumimos los resultados medios para las tres especies de madera, con dos tipos de formulación:

<table>
<thead>
<tr>
<th>MADERA</th>
<th>TEXTURA SUPERFICIE ENCOLADO</th>
<th>SIKADUR 42</th>
<th>SIKADUR 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TEN. ROT. C.V.</td>
<td>% FIBR. C.V.</td>
</tr>
<tr>
<td>INSGNE</td>
<td>LISA</td>
<td>97,5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>96,7</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>LARICIO</td>
<td>LISA</td>
<td>79,5</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>84,2</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>ROBLE</td>
<td>LISA</td>
<td>114,9</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>154,4</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>19</td>
</tr>
</tbody>
</table>

Cuadro 4.3 - Tensiones medias de rotura de adherencia tangencial entre madera y formulación, en Kp/cm², para formulaciones de edad de 7 días; y porcentajes de fibras arrancadas en la rotura. Con sus correspondientes coeficientes de variación.
Del cuadro anterior podemos extraer las siguientes conclusiones:

- Cuanto mayor es la resistencia a cortante de la madera, mayor es la tensión de rotura de adherencia tangencial.

Y lógicamente cuanto menor es la tensión de rotura mayor es el porcentaje de de fibras arrancadas. Lo que indica que el fallo se produce por la propia madera. Este es el caso del pino Laricio, donde los porcentajes de fibras arrancadas se acercan mucho al 100 %.

Por el contrario cuando la madera tiene una resistencia elevada, la rotura se produce, en parte, por la interfase de unión formulación-madera y en parte por la madera, reduciéndose así el porcentaje de madera arrancada.

En ningún caso la rotura se produjo por la propia formulación.

- Se puede decir, por tanto, que la adherencia tangencial entre la madera y la formulación es muy elevada, y depende de la especie en cuanto que sus propiedades mecánicas y en particular su resistencia a esfuerzo cortante es diferente.

Se observa como el roble tiene unas tensiones de rotura superiores a las del pino insignie, con unos porcentajes de fibras arrancadas mayores también. Esto puede indicar que la calidad de la unión con el roble es superior a la del pino insignie.

Se puede deducir, por tanto una influencia en la adherencia, muy pequeña, de la especie.

Es de suponer que se presenten problemas de unión en aquellas maderas como la teca, con unas características físicas que la hacen autoengrasante y que impiden la adherencia. Igualmente la calidad y seguridad de la unión bajará notablemente en especies coníferas con gran cantidad de resina, en las zonas con bolsas o exudaciones de ésta.
- Finalmente no hemos observado comportamiento especial en las tensiones y superficie de rotura en el caso del pino Laricio, con una antigüedad muy elevada. Por lo que en principio no parece tener influencia la antigüedad de la madera en la adherencia. A no ser que se trate de la superficie expuesta, donde el contacto directo con el ambiente puede conducir a una oxidación. Además de la acumulación de polvo y suciedad superficial.

4.3.3.- Textura de la superficie de contacto.

Se han realizado los ensayos con dos acabados diferentes de la superficie de contacto de la madera con la formulación. La textura denominada rugosa, es aquella que se obtiene después del corte de la madera en la sierra de cinta. La superficie adquiere unos resaltos con cierta forma de diente de sierra (ver apartado 4.2).

Y la llamada textura lisa corresponde al acabado que se obtiene en la cepilladora. Este presenta una superficie lisa, plana y sin resaltos.

En ningún caso se han lijado las superficies de la madera. Esta operación es considerada perjudicial para el encolado, debido a que en la superficie quedan partículas de polvo de madera que perjudican la unión.

En el cuadro 4.4. se resumen algunos resultados para cada especie, comparando la tensión de rotura para cada textura.

En el caso del pino laricio, puede observarse como no se da una diferencia apreciable entre las adherencias con superficies lisas o rugosas. Unas veces aumenta la resistencia y otras disminuye. Pero estas variaciones están dentro de la dispersión propia de la madera. El hecho de no mostrar diferencias claras, se debe probablemente a que las tensiones de rotura a cizalladura de esta especie se encuentran ya en este límite.
<table>
<thead>
<tr>
<th>MADERA</th>
<th>TEXT. SUPERF.</th>
<th>SIK. 42</th>
<th>SIK. 31</th>
<th>SIK. 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSIGNE</td>
<td>LISA</td>
<td>97,5</td>
<td>103,6</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>96,7</td>
<td>116,9</td>
<td>121,8</td>
</tr>
<tr>
<td></td>
<td>Variación</td>
<td>-1 %</td>
<td>+13 %</td>
<td>+25 %</td>
</tr>
<tr>
<td>LARICIO</td>
<td>LISA</td>
<td>79,5</td>
<td>96,1</td>
<td>82,3</td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>84,2</td>
<td>89,8</td>
<td>90,5</td>
</tr>
<tr>
<td></td>
<td>Variación</td>
<td>+6 %</td>
<td>-7 %</td>
<td>+10 %</td>
</tr>
<tr>
<td>ROBLE</td>
<td>LISA</td>
<td>114,9</td>
<td>133,7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RUGOSA</td>
<td>154,4</td>
<td>140,8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Variación</td>
<td>+34 %</td>
<td>+5 %</td>
<td>-</td>
</tr>
</tbody>
</table>

Cuadro 4.4.: Tensiones medias de rotura de adherencia tangencial entre madera y formulación, en Kp/cm²; para distintas especies y formulaciones con edad de 7 días. Y sus porcentajes de variación comparativamente entre textura lisa y rugosa.

En el pino insigne, no hay variación entre lisa y rugosa para la formulación S.42; en el S. 31 se observa un aumento ligero del 13 %, y en el S. 52 aumenta un 25 % para superficie rugosa.

En el roble el aumento de la tensión es de un 34 % para el S. 42 y de un 5 % para el S. 31, en superficie rugosa frente a lisa.

Como conclusión podemos decir, que la textura rugosa de la superficie de contacto entre la formulación y la madera, ofrece unos resultados en la adherencia en algunos casos superiores a los de superficie lisa. Con incrementos que varían entre el 0 y el 34 %, según la especie y formulación.
En particular, se puede destacar como un aumento de la tensión apreciable el del pino insigne con la formulación S. 52, donde la superficie rugosa supone un aumento del 25 % respecto a la lisa. La explicación puede deberse a que esta formulación tiene una bajísima viscosidad y puede penetrar en el interior de la madera más fácilmente si la superficie es rugosa. Posteriormente la resina fragua, reforzando la zona superficial de la madera.

En el ensayo mecánico, la rotura tiende a producirse más por la madera que por la unión. Tal y como indican los porcentajes de fibras arrancadas: 55 % en lisa y 87 % en rugosa.

Otro hecho a destacar es el incremento del 34 % de la tensión de rotura en la superficie rugosa del roble frente a la lisa, para la formulación S. 42. Sin embargo, este aumento no se da para el pino insigne con la misma formulación.

Esta diferencia de comportamiento puede deberse a la diferente anatomía de ambas especies. En el roble son mucho más abundantes los radios leñosos y más resistentes que en el pino. Estos radios se asientan en dirección radial y perpendicularmente al eje del árbol. Por tanto en una textura rugosa la formulación se introduce en los intersticios, de tal forma, que en la rotura será preciso en cierta forma "cortar" estos radios leñosos, y no sólo despegarse, o producir una cizalladura por deslizamiento longitudinal de las fibras.

4.3.4.– Edad de formulación.

Se han elaborado series de probetas de adherencia tangencial entre madera y formulación con diferentes edades de esta última. En concreto se realizaron con 7 días y 21 días.

Es lógico esperar un aumento de la resistencia propia de la formulación, tal y como se estudió en 3.1.1. (Resistencia al esfuerzo cortante). Pero además podemos
suponer que se dará igualmente un incremento de la adherencia. Este es el motivo de estudiar esta variable.

En el cuadro 4.5 se resume el efecto de la edad de la formulación para el caso del pino insigne.

<table>
<thead>
<tr>
<th>MADERA</th>
<th>TEXTURA</th>
<th>SIKADUR 42</th>
<th>SIKADUR 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 días</td>
<td>21 días</td>
<td>VARIAC.</td>
</tr>
<tr>
<td>INSIGNE</td>
<td>97,5</td>
<td>118,3</td>
<td>+ 21</td>
</tr>
<tr>
<td>RUGOSA</td>
<td>96,7</td>
<td>138,8</td>
<td>+ 43</td>
</tr>
</tbody>
</table>

Cuadro 4.5.- Tensiones medias de rotura de adherencia tangencial, en Kp/cm², entre madera de pino Insigne y diferentes formulaciones con edades de 7 y 21 días. Indicándose el porcentaje de incremento de la tensión con respecto a la de 7 días.

Se deduce por tanto, un cierto aumento de la adherencia con la edad de la formulación (varía entre un 13 % aun 43 %). Este es mayor en el S. 42 que en el S.31, y en ambas formulaciones se muestra superior para texturas rugosas, que en lisas. Aunque este fenómeno puede estar ligado al aumento de la resistencia propia de la formulación (un 17 % en S.42 y un 8 % en S.31, de incremento de la resistencia a cortante a 21 días respecto a 7 días), pensamos que en gran parte es independiente. Ya que en todo caso, la resistencia a cortante de la formulación a los 7 días, es superior a las tensiones de adherencia.
CAPÍTULO V

5. ADHERENCIA ENTRE FORMULACIÓN EPOXI Y MATERIALES COMPUESTOS DE REFUERZO.

En este capítulo trataremos de la adherencia tangencial entre la formulación epoxi y distintos materiales compuestos, consistentes en una resina de poliéster reforzada con fibra de vidrio.

El formato de estos productos, como ya se indicó anteriormente, manejado en este estudio son placas de espesor variable entre 13 y 20 mm. y barras de sección circulares maciza con diámetros de 10 a 20 mm.

Aparecen dos tipos de ensayo, acordes con el formato del producto. En las placas se utiliza un método de ensayo parecido al de adherencia entre madera y formulación, y en las barras otro sistema que se adecuó a los accesorios y posibilidades del laboratorio.

En el apéndice n° 6 "Adherencia tangencial entre formulación epoxi y materiales compuestos", se encuentran los estadillos de los ensayos con los resultados concretos.

5.1. DESCRIPCIÓN DE LA METODOLOGÍA DE ENSAYO

Sobre este tipo de ensayos no existen normas concretas, por lo que se han llevado a cabo planteando un sistema adecuado a los medios disponibles.
5.1.1.- Metodología de ensayo de adherencia tangencial entre placas de material compuesto y formulación.

El ensayo se realiza de la misma forma que para el caso de adherencia entre madera y formulación (Apartado 4.1). Con el mismo accesorio de esfuerzo cortante y velocidad de carga. Y con los mismo espesores de la línea de encolado para las diversas formulaciones. Unicamente difieren en el tamaño de la probeta, que se define en la figura 5.1

Figura 5.1.- Cotas en mm. Probeta de adherencia tangencial entre placas de resina de poliester reforzada con fibra de vidrio en mat y formulación epoxi.

La velocidad de carga del ensayo es de 750 Kp/min, lo que da como resultado una duración del mismo de dos a tres minutos.

Datos referidos en los estadillos

- Tratamiento de la superficie de contacto: se estudian dos procedimientos para la preparación de la superficie a encolar. El primero consiste en una limpieza con un paño humedecido en disolvente (Duco), para eliminar el polvo y posibles sustancias adheridas.
El otro procedimiento era un suave lijado manual, de ambas caras, que van a recibir la formulación, con una lija de grano fino (n° 100). Eliminando parcialmente el recubrimiento superficial de aspecto brillante, de la propia resina de poliéster. Y posteriormente se limpian estas superficies con disolvente, de igual modo que en el otro proceso, hasta conseguir que no queden rastros de polvo del lijado.

Edad de la formulación: Se refiere al tiempo transcurrido desde la elaboración de la formulación (mezcla de los componentes) y de las probetas hasta el momento del ensayo. En todos los casos fué de 7 días.

Tensión de rotura: Es el resultado de dividir la carga de rotura por la superficie encolada. La rotura se produce de forma brusca, separándose ambas partes de la probeta.

Fibras arrancadas: Al igual que para las probetas de madera, se médía después de cada rotura el porcentaje de la superficie que se encontraba encolada y que en la rotura ha arrancado fibras de vidrio del interior del material. Es decir, corresponde a la superficie cu y a rotura no ha sido por la interfase de unión entre formulación y material compuesto.

5.1.2. - Metodología de ensayo de adherencia tangencial entre barras de material compuesto y formulación.

5.1.2.1. **Ensayo mediante esfuerzo de compresión.**

Este método de ensayo fue realizado en primer lugar, pero por razones que después se explican se descartó, prefiriéndose el ensayo mediante carga de tracción que daba resultados más fiables.

Este consistía en una barra de sección circular de diámetro de 10 mm. que quedaba anclada a un anillo de formulación; éste era apoyado en una pieza metálica con
un orificio circular de diámetro 3 mm. superior al de la barra. Según se indica en la figura 5.2

Figura 5.2.- Ensayo de adherencia tangencial entre barras y formulación, mediante compresión. Cotas en mm.

La carga se ejerce como una compresión en un extremo saliente de la barra, hasta que se produzca el deslizamiento por fallo de la unión. La longitud de la zona anclada es variable, de 1'5 cm, 2'5 cm y 3'5 cm. La velocidad de carga es de 500 Kp/min, para conseguir una duración de los ensayos de uno a tres minutos.

El problema que presentaba este modelo de ensayo era que la rotura, se producía en algunos casos por la barra de fibra de vidrio, debido a un efecto de pandeo y aplastamiento local de las fibras de vidrio. Y otras veces se producía la rotura del bloque de formulación, de tal forma que no se daba un deslizamiento claro.

La rotura del bloque de formulación puede indicar la existencia de tensiones de flexión, no deseadas, por un descentramiento de la carga. Por estas razones se
prefirió emplear el procedimiento de ensayo que se explica en el apartado siguiente, mediante un esfuerzo de tracción.

5.1.2.2. Ensayo mediante esfuerzo de tracción.

Este procedimiento se describe gráficamente en la figura 5.3. Consiste en traccionar la barra de fibra de vidrio hasta que se produzca el deslizamiento del bloque de formulación.

Figura 5.3.- Ensayo de adherencia tangencial entre barras y formulación, mediante tracción. Probetas y accesorios.
La velocidad de ensayo es de 500 Kp/min, dando una duración de ensayo de 2 a 3 minutos. La rotura de estas probetas aparecía con un brusco deslizamiento de la barra.

5.1.2.3 Datos reflejados en los estadillos.

En los ensayos de adherencia en barras, se estudian las mismas variables que en el caso de placas.

- Tratamiento de la superficie: Se distinguen dos procedimientos: limpieza con disolvente y lijado con posterior limpieza con disolvente. En este último tratamiento el lijado se realizó con lija de grano fino y en el sentido del eje del perfil. De esta forma la película de resina que se encuentra en la superficie, disminuye apareciendo las fibras de vidrio.

- Edad de la formulación: en todos los casos 7 días.

- Tensión de rotura: Obtenida dividiendo la carga de rotura entre la superficie de anclaje.

5.2. COMENTARIOS SOBRE LOS RESULTADOS DE LOS ENSAYOS. INFLUENCIA DE LAS VARIABLES ESTUDIADAS.

5.2.1.- Conclusiones de los ensayos de adherencia en placas.

En el cuadro 5.1 se resumen los resultados medios de los ensayos de adherencia tangencial entre placas de resina de poliester y fibra de vidrio en mat (Vipol de Bremen S.A.). Obtenidos mediante el ensayo descrito en 5.1.1.

Estos se realizaron con las tres formulaciones y con los dos tipos de tratamiento superficiales anteriormente definidos (Disolvente y lijado más disolvente).
Cuadro 5.1.

<table>
<thead>
<tr>
<th>FORMULACION</th>
<th>TRATAMIENTO DE LA SUPERFICIE</th>
<th>ESPESOR LÍNEA COLA mm</th>
<th>NUMERO ENSAJES</th>
<th>TENSION ROTURA MEDIA Ep/cm²</th>
<th>DESVIAC. TÍPICA</th>
<th>DESVIAC. ESTANDAR</th>
<th>COEFIC. %</th>
<th>% FIBRAS ARRANCADAS</th>
<th>COEFIC. VAR. FIB. ARRANCAD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sikadur 42</td>
<td>Disolvente</td>
<td>1,5-2</td>
<td>4</td>
<td>128,9</td>
<td>9,97</td>
<td>11,5</td>
<td>8,9</td>
<td>81</td>
<td>28</td>
</tr>
<tr>
<td>Sikadur 42</td>
<td>Lijado + Disol.</td>
<td>1,5-2</td>
<td>4</td>
<td>114,2</td>
<td>20,90</td>
<td>24,10</td>
<td>21</td>
<td>98</td>
<td>4,6</td>
</tr>
<tr>
<td>Sikadur 31</td>
<td>Disolvente</td>
<td>1 - 2</td>
<td>4</td>
<td>120,0</td>
<td>16,79</td>
<td>19,39</td>
<td>18</td>
<td>78</td>
<td>38,8</td>
</tr>
<tr>
<td>Sikadur 31</td>
<td>Lij. + Disol.</td>
<td>1 - 2</td>
<td>4</td>
<td>113,9</td>
<td>29,00</td>
<td>33,50</td>
<td>29</td>
<td>52</td>
<td>107</td>
</tr>
<tr>
<td>Sikadur 52</td>
<td>Disolvente</td>
<td>0,8</td>
<td>4</td>
<td>77,8</td>
<td>5,60</td>
<td>5,50</td>
<td>5,3</td>
<td>38</td>
<td>107</td>
</tr>
<tr>
<td>Sikadur 52</td>
<td>Lij. + Disol.</td>
<td>0,8</td>
<td>4</td>
<td>93,6</td>
<td>18,30</td>
<td>21,20</td>
<td>22,6</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Conclusiones

- **Diferencia de comportamiento entre las formulaciones:**

Los resultados de las tensiones medias de rotura del S. 42 y S. 31 son del mismo orden, mientras que en el S.52 aparecen notablemente rebajados, sobre todo, cuando el tratamiento es una simple limpieza con disolvente.

Los porcentajes de fibras arrancadas son muy variables y depende no sólo de la formulación, sino del tratamiento superficial.

- **Influencia del tratamiento de preparación de la superficie:**

Podemos comprobar como mientras en las formulaciones S.42 y S. 31 el tratamiento de lijado más disolvente, resultaba ligeramente menos eficaz en las tensiones de adherencia, en el S.52 ocurre lo contrario.

La explicación de este fenómeno puede deberse a la mayor facilidad que presenta la formulación de menor viscosidad, como S. 52, para rellenar y ocupar
las irregularidades de la superficie lijada. En cambio, las formulaciones más viscosas funcionan mejor con superficies planas.

No obstante, las dispersiones que presentan estos resultados, pueden deberse a la propia variación de características mecánicas del material de la placa. A este razonamiento contribuyen los valores de los porcentajes de fibras arrancadas comparadas con las tensiones de rotura.

Cuando la rotura se produce por falla a cizalladura de los propios estratos de la placa, se observa que las fibras de vidrio en el interior aparecen casi "secas", es decir, con poco aglomerante de resina.

5.2.2.- Conclusiones de los ensayos de adherencia en barras.

En el cuadro 5.2 se resumen los resultados medios de los ensayos de adherencia tangencial entre barras de sección circular maciza con resina de poliéster y fibra de vidrio y formulación, mediante ensayo de tracción.

<table>
<thead>
<tr>
<th>FABRICANTE</th>
<th>TRATAMIENTO DE LA SUPERFICIE</th>
<th>LONGITUD ANCLAJE mm</th>
<th>DIÁMETRO BARRA mm</th>
<th>NÚMERO ENSAYOS</th>
<th>TENSION ROTURA MEDIA kPa/cm²</th>
<th>DESVIAC. TÍPICA</th>
<th>DESVIAC. ESTANDAR</th>
<th>COEFIC. VARIACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bremen S.A.</td>
<td>Disolvente</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>182,7</td>
<td>6,93</td>
<td>8,49</td>
<td>4,8</td>
</tr>
<tr>
<td>Bremen S.A.</td>
<td>Lij.+Disol.</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>213,4</td>
<td>3,22</td>
<td>3,94</td>
<td>1,8</td>
</tr>
<tr>
<td>Nisco S.A.</td>
<td>Disolvente</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>179,3</td>
<td>17,3</td>
<td>21,2</td>
<td>11,8</td>
</tr>
<tr>
<td>Nisco S.A.</td>
<td>Lij.+Disol.</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>181,8</td>
<td>8,1</td>
<td>9,9</td>
<td>5,4</td>
</tr>
<tr>
<td>Polymeec S.A.</td>
<td>Disolvente</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>158,0</td>
<td>13,3</td>
<td>16,3</td>
<td>10</td>
</tr>
<tr>
<td>Polymeec S.A.</td>
<td>Lij.+Disol.</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>172,0</td>
<td>7,38</td>
<td>9,04</td>
<td>5,2</td>
</tr>
</tbody>
</table>

Cuadro 5.2

Se han realizado para un sólo tipo de formulación, Sikadur 42 anclajes, y para barras de diámetro de 10 mm. de cada uno de los fabricantes.

La longitud de anclaje fue de 20 mm. en todos los casos. Y el ensayo se realizó
según lo descrito en el apartado 5.1.2.2.

Conclusiones.

- Diferencias entre productos de diferentes fabricantes:

Todas las barras ensayadas son del mismo diámetro, 10 mm., y fabricadas con resina de poliéster y fibra de vidrio en hilos paralelos, con porcentajes en peso de esta última, que varían ligeramente según el fabricante: 70% en Bremen, 65% en Nioco y entre 50 - 70% para Polymec.

Las tensiones medias de rotura de cada fabricante no difieren en más de un 10% del valor medio de las tres. Esto se cumple para ambos tipos de tratamiento.

Esto indica que las diferencias son pequeñas, para un mismo tipo de producto.

- Influencia del tratamiento de preparación de la superficie:

En el cuadro 5.3 se muestran los resultados para cada producto con los dos tipos de tratamiento. Y se dan los porcentajes de variación de los mismos:

<table>
<thead>
<tr>
<th>FABRICANTE</th>
<th>TRATAMIENTO</th>
<th>TEN. ROTURA</th>
<th>% VARIA.</th>
<th>COEF. VAR.</th>
<th>RELAC. COEFS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREMEN SA</td>
<td>Disolvente</td>
<td>182,7</td>
<td>+ 17</td>
<td>4,6</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>Lij. + disol</td>
<td>213,4</td>
<td></td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>NIICO SA</td>
<td>Disolvente</td>
<td>179,3</td>
<td>+ 1,3</td>
<td>11,8</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>Lij. + disol</td>
<td>181,6</td>
<td></td>
<td>5,4</td>
<td></td>
</tr>
<tr>
<td>POLYMEC SA</td>
<td>Disolvente</td>
<td>158,0</td>
<td>+ 9</td>
<td>10</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>Lij. + disol</td>
<td>172,0</td>
<td></td>
<td>5,2</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 5.3.- Influencia del tratamiento de la superficie en las tensiones medias de rotura, en kP/cm², de adherencia entre barras y formulación 5. 42 y en los coeficientes de variación.
Se deduce que el tratamiento de la superficie con un lijado previo y una limpieza con disolvente supone un aumento de la adherencia tangencial. Este incremento es en algunos productos de una magnitud significativa, un 17%, y en otros no presenta influencia apenas 1,3%.

Sin embargo si se constata una disminución de la dispersión de los resultados de cada ensayo. El coeficiente de variación se reduce en todos los casos aproximadamente a la mitad.

Una observación de la superficie de rotura por deslizamiento mostró como el fallo se produce, en parte, por la interfase de unión formulación - barra y en parte, por arranque de fibras de vidrio de la barra. Este despegue de fibras era mayor cuando el tratamiento incluía el lijado.

5.3. CONCLUSIONES GENERALES

- La adherencia entre una formulación epoxi y un material compuesto (en nuestro caso de resina de poliéster y fibra de vidrio), precisa que exista una compatibilidad entre ambos productos. En los materiales ensayados esta compatibilidad se daba, pero podría no ocurrir así con otros materiales compuestos, debido a la propia resina, o a la existencia de recubrimientos superficiales no compatibles.

- Tratamiento superficial:

La limpieza con un disolvente, es recomendable en todos los casos, para eliminar de la superficie posibles restos de polvo, manchas de grasas etc.

El lijado de la superficie del material compuesto, completado con la limpieza y lavado con disolventes dará lugar a un efecto positivo o negativo dependiendo del tipo de material y de formulación.

En materiales fabricados con resina de poliéster y fibra de vidrio en hilos paralelos, como es el caso de las barras de sección circular maciza ensayadas,
produce un efecto positivo incrementando las tensiones de adherencia, en las tres formulaciones.

Sin embargo en las placas fabricadas con fibra de vidrio en matriz, solamente resultó positivo para la formulación S. 52 y en las otras formulaciones ensayadas, las tensiones adherencia disminuían ligeramente.

Esto último puede explicarse por la diferente cohesión que presenta el tejido de vidrio en el interior de la placa comparado con la zona superficial, donde hay una mayor proporción de resina. En estos casos el lijado hace desaparecer parcialmente la zona superficial, de tal manera, que en la rotura estas zonas tendrán menor resistencia. Excepto cuando la formulación es muy poco viscosa como el S. 52 y puede penetrar con facilidad entre las fibras.

Una adecuada solución para incrementar la adherencia cuando se trate de las formulaciones pastosas y materiales de refuerzo que han sido lijadas en la superficie y presentan características como las comentadas anteriormente, es la imprimación con la formulación más fluida previa a la aplicación de la otra.

- Rugosidad de la superficie:

Las tensiones de rotura en la adherencia tangencial entre barras (con fibra de vidrio en hilos paralelos) y formulación alcanza valores muy próximos a los de rotura por esfuerzo cortante de la propia formulación.

Estos valores son muy superiores a la tensión admisible de la madera a esfuerzo cortante. Por este motivo no parece preciso que la superficie del elemento de refuerzo tenga resaltos para aumentar así la adherencia mecánica. Incluso en alguna formulación de consistencia pastosa la misma rugosidad de la superficie puede impedir un contacto completo.

No obstante, en formulaciones poco viscosas puede suponer una influencia positiva en la adherencia. Y en todo caso si aseguramos que la formulación va a rellenar todos los huecos, el anclaje mecánico queda incrementado.
CAPÍTULO VI

6. ESTUDIO DEL COMPORTAMIENTO DE LOS TRES MATERIALES EN CONJUNTO, EN SIMULACIÓN DE APLICACIONES.

En este capítulo se trata de los ensayos realizados sobre pequeñas vigas que simulan consolidaciones de discontinuidades de las piezas.

Se ha estudiado la instalación de placas como refuerzo de la zona central de una viga, colocada en el interior y en el exterior (adosadas); y el refuerzo de un apoyo de la viga con placas interiores.

Además se elaboraron unas probetas de vigas consolidadas en el centro de la luz , utilizando como elementos de refuerzo barras de sección rectangular alojadas en acanaladuras realizadas en la superficie.

Y finalmente se analiza de manera comparada el comportamiento de vigas de pequeñas dimensiones completas, es decir "sanas" sin discontinuidades previas, ensayadas hasta rotura. Para después proceder a su consolidación y repetir de nuevo el ensayo.

6.1. METODOLOGIA DE ENSAYO: NORMA APLICADA

Para la realización de estos ensayos se han seguido las recomendaciones de la norma ASTM : D 198 "Método de ensayos estáticos de madera en tamaño estructural".

En concreto se ha utilizado lo indicado para el ensayo de flexión, ya que este fué el tipo de ensayo empleado.
Dicho método se aplica para la determinación de las propiedades mecánicas de flexión de vigas estructurales construidas con madera maciza o laminada, ó construcciones mixtas.

La velocidad de carga debe ser tal, que se alcance la carga máxima de rotura en aproximadamente 10 minutos, pero además esta carga no debe alcanzarse en un tiempo inferior a 6 minutos ni superior a 20 minutos.

En cuanto a la disposición de carga sobre la pieza se adoptaron dos procedimientos:

En aquellas piezas en las que el refuerzo se sitúa en la parte central, la carga era aplicada en los tercios de la luz. Consiguiendo de este modo que la placa se encuentre en una zona donde sólo existe flexión (figura 6.1 a)

Y en las piezas donde el elemento de refuerzo se sitúa en uno de los extremos, como extensión del apoyo, la carga es aplicada en el centro del vano de la pieza. De esta forma, y dada la pequeña longitud de la viga, la placa queda dentro de la zona con un cortante elevado y un momento reducido (figura 6.1 b)

Figura 6.1
Los elementos de refuerzo que se introducen en las vigas, son de longitudes variables, para estudiar la relación que tiene con la resistencia del conjunto consolidado.

De cada ensayo se obtienen además de la carga de rotura y las observaciones efectuadas del modo de rotura, las gráficas de deformación. La lectura de esta deformación se realiza en los puntos de la pieza donde se encuentran aplicadas las cargas.

6.2 ENSAYO DE VIGAS UNIDAS EN EL CENTRO DE LA LUZ, CON PLACAS INTERNAS.

En el apéndice nº 71 "Ensayos de vigas consolidadas a pequeña escala", se recogen los datos y resultados concretos de los ensayos.

6.2.1.- Objetivos

La finalidad de estos ensayos es simular un procedimiento de consolidación de una pieza de madera, instalando una placa de refuerzo en un cajado interior. Esto podría tener una aplicación práctica en la reparación de vigas o pares que han llegado a la rotura de una sección lejana de los apoyos, a veces por exceso de cargas muertas y por la influencia negativa de nudos de gran tamaño.

Para ello se estudia el comportamiento que tiene el conjunto de la pieza consolidada, en resistencia y deformación. Además se considera como factor variable la longitud de anclaje de la placa de refuerzo en la madera.

Esto permitirá obtener datos de confrontación con modelos teóricos que sirvan de método de cálculo.

6.2.2.-Metodología

Se han cortado piezas de madera de pino inesigne de una sección aproximada de
67 x 100 mm. y una longitud de 105 cm.

Después con la ayuda de una escopleadora se realiza el cajeado en el centro de la anchura de la sección y en la parte central de la pieza (ver figura n° 6.2). La profundidad de éste es igual a la altura de la sección menos 1 cm. Este valor es generalmente recomendado como mínimo, para contar con una protección frente al fuego. (En la práctica puede ser superior).

La anchura del cajeado es de 21 mm., de tal manera, que empleando placas con espesor de 15 mm. contemos con 3 mm. de holgura a cada lado para verter la formulación.

La longitud de la caja es ligeramente superior a la longitud de la placa; 1,5 cm en cada extremo. Esto se debe a que la escopleadora deja un perfil curvo en las esquinas del fondo, y para alojar la placa en el fondo se precisa un pequeño desfase.
El siguiente paso es cortar transversalmente la pieza por su centro, obteniendo dos partes iguales. Se limpia el interior del cajeado de los restos de viruta que puedan quedar.

Luego se extiende un cordón de plastilina en las testas rodeando el perímetro del cajeado, para evitar que la formulación que después se vierte en el interior, pueda filtrarse en la junta (figura 6.3)

![Sellado de las juntas de las testas.](image)

Figura 6.3

Se vuelven a juntar las dos partes de la misma pieza, afianzándolas con mordazas y guías para mantenerlas totalmente alineadas. Se juntan ambas piezas ayudándolas mediante unos golpes suaves en las testas, para que la junta sea lo más estrecha posible y el cordón de sellado quede completamente aplastado. (figura 6.4)

La formulación empleada en estas probetas fue Sikadur 42 anclajes, con la dosificación en la que viene ya preparada por el fabricante.

Se vierte en el cajeado una parte de la formulación, que llene aproximadamente una tercera parte de la profundidad. Después se introduce la placa hasta que llega al fondo de la caja. La formulación fluyrá a través de las holguras entre madera y placa. Y terminamos rellenando con formulación hasta enrasar la cara superior. (figura 6.4)
Figura 6.4.- Proceso de colocación de las placas

Las dimensiones de la placa son de 15 mm, de espesor y una altura de 80 mm, quedando colocada en posición simétrica respecto a los ejes de la sección.

Las placas instaladas están fabricadas con resina de poliéster y fibra de vidrio en
mat. Previamente se han limpiado sus superficies con un disolvente.

Los medios para evitar un movimiento entre las dos partes de la pieza, indicadas esquemáticamente en el primer dibujo de la figura 6.4, deben mantenerse durante todo el proceso, hasta el fraguado de la formulación. Igualmente se evitó el someter a vibraciones a las probetas durante el proceso de fraguado.

Al cabo de siete días se sometían a ensayo con una luz entre apoyos de 90 cm y cargando en los puntos tercios de la luz. Según los datos reflejados en los estadillos del anexo (figura 6.5).

![Diagrama de ensayo](image)

Figura 6.5

En un principio se realizaron tres ensayos con tres longitudes de anclaje de la placa muy diferentes, para conocer el campo de variación en el que nos movíamos. Con los resultados de estos se proyectaron los siguientes ensayos, en series de 10 probetas.

6.2.3.- Resultados.

La rotura puede producirse por los tres factores siguientes:

- Rotura por flexión de la placa de refuerzo. Este caso se dá cuando la longitud
de anclaje es suficiente para que el fallo se produzca antes por la placa que por la adherencia. (figura 6.6a).

- Rotura por flexión o cortante de la propia madera en zonas no implicadas por el refuerzo. Este fallo, no deseado en los ensayos, se da cuando la propia madera rompe fuera de la zona de la placa. Como ejemplo tenemos la probeta nº 6 del estadillo. (figura 6.6 b).

- Y finalmente se encuentra el fallo de la pieza consolidada por rotura por esfuerzo cortante de la madera en la zona de la placa. Este fallo se origina como consecuencia de las tensiones originadas en el anclaje de la placa a la madera. (figura 6.6 c).

En esta última forma de rotura es la que se ha intentado provocar, eligiendo determinado campo de variación de la longitud de anclaje de la placa. Precisamente para poder estudiar este fenómeno.

![Deseriptión de la forma de rotura por fallo en la zona de anclaje.](image)

Describimos a continuación el proceso seguido por la pieza durante el ensayo, hasta
llegar a la rotura, a partir de las observaciones efectuadas durante el mismo.

La deformación.

La deformación de la viga con respecto a la carga, sigue una línea de apariencia muy similar a la de una pieza entera de madera. Es una recta en la mayor parte de su recorrido y al final tiene una ligera curvatura en aquellas que alcanzan cargas elevadas. Esto puede comprobarse en los estadillos del anexo.

A lo largo del ensayo y en aquellas probetas con placas de longitud de anclaje grande, lo que implica cargas máximas mayores, se observa que se produce un giro de las secciones coincidentes con las testas, en la junta de ambas. (figura 6.7).

![Figura 6.7 - Giro en la junta](image)

En la figura anterior se representa de manera exagerada este giro, que llega a permitir en contacto de las dos partes en el borde superior.

Si comparamos la deformación resultante de cada ensayo obtenida por la lectura, con la deformación que teóricamente tendría la pieza completa, podremos establecer la influencia de la deformación debida al giro que se da en la placa y en su unión a la madera.

El módulo de elasticidad que correspondería teóricamente a la pieza entera, viene
dado por la siguiente expresión:

\[E = \frac{5 \cdot P \cdot l^3}{324 \cdot I \cdot f_A} \]

siendo:

- \(P \) = carga total \((P/2 + P/2)\) para el límite elástico.
- \(l \) = luz de la viga entre apoyos.
- \(f_A \) = flecha en el punto A, en el límite elástico.
- \(I \) = momento de inercia de la sección \(= \frac{b \cdot d^3}{12} \)

Aplicando esta fórmula a cada probeta obtenemos aproximadamente el módulo de elasticidad aparente de la pieza. Debido a que la medición de las deformaciones se realiza en la gráfica dibujada por la máquina de ensayos e incluye la deformación por aplastamiento en los apoyos, debemos corregir estos valores por un coeficiente que fue determinado por ensayos en el apartado 3.3.2, y que vale 1,36. (cuadro 6.1).

El módulo de elasticidad a flexión del pino insignis deducido de los ensayos del apartado 3.3.2, es de 82.000 Kp/cm². Los ensayos fueron realizados en las mismas condiciones que las que ahora tratamos. De la relación entre el módulo aparente de comportamiento y el de la pieza entera, podemos obtener el porcentaje de aumento de la deformación que viene inducida por la deformabilidad de la unión en la consolidación. (cuadro 6.2)

Llamando a:

\(E_a \) = módulo de elasticidad "aparente" de la pieza consolidada.
<table>
<thead>
<tr>
<th>PROBETA Nº</th>
<th>LONGITUD DE ANCLAJE cm.</th>
<th>MODULO DE ELASTICIDAD Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>$38.954 \times 1,36 = 52.977$</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>$40.698 \times 1,36 = 55.349$</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>$50.601 \times 1,36 = 68.817$</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>$40.298 \times 1,36 = 54.805$</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>$40.427 \times 1,36 = 54.980$</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>$41.692 \times 1,36 = 56.701$</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>$38.714 \times 1,36 = 52.651$</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>$55.840 \times 1,36 = 75.942$</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>$72.312 \times 1,36 = 98.344$</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>$58.153 \times 1,36 = 79.088$</td>
</tr>
</tbody>
</table>

Cuadro 6.1

<table>
<thead>
<tr>
<th>PROBETA Nº</th>
<th>LONGITUD DE ANCLAJE La cm</th>
<th>DEFORMACION INCREMENTADA R %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>-17</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Cuadro 6.2
E = módulo de elasticidad de la pieza entera (82.000 Kp/cm²). Según ensayos del apartado 3.3.2

R = porcentaje en el que se incrementa la deformación de la pieza con respecto a la que tendría, si fuera una pieza entera sin consolida-
ción.

\[
R = \frac{E - E_a}{E_a} \times 100
\]

Así, por ejemplo, si una viga tiene un valor de R = 35 %, quiere decir que tiene una deformación de un 35 % superior a la que tendría la pieza en condiciones normales.

Se observa una relación, de tal forma, que a mayor longitud de anclaje de la pla-
ca, menor es la influencia de la deformación debida a la consolidación en el total de la misma. Este fenómeno es lógico, dado que si es mayor la superficie de adher-
encia entre placa y madera, el nivel de tensiones será menor y por tanto, se redu-
ce el desplazamiento relativo.

Como vemos a partir de un anclaje de 17 cm, el incremento de deformación es muy pequeño ó incluso, como en la probeta 9, puede producir el efecto contrario de rigidizar la pieza.

Si hacemos un análisis de regresión lineal entre la serie de valores de la longitud de anclaje (La) y la deformación inducida (R), resulta la siguiente expresión:

\[
y = A + B \cdot x
\]

siendo:
A = 74,846
B = -3,943
\(r = -0,6814\) (coeficiente de correlación)

\[
R = 74,84 - 3,94 \cdot La
\]
La representación gráfica de esta ecuación, así como los puntos a partir de los que se ha obtenido, se da en la figura nº 6.8

Figura 6.8. - Relación entre la longitud de anclaje de la placa en la madera y el incremento de la deformación. Regresión lineal.

Relación entre la longitud de anclaje y la carga de rotura.

Se realizaron diez probetas agrupadas en parejas con longitudes de la placa iguales. Las dimensiones de la sección de madera se toma de 6,7 cm x 10 cm. Aunque en el ancho hay ligeras diferencias, para este estudio se desprecian quedando unificadas.

El canto de la placa h, es en todos los casos de 8 cm., 1 cm. menos a cada extremo que la sección de la madera. En las probetas nº 6 y nº 10, la rotura se produjo por fallo en flexión de la madera y por fallo en flexión de la placa de refuerzo, respectiva-
mente. Aunque el fallo no viene dado por el anclaje del refuerzo, si contaremos con sus valores al hacer el estudio de la relación entre anclaje y resistencia. Considerando que estos valores fueron superiores a los que se dieron en su pareja y que al menos el momento flector correspondiente es resistido por el anclaje, en todo caso quedan del lado de la seguridad.

Así tenemos los siguientes valores de la carga de rotura para cada probeta. (Cuadro 6.3)

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD</th>
<th>CARGA DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>DE ANCLAJE</td>
<td>ROTURA</td>
</tr>
<tr>
<td>L_a cm</td>
<td>P Kp</td>
<td></td>
</tr>
<tr>
<td>1 5</td>
<td>1.740</td>
<td></td>
</tr>
<tr>
<td>2 5</td>
<td>1.435</td>
<td></td>
</tr>
<tr>
<td>3 8</td>
<td>2.680</td>
<td></td>
</tr>
<tr>
<td>4 8</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>5 11</td>
<td>2.240</td>
<td></td>
</tr>
<tr>
<td>6 11</td>
<td>2.690</td>
<td></td>
</tr>
<tr>
<td>7 14</td>
<td>2.690</td>
<td></td>
</tr>
<tr>
<td>8 14</td>
<td>2.730</td>
<td></td>
</tr>
<tr>
<td>9 17</td>
<td>3.230</td>
<td></td>
</tr>
<tr>
<td>10 17</td>
<td>3.360</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 6.3

Realizando un análisis de regresión de potencia de los valores de \(L_a \) y \(P \), obtenemos la siguiente expresión:

\[Y = A \cdot X^B \]

siendo:

\[A = 681.92 \]

\[B = 0.5448 \]

\[r = 0.9150 \quad \text{(Coeficiente de correlación)} \]

\[P = 682 \cdot L_a^{0.54} \]
La relación así obtenida, con un elevado coeficiente de correlación, ofrece unos resultados coherentes. De tal forma, que cuando la longitud de anclaje es nula, la carga resistida es también nula. La representación gráfica de esta ecuación viene dada en la figura 6.9.

Figura 6.9.- Relación entre la longitud de anclaje de la placa en la madera, y la carga de rotura, para consolidación con placa interior. Regresión de potencia.

Modelo tipo de rotura por la zona de anclajes.

Se inicia de una manera relativamente brusca, ya que previamente se originan unas ligeras roturas parciales internas acompañadas del crujir característico de la estructura fibrosa de la madera.
El fallo sobreviene cuando se forma una grieta horizontal en una de las zonas de anclaje, y después aumentando la deformación, se produce la rotura del resto de la sección por flexión. figura 6.10.

Figura 6.10.- Secuencia de la rotura de una viga con una discontinuidad en el centro de su luz.

La forma de la rotura parece indicar que ésta se produce por una tensión de esfuerzo cortante en la madera en dirección paralela a la fibra. Podríamos llamarlo esfuerzo rasante.

La separación de las dos piezas ocurre por la parte inferior, lo que es lógico, ya que la superior está comprimiendo el extremo de la placa contra la madera, y la inferior se tracciona y queda liberada.
6.3 ENSAYO DE VIGAS UNIDAS EN EL CENTRO DE LA LUZ, CON PLACAS EXTERNAS.

En el apéndice n° 7.2 "Ensayo de vigas consolidadas, a pequeña escala", se reconocen los datos y resultados concretos de los ensayos.

6.3.1.- Objetivos.

Estos ensayos son de características parecidas a los anteriormente descritos, con la diferencia de que las placas de refuerzo se adosan en la superficie de la madera sin realizar el cajeados interior.

Tiene por objeto estudiar el comportamiento mecánico de esta posibilidad, simulando una consolidación de una sección que presenta una ristra. Igualmente se considera como factor variable la longitud de anclaje de la placa en la madera. Esto permitirá obtener datos para realizar una confrontación con modelos teóricos que sirvan de procedimiento de cálculo.

6.3.2.- Metodología.

Se parte de piezas de madera de pino insigne con una sección aproximada de 67 x 95 mm. y una longitud de 105 cm. Después se cepillan las dos caras de la pieza para obtener unas superficies planas y limpias de polvo o suciedad. De esta forma la superficie que va a recibir la formulación no tiene las irregularidades que presenta la pieza por su acabado de corte de sierra. (ver figura 6.11).

Con esta última operación, la anchura de la sección queda reducida a unos 62 mm. Se corta la pieza transversalmente por la mitad de su longitud, obteniendo dos partes iguales.

El siguiente paso es unir de nuevo las dos partes de la pieza dispuestas en la misma
posición que tenían antes de cortarlas. Se afianzan e inmovilizan mediante sargentos, cuidando que mantengan la alineación original.

Figura 6.11.- Preparación de las probetas, para ensayo de vigas unidas con placas adosadas.

A la vez que vamos fijándolas se adosan las placas de refuerzo. En cada pieza se coloca una placa a cada lado. Previamente se ha aplicado sobre una de las caras de la placa la formulación epoxi; en este caso Sikadur 31 adhesivo, ya que posee una consistencia pastosa parecida a la del yeso, y es fácil su aplicación sin que descuelgue.

Las placas de refuerzo tienen unas dimensiones de la sección transversal de 13 mm. de espesor y 95 mm. de altura. La altura coincide con el canto de la viga de madera. La longitud es variable: 80, 120, 160, 200 y 240 mm. en total, siendo la longitud de anclaje en la madera en cada mitad de la pieza igual a la mitad de los valores citados.
Están fabricadas con resina de poliéster y fibra de vidrio en tejido tipo "mat". El tratamiento de la superficie antes de aplicar la formulación consistió en una limpieza con disolvente.

Con las placas de refuerzo ya adosadas a cada lado de la viga, dispuestas simétricamente respecto al centro de la luz, se ejerce una presión lateral hasta que la formulación rebase por los bordes. Después de esta operación el espesor de la junta de formulación queda reducido a un valor comprendido entre 1 y 3 mm. (figura 6.12)

Figura 6.12.- Proceso de instalación de las placas adosadas en la probeta.
El conjunto de las diez probetas así preparadas se mantenía inmovilizado durante el fraguado. Y al cabo de siete días se sometían a ensayo con una luz entre apoyos de 90 cm., aplicando la carga en los puntos tercios de la luz. Siguiendo las especificaciones de la norma citada en 6.1

6.3.3.- Resultados.

El fallo de la pieza compuesta puede producirse principalmente por los tres factores siguientes:

- Rota por flexión de las placas de refuerzo. Para que se pueda dar este caso deberá existir una longitud de anclaje en la madera suficientemente elevada, como para alejar el fallo por el anclaje. Además la carga última de rotura de la sección de madera está por debajo de la rotura de las placas.

En todo caso este tipo de rotura no se produjo en ninguno de los ensayos, ya que por otra parte las longitudes de anclaje eran pequeñas precisamente para provocar la rotura por esta causa.

- Rota por flexión o cortante de la propia madera en zonas no implicadas por el refuerzo. Es una rotura no deseada provocada por defectos de la probeta. No se dió ningún caso.

- Rota por esfuerzos rasantes en la madera o por fallo en la adherencia entre madera - formulación - placa-formulación.

Este es el caso que se ha dado en todas las probetas. Si observamos los estadillos del anexo nº 7.2 (Ensayo de vigas a pequeña escala), veremos que sólo tres de las probetas tienen una rotura por cortadura de la madera exclusivamente. El resto presenta un fallo combinado de cortadura de la madera y fallo de la interfase de unión entre la formulación y la placa de refuerzo.
Descripción de la forma de rotura por fallo en la zona de anclaje.

Describimos a continuación el proceso seguido por la pieza durante el ensayo, hasta llegar a la rotura. Para ello nos apoyamos en las observaciones efectuadas durante el mismo.

La deformación.

Las gráficas de deformación muestran un comportamiento bastante lineal, similar al de una pieza entera de madera.

Comparando la deformación real del ensayo obtenida de la lectura de la gráfica, con la deformación teórica que tendría la pieza entera, determinaremos la influencia que puede tener la propia deformación de la conexión entre madera y placas.

El módulo de elasticidad que corresponde a una pieza biapoyada con las condiciones de carga del ensayo, viene dado por la siguiente expresión:

\[
E = \frac{5 \cdot P \cdot I^3}{324 \cdot I \cdot f_A}
\]

Siendo:

\[P = \text{carga total (P/2 + P/2) en el límite elástico.}\]
\[I = \text{luz de la viga entre apoyos.}\]
\[f_A = \text{flecha en el punto A, en el límite elástico.}\]
\[I = \text{momento de inercia de la sección } = \frac{b \cdot d^3}{12}\]
Aplicando ésta fórmula a cada probeta obtenemos aproximadamente el módulo de elasticidad aparente de la pieza. Debido a que la medición de las deformaciones se realiza en la gráfica dibujada por la máquina de ensayos e incluye la deformación por aplastamiento en los apoyos, debemos corregir los valores obtenidos con un coeficiente, que fue determinado por ensayos en el apartado 3.3.2, cuyo valor es de 1,36 (cuadro 6.4).

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD DE ANCLAJE</th>
<th>MODULO DE ELASTICIDAD APARENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 1</td>
<td>4 cm</td>
<td>56.584 x 1,36 = 76.954</td>
</tr>
<tr>
<td>Nº 2</td>
<td>4 cm</td>
<td>50.765 x 1,36 = 69.040</td>
</tr>
<tr>
<td>Nº 3</td>
<td>6 cm</td>
<td>81.397 x 1,36 = 110.700</td>
</tr>
<tr>
<td>Nº 4</td>
<td>6 cm</td>
<td>50.400 x 1,36 = 68.544</td>
</tr>
<tr>
<td>Nº 5</td>
<td>8 cm</td>
<td>67.635 x 1,36 = 91.983</td>
</tr>
<tr>
<td>Nº 6</td>
<td>8 cm</td>
<td>67.648 x 1,36 = 92.001</td>
</tr>
<tr>
<td>Nº 7</td>
<td>10 cm</td>
<td>63.885 x 1,36 = 86.883</td>
</tr>
<tr>
<td>Nº 8</td>
<td>10 cm</td>
<td>58.821 x 1,36 = 79.996</td>
</tr>
<tr>
<td>Nº 9</td>
<td>12 cm</td>
<td>75.622 x 1,36 = 102.845</td>
</tr>
<tr>
<td>Nº 10</td>
<td>12 cm</td>
<td>72.714 x 1,36 = 98.891</td>
</tr>
</tbody>
</table>

Cuadro 6.4

El módulo de elasticidad en flexión del pino insignis, deducido de los ensayos comentados en el apartado 3.3.2, es de 82.000 Kp/cm². Los ensayos citados fueron realizados en las mismas condiciones de carga y dimensiones que las que ahora tratamos. Análogamente al caso precedente, de la relación entre el módulo aparente de comportamiento y el de la pieza entera, podemos obtener el porcentaje de aumento de la deformación que viene provocada por la propia deformabilidad de la unión en la consolidación. (cuadro 6.5)

Llamada a:
\[E_a = \text{módulo de elasticidad "aparente" de la pieza consolidada.} \]

\[E = \text{módulo de elasticidad de la pieza entera. (82.000 Kp/cm}^2). \text{Según ensayos del apartado 3.3.2.} \]

\[R = \text{porcentaje en el que se incrementa la deformación de la pieza consolidada con éste procedimiento, con respecto a la que tendría si la pieza fuera entera.} \]

\[R = \frac{E - E_a}{E_a} \times 100 \]

Así, por ejemplo, si una probeta resulta tener un valor de \(R = 15 \% \), quiere decir que tiene una deformación de 1,15 veces superior a la que tendría como pieza entera.

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD DE ANCLAJE</th>
<th>DEFORMACIÓN INCREMENTADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>(L_a) cm</td>
<td>R %</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6,5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>18,7</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-26</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>-10,8</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>-10,8</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>-5,6</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>2,5</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>-20</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>-17</td>
</tr>
</tbody>
</table>

Cuadro 6.5

Si hacemos un análisis de regresión lineal entre la serie de valores de la longitud de anclaje \((L_a)\) y la deformación inducida \((R)\), resulta la siguiente expresión:
$Y = A + B \cdot x$

siendo:

$A = 19.75$

$B = -3.012$

$r = -0.5745$ (Coeficiente de correlación)

$R = 19.75 - 3.012 \cdot L_a$

La representación gráfica de esta recta, así como de los puntos a partir de los que se ha obtenido, se puede ver en la figura siguiente. (figura 6.13)

Figura 6.13.- Relación entre la longitud de anclaje de la placa en la madera y el incremento de la deformación. Regresión lineal.

Se deduce, al igual que en los ensayos precedentes, que cuanto mayor es la longitud de anclaje, menor es la influencia de la deformación causada por el sistema de consolidación.
En la gráfica vemos como a partir de longitudes superiores a los 6,5 cm, según la recta de regresión, el efecto producido es el contrario. Es decir, se rigidiza la pieza, resultando deformaciones inferiores a las que tendría en condiciones normales.

Los valores aquí deducidos para el caso de placas adosadas en el exterior, resultan menores a los obtenidos en el caso de colocar la placa en el interior, del apartado anterior. En ambos casos hay dos caras de la placa que se encuentran conectadas a la madera: en el presente una cara de cada placa, y en el anterior las dos caras de la misma placa.

Sin embargo, existen dos diferencias principales que pueden justificar esta diferencia de comportamiento. Por un lado las placas adosadas al exterior tienen un canto igual al de la pieza de madera, mientras que las placas internas al canto es de 2 cm. inferior al de la pieza. Y por otro lado, en el caso actual, son dos placas de un espesor de 13 mm. adosadas a las caras de la pieza, y en el otro se trata únicamente de una placa con espesor de 15 mm.

Estos son los motivos que conducen a una rigidez superior del conjunto en el caso que ahora tratamos.

Relación entre la longitud de anclaje y la carga de rotura.

La serie de probetas ensayada se subdividía en parejas con longitudes de anclaje de las placas iguales. En los cálculos siguientes, se admite como dimensiones de la sección de madera para todos los casos de 6,2 x 9,5 cm. Y para la sección transversal de la placa 1,3 x 9,5 cm.

De los estadillos de ensayo obtenemos la siguiente relación de valores de las cargas de rotoras y sus correspondientes longitudes de anclaje. (Cuadro 6.6)
<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD</th>
<th>CARGA DE ROTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>La cm</td>
<td>P Kp</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1.100</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1.180</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.830</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.680</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>1.870</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2.320</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>1.770</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>2.850</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>3.350</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>2.660</td>
</tr>
</tbody>
</table>

Cuadro 6.6

Si realizamos un análisis de regresión de potencia de las parejas de valores de La y P, obtenemos la siguiente expresión:

\[Y = A \cdot X^B \]

Siendo:

\[A = 385,44 \]
\[B = 0,8059 \]
\[r = 0,9098 \]

\[P = 385 \cdot La^{0,8} \]

La relación obtenida tiene un elevado coeficiente de correlación, y ofrece unos resultados coherentes. Así cuando la longitud de anclaje tiende a cero, la carga también. En la figura siguiente se representa gráficamente esta
relación. (figura 6.14).

Figura 6.14.- Relación entre la longitud de anclaje de la placa en la madera y la carga de rotura, para consolidación con placas adosadas. Regresión de potencia.
Módelo de tipo de rotura del ensayo.

La rotura se produce de manera brusca. Aunque como es característico en la madera viene precedida de unos crujidos que indican fallos de fibras, de carácter parcial. A veces estos quedan registrados en la gráfica de deformación.

Como hemos comentado anteriormente la rotura se produce con el fallo de un anclaje de una de las placas. Esto implica el inmediato fallo de la otra.

Al separarse la placa de la madera, se observa que el fallo nunca se produce en la interfase madera-formulación. Siempre se dá la rotura por cortante de la madera, y en muchos casos viene acompañada por fallos en la interfase entre formulación y placa de refuerzo.

En los ensayos comentados en el capítulo 5, vimos que la adherencia tangencial entre el Sikadur 31 adhesivo y las placas tipo "Vipol", implicaba para el tratamiento superficial de limpieza con disolventes unos elevados porcentajes de fibras arrancadas. (Alrededor del 80 %). Sin embargo en los ensayos que ahora tratamos no ocurre así. La explicación puede deberse a que al encontrarse la placa únicamente adosada, puede con la menor desviación del esfuerzo, intentar desplazarse en sentido perpendicular a su plano. Con lo cual, se originan tensiones de adherencia por tracción.

Este fenómeno no ocurre cuando la placa es interna. En este caso el refuerzo se encuentra confinado y ésto puede explicar el mejor resultado que ofrece mecánicamente frente a las placas adosadas.

En la figura n° 6.15 se muestra el aspecto de la rotura de una pieza.
Figura 6.15.- Aspecto de la rotura de una viga con placas adosadas.

6.4. ENSAYO DE VIGAS DE PEQUEÑA LUZ CON PLACAS DE REFUERZO EN UN APOYO.

En el apéndice n° 7.3 "Ensayos de vigas consolidadas a pequeña escala", se reco- gen los datos y resultados concretos de estos ensayos. Se incluyen además del esta- dillo con las características geométricas y mecánicas, las gráficas de deformación- carga y una descripción gráfica de cada rotura.

6.4.1.- Objetivos.

La finalidad de esta serie de ensayos es reproducir una posible aplicación para la
consolidación de un apoyo de una viga, a una escala reducida.

Según esto podríamos recuperar mecánicamente una cabeza de una viga que hubiera sufrido una degradación por ataques xilófagos, en su encuentro con el muro. Para ello se instalarían una o varias placas en cajeados realizados en la parte sana de la pieza embebidas en formulación transmitiendo así las cargas al apoyo.

Como en los casos anteriormente descritos, se estudia el comportamiento del conjunto de la pieza consolidada en cuanto a su resistencia, deformación y modo de rotura. La longitud de anclaje de la placa en la madera se toma como una variable, para intentar cuantificar su relación con la resistencia.

Dadas las proporciones de la viga, el esfuerzo que adquiere mayor importancia es el cortante, aunque incluye en menor cuantía la flexión. Simulando así las condiciones habituales de los apoyos de vigas. De esta forma se obtienen datos para establecer una comparación con modelos teóricos de cálculo.

6.4.2. Metodología.

Se cortaron diez piezas de madera de pino insigne con una sección de 65 x 97 mm, y una longitud de 420 mm.

Después se realizaron los cajeados en uno de los extremos de la pieza, con la ayuda de una escopleadora. (ver figura 6.16). La profundidad de éste es igual a la altura de la sección menos un centímetro.

La anchura de la caja es de 21 mm., de tal forma, que utilizando como refuerzo placas de espesor de 15 mm. quedarán 3 mm. de holgura a cada lado para verter la formulación.

La longitud de la caja es variable según la longitud de anclaje de la placa, y
1,5 cm. mayor que ésta.

La razón de este desfase es permitir alejar la placa en el fondo de la caja soslayando de este modo, el perfil curvo que deja la cadena de la escopleadora.

Figura 6.16.- Ejecución de las probetas. Cotas en mm.

Previamente a la ejecución de los cajeados se eligieron para aquellas piezas en que la longitud de anclaje era mayor y por tanto, mayor será la carga resistida, la madera de mejor calidad estructural en la zona central y en la del cajeado. De esta forma nos alejamos del riesgo de que la rotura se produjera por un fallo no deseado, como puede ser la flexión en el centro del vano.

Las placas que constituyen el refuerzo son de tipo "Vipol" y están fabricadas con resina de poliéster y fibra de vidrio en "mat". El tratamiento de preparación de la superficie consistió en una limpieza con disolvente.

Las dimensiones de la sección transversal son de 15 x 75 mm., quedando situada en posición simétrica respecto a los ejes de la sección.
El siguiente paso en la elaboración de las probetas consiste en introducir las placas en el interior del cajead, cuidando respetar las dimensiones previstas. Antes de ello se procede a limpiar los restos de viruta mediante un soplado en el interior de la caja.

Manteniendo en posición horizontal la placa y centrada respecto a la anchura de la caja, se fija con la ayuda de un emplastecido de plastilina en la testa donde sobresale la placa. Esto a su vez sirve de sellado de la junta para evitar pérdidas de formulación. Figura 6.17.

La formulación vertida entre la placa y la madera fue Sikadur 42 anclajes. La elaboración de las probetas precedentes reveló una cierta dificultad para que la formulación 5.42 pudiera "colarse" con facilidad a través de las holguras previstas de 3 mm. Esta dificultad en el caso anterior era soslayada, vertiendo una parte de la formulación antes de introducir la placa. De ésta forma el llenado era completo, ya que la formulación fluía desde el fondo al sumergir la placa.

Sin embargo en el caso presente la formulación debe introducirse cuando la placa ya está colocada. Para ello se recurrió a modificar la dosificación de los componentes de la formulación, reduciendo el porcentaje de carga de arena de cuarzo. La dosificación del fabricante es de \(A/B/C = 7/4/40 \) y pasó a \(7/4/25 \). (siendo \(A = \) resina activa, \(B = \) endurecedor y \(C = \) carga de arena de cuarzo).

De este modo la formulación era más fluida y penetraba con facilidad. Lo que se conseguía, era reducir la cantidad de arena de cuarzo que en los tamaños mayores del grano, de 1 a 1,5 mm, podía dificultar el colado. Sin embargo, una solución quizás más acertada hubiera sido el cribar la carga con un tamiz del tamaño máximo que queramos eliminar. De tal forma, que sólo quitamos el árido con el tamaño excesivo, dejando la dosificación de la formulación con una proporción de carga muy próxima a la del fabricante.

Al igual que en otros casos, una vez se ha vertido la formulación en todas las probetas, se mantienen en reposo hasta su fraguado. Al cabo de los 7 días,
Figura 6.17.- Proceso de elaboración de las probetas y dimensiones generales.
en este caso particular 11 días, se someten a ensayo de flexión con una carga centrada, hasta rotura.

6.4.3.- Resultados.

En las condiciones de ensayo de la probeta, carga centrada y pequeña luz, (figura 6.18), podemos estimar en que campo de posible modo de rotura nos encontramos.

![Diagrama de fuerzas y momentos](image)

Figura 6.18

\[
M = \sigma_f \cdot \frac{bd^2}{6} = \frac{P \cdot l}{4} \quad ; \quad P = \frac{4 \cdot \sigma_f \cdot bd^2}{6 \cdot l}
\]

\[
Q = \frac{2 \cdot \tau \cdot bd}{3} = \frac{P}{2} \quad ; \quad P = \frac{4 \cdot \tau \cdot bd}{3}
\]

Es decir, cuando la relación entre la luz de la pieza y su canto, \(l/d\), es menor que \(\frac{\sigma_f}{2 \cdot \tau}\), la rotura vendrá dada por el esfuerzo cortante.

Si admitimos como tensión de flexión \(\sigma_f = 170 \text{ Kp/cm}^2\) y a cortadura paralela a la fibra \(\tau = 16 \text{ Kp/cm}^2\), (ver apartado 3.3.1), tendremos:

\[
\frac{l}{d} = 5,3
\]
En nuestro caso esta relación adopta un valor muy próximo a 5, con lo cual, la rotura podría venir por flexión o por cortante.

Por otro lado si calculamos la carga admisible para la duración del ensayo en flexión y en cortante, obtenemos aproximadamente:

\[P_{adm flexión} = \frac{4 \cdot 170 \cdot 1,13 \cdot 1,50 \cdot 6,5 \cdot 9,7^2}{6 \cdot 50} = 2.350 \text{ Kp} \]

\[P_{adm cortante} = \frac{4 \cdot 16 \cdot 1,50 \cdot 6,5 \cdot 9,7}{3} = 2.017 \text{ Kp} \]

Admitiendo una calidad estructural de 0,65, las cargas anteriores quedarían respectivamente en 1527 y 1311, Kp. Por lo tanto las cargas de rotura últimas, quedarán muy alejadas de los fallos por anclaje, como veremos después.

Tal y como se describen las roturas de los ensayos en el apéndice no 7.3, se deduce que todas ellas se han originado por concentración de tensiones en la zona del anclaje de la placa en la madera. Con la excepción de la probeta no 10 que no rompió sobre pasando la carga máxima de la máquina de ensayos.

Descripción de la rotura.

Las gráficas de deformación demuestran en todos los casos un comportamiento muy lineal, llegando a la rotura de forma brusca. En estos ensayos no podemos extraer conclusiones sobre la posible modificación del comportamiento elástico aparente de la pieza, como se hizo en casos anteriores. No se realizaron ensayos en piezas enteras y del mismo tamaño que sirvan de referencia. Y por otro lado, dado la pequeña esbeltez de la probeta la deformación por cortante adquiere cierta magnitud, que no la podemos estimar teóricamente, con exactitud, al no conocer el módulo
de deformación transversal. Por lo que no es posible apoyarse en los ensayos realizados en 3.3.2.

Modelo tipo de rotura.

El proceso observado en los ensayos, es muy similar al descrito en el apartado 6.2, de "Ensayo de vigas unidas en el centro de la luz, con placas internas".

La rotura sobre viene de forma brusca, precedida de ligeros crujidos característicos de la madera que implican roturas parciales de la estructura fibrosa. Se forma una grieta horizontal cercana al centro de la sección y de mayor longitud que el anclaje de la placa. Quedando adherida la madera a la placa. Si continuamos aplicando carga se llega a romper el resto de la sección por flexión. (ver figura 6.19)

![Diagrama de rotura de una viga con placa en su apoyo](image)

Figura 6.19. - Secuencia de la rotura de una viga con placa en su apoyo.
La forma de la rotura indica que se produce por una concentración de tensiones de cortadura en la madera y en dirección paralela a la fibra. El fallo ocurre por constante de la madera, aunque en la parte inferior de la placa se observan en algunos casos en roturas entre la placa y la formulación en su interfase.

La separación de las dos partes se dá en la zona inferior. Esto es lógico, ya que en la superior puede comprimirse contra la madera la sección de la placa.

Relación entre la longitud de anclaje de la placa y la carga de rotura.

La serie de diez probetas ensayadas se compone de parejas de piezas con igual longitud de anclaje de la placa. Las dimensiones de la sección transversal de la madera es de 65 x 97 mm. y la de la placa de 15 x 75 mm.

De los estadillos de ensayo obtenemos la siguiente relación de valores de carga de rotura y sus correspondientes longitudes de anclaje: (cuadro 6.7).

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD DE ANCLAJE</th>
<th>CARGA DE ROTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>L_a cm</td>
<td>P Kp</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3.030</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.300</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3.480</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2.600</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2.880</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2.090</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3.900</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3.920</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>3.720</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>> 4.000</td>
</tr>
</tbody>
</table>

Cuadro 6.7
Exceptuando los valores de las dos primeras probetas (nº 1 y nº 2), que tienen una luz diferente al resto, podemos realizar un análisis de regresión de potencia de las parejas de valores de L_a y P, obteniendo la siguiente expresión:

$$Y = A \cdot X^B; \text{ siendo } A = 1113,35; \quad P = 1113 \cdot L_a^{0,55}$$

$$B = 0,5502$$

$$r = 0,6586$$

La relación así obtenida tendría un valor nulo de P cuando la longitud de anclaje vale cero, y al crecer la longitud L_a la carga resistida crece más lentamente. En el apartado 6.7 se analiza esta relación, y en la figura 6.20 se representa gráficamente.

Figura 6.20. - Relación entre la longitud de anclaje de la placa en la madera y la carga de rotura, para consolidación con placas en el apoyo de la viga. Regresión de potencia.
6.5. ENSAYO DE VIGAS UNIDAS EN EL CENTRO DE LA LUZ, CON PERFILES DE PEQUEÑA SECCION.

Este apartado trata de los ensayos realizados en probetas en forma de pequeñas vigas, con una discontinuidad en el centro de su luz. Se recupera la continuidad mecánica de la pieza instalando unas barras de sección rectangular de pequeña sección, en el borde comprimido y en el traccionado de la viga.

En el apéndice nº 7.4 "Ensayos de vigas consolidadas a pequeña escala", se reconocen los datos y resultados concretos de los ensayos.

6.5.1.- Objetivos

Con el mismo fin que los ensayos del apartado 6.2 "Vigas unidas en el centro de la luz, con placas internas", se realizaron los ensayos que ahora tratamos.

En este caso el elemento de refuerzo consiste en perfiles de pequeña sección alojados en ranuras efectuadas en la superficie de la pieza. (Figura 6.21).

![Diagrama de vigas unidas en el centro de la luz](image)

Figura 6.21

Este sistema podría emplearse en la práctica para devolver la continuidad a una pieza que ha sufrido una rotura por un exceso de cargas o la influencia de los defectos naturales de la madera. Igualmente puede servir para conectar un
extremo de una pieza de madera a un bloque de mortero epoxi que "extiende" su longitud sustituyendo a una zona degradada que ha sido eliminada.

Como en otros casos hemos estudiado el comportamiento de las piezas consolidadas, en los ensayos, en relación a su resistencia y a su deformación. La longitud de anclaje de las barras, se eligió como factor variable, para determinar su relación con la resistencia.

6.5.2.- Metodología.

Se cortaron seis piezas de madera de pino insigne de una sección de 75 x 100 mm., con una longitud de 70 cm. A continuación se realizan los ranurados en los dos bordes, superior e inferior de la viga, con la ayuda de una escopleadora. (ver figura 6.22)

La profundidad de la ranura es de 16 mm., es decir, 3 mm. mayor que la dimensión del perfil de refuerzo. La anchura era la menor permitida por el ancho de la cadena de la escopleadora, de 16 mm.

La longitud de la ranura es ligeramente superior a la longitud de la barra, 15 cm. en cada extremo. Esto es debido al perfil curvo que deja la cadena de la máquina en los finales del recorrido, de tal forma que para que el perfil se pose en el fondo se precisa una pequeña holgura longitudinal.

Después se cortan transversalmente las piezas por la mitad de su longitud. Se extienden unos pequeños cordones de plastilina en la sección del corte, rodeando cada uno de los perfiles de los cajeados. De esta forma evitaremos fugas de formulación en la sección del corte, impidiendo una adherencia de ambas testas de madera que podrían enmascarar el modo proyectado de trabajo del refuerzo consistente en la transmisión esfuerzos tangenciales a través de la superficie de la ranura.
Figura 6.22.- Proceso de elaboración de las probetas.

Se vuelven a juntar las dos mitades de la misma pieza, afianzándolas con mordazas y colocando guías que las mantengan totalmente alineadas. Se unen ambas partes ayudándolas con unos ligeros golpes en las testas, logrando que la junta sea lo más estrecha posible y el cordón de sellado queda completamente aplastado. (figura 6.23).

La formulación empleada en estas probetas fue Sikadur 42 anclajes, con la dosificación prevista por el fabricante (7: 4: 40 = A: B: C).
Figura 6.23.- Elaboración de las probetas.
Se vierte, entonces, en el hueco del ranurado una parte de la formulación que llene aproximadamente la mitad de su profundidad. Introduciendo después el elemento de refuerzo que se presiona hasta que toque el fondo. La formulación fluirá a través de la holgura entre madera y refuerzo. Se termina la operación rellenando la formulación hasta enrasar la cara superior. (figura 6.23).

En este caso, el refuerzo consiste en cuatro barras de sección rectangular de 8 x 13 mm. y de longitud variable: desde 100 hasta 200 mm. Son de material compuesto, con una matriz de resina de poliéster y un refuerzo de fibra de vidrio en hilos paralelos. Se obtienen del corte, siguiendo la dirección de los hilos de fibra de vidrio, de placas de sección 8 x 24 mm. fabricados por Nioco S.A.

El tratamiento previo de la superficie de las barras de refuerzo consistió en un lijado suave y su posterior limpieza con disolvente.

Transcurridas 24 horas, cuando la formulación ha fraguado y adquirido una resistencia elevada, se repite el proceso anteriormente descrito para instalar los perfiles de refuerzo en la superficie opuesta.

Al cabo de siete días, al menos, se someten a ensayo con una luz entre apoyos de 60 cm., aplicando la carga en los puntos que dividen la luz en tres partes iguales. Según se describe en los estadillos del apéndice correspondiente.

6.5.3. Resultados.

En principio la rotura de la pieza puede producirse por los tres motivos siguientes:

- Fallo por flexión de la propia sección de la madera. Si consideramos una resistencia media de rotura de 850 Kp/cm2 y la corregimos por la duración de la carga y canto de la viga obtenemos el momento flector de rotura:

$$ M = \sigma \cdot W = 850 \cdot 1,5 \cdot 1,13 \cdot \frac{7,5 \cdot 10^2}{6} = 180,093 \text{ Kp cm} $$
Modificando este valor por la calidad de la madera, que variará entre 0,75 y 0,50, tendríamos unos valores aproximados de 126.000 y de 72.000, respectivamente.

- Fallo por rotura en tracción o compresión de los perfiles de refuerzo. Si adoptamos como tensión de rotura media del material de refuerzo, la obtenida por ensayos de flexión, de 5.000 Kp/cm², obtenemos el momento de rotura:

\[M = F \cdot S = A \cdot \sigma^\star \cdot S = 2 \cdot 1,3 \cdot 0,8 \cdot 5.000 \cdot 8,1 = 84.240 \text{ Kp} \cdot \text{cm}. \]

Siendo
\[A = \text{Sección de la barra}, \]
\[F = A \cdot \sigma^\star \]
\[\sigma^\star = \text{tensión de rotura del refuerzo}. \]

- Y por último la rotura puede llegar por fallo del anclaje de las barras. Que es la forma de rotura buscada. El anclaje puede ser crítico en la superficie de contacto madera-formulación ó bien formulación-perfil de la fibra de vidrio.

Como después veremos, este es el factor menos resistente para las dimensiones de las probetas y por tanto, provocará la rotura de manera similar a la descrita en la figura 6.24.

--- Figura 6.24.- Rotura de la pieza ---

Análisis de la deformación de la pieza.

La relación entre cargas y deformaciones, según se aprecia en las correspondientes
gráficas de apéndice no 7.4, indican una proporción lineal.

Sin embargo si analizamos cual es el módulo "aparente" de elasticidad, veremos que se trata de valores muy bajos. Así, procediendo de igual manera que en los casos anteriores obtenemos el módulo de elasticidad con el que aparentemente se deforma la pieza.

Al igual que en los ensayos anteriores, la medición de las deformaciones se realizó a partir de las gráficas dibujadas por la máquina. Por lo que incluye la deformación por aplastamiento en los apoyos, debiendo corregir los valores obtenidos con un coeficiente que fué determinado en el apartado 3.3.2, cuyo valor es de 1,36. (Cuadro 6.8)

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LARGO DE ANCLAJE</th>
<th>MÓDULO DE ELASTICIDAD APARENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>L_a cm</td>
<td>E_a Kp/cm²</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>22.874 x 1,36 = 31.108</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>26.773 x 1,36 = 36.411</td>
</tr>
<tr>
<td>3</td>
<td>7,5</td>
<td>32.775 x 1,36 = 44.574</td>
</tr>
<tr>
<td>4</td>
<td>7,5</td>
<td>24.152 x 1,36 = 32.846</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>29.333 x 1,36 = 39.892</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>21.807 x 1,36 = 29.657</td>
</tr>
</tbody>
</table>

Cuadro 6.8

Aceptando como módulo de elasticidad a flexión del pino insignis, el valor de 82.000 Kp/cm², deducido de los ensayos comentados en 3.3.2, podemos obtener cual es el porcentaje en que se incrementa la deformación de la pieza debido al sistema de consolidación. (Cuadro 6.9).

Llamando:
E_a = módulo de elasticidad "aparente" de la pieza consolidada.

E = módulo de elasticidad de la pieza entera: 82.000 kp/cm².

R = porcentaje en el que se incrementa la deformación de la pieza con respecto a la que tendría si fuera una pieza entera.

\[
R = \frac{E - E_a}{E_a} \times 100
\]

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD DE ANCLAJE</th>
<th>DEFORMACIÓN INCREMENTADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>L_a cm</td>
<td>R %</td>
</tr>
<tr>
<td>1</td>
<td>5 ...</td>
<td>163</td>
</tr>
<tr>
<td>2</td>
<td>5 ...</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>7,5 ...</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>7,5 ...</td>
<td>149</td>
</tr>
<tr>
<td>5</td>
<td>10 ...</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>10 ...</td>
<td>176</td>
</tr>
</tbody>
</table>

Cuadro 6.9

Según se deduce de su representación gráfica, no parece existir una relación apreciable entre la longitud de anclaje y el factor R. Figura 6.25

La deformación inducida R, es en todo caso, muy superior a la que hemos obtenido con los refuerzos mediante placas. La razón de ello puede deberse a que en el caso de las barras, éstas se encuentran sometidas en su contacto con la madera a una tensión tangencial máximo de manera más uniforme que en las placas, donde hay zonas menos tensionadas, lo que implica menores deformaciones relativas entre madera y refuerzo.
Relación entre la longitud de anclaje y el momento flector.

Se analiza en este apartado la relación existente entre la longitud de anclaje de las barras y el momento de rotura de la pieza. Este momento se transmite de una mitad de la pieza a la otra, a través del par formado por los dos grpos de barras. El valor del esfuerzo de tracción o de compresión en cada barra se obtiene de la siguiente manera:

\[M = \frac{P \cdot L}{6} \quad ; \quad S = 81 \text{ mm} \quad ; \quad F = \frac{M}{S} \]

Y para una barra:

\[F_1 = \frac{M}{2 \cdot S} \]
Obteniéndose los siguientes valores: (Cuadro 6.10).

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD ANCLAJE</th>
<th>MOMENTO ROTURA</th>
<th>FUERZA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>L_a cm</td>
<td>M Kp.cm</td>
<td>F_1 Kp</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>19.300</td>
<td>1.191</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>25.100</td>
<td>1.549</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7,5</td>
<td>33.800</td>
<td>2.086</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7,5</td>
<td>31.700</td>
<td>1.956</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>38.500</td>
<td>2.376</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>36.800</td>
<td>2.271</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 6.10

Si hacemos un análisis de regresión lineal entre los valores de la longitud de anclaje y la fuerza F_1 de rotura, podemos estimar cuál es su ley de influencia.

Así obtenemos:

\[y = A + B \cdot x \] ; \[F_1 = 474 + 190 \cdot L_a \]

Siendo:

\[A = 474,58 \]
\[B = 190,70 \]
\[r = 0,9405 \] (Coeficiente de correlación)

Se deduce una elevada correlación, 0,94, entre los valores de L_a y F_1. Aunque con un pequeño error al no hacerse nulo el término A = 474, ya que la recta debería pasar por el origen de coordenadas. Lo que implicaría que para una longitud nula de anclaje correspondería una fuerza de anclaje nula.

No obstante, podemos considerar, a favor de la seguridad, que el término A vale cero. Obteniendo una recta paralela que pasa por el origen. En la figura 6.26
representamos gráficamente los puntos de cada ensayo y la recta de regresión.

\[F_1, Kp. \]

\[5000 \]
\[4000 \]
\[3000 \]
\[2000 \]
\[1000 \]
\[0 \]

\[L_a \text{ cm} \]

Figura 6.26. Representación gráfica de la regresión lineal entre la longitud de anclaje y la fuerza de anclaje.

Consideraciones sobre la rotura.

Si observamos las anotaciones de la forma de rotura en los estadillos contenidos en el apéndice nº 7.4, se puede concluir que la rotura se produce en general por un fallo combinado de la adherencia tangencial entre la formulación y la fibra de vidrio y por esfuerzo cortante paralelo a la fibra de la madera originado por la transmisión de esfuerzos en adherencia tangencial.

De esta forma, podemos determinar cual es la tensión tangencial de rotura para cada interfase. Admitimos que la ley que relaciona la fuerza con la longitud de anclaje es: \[F_1 = 190 \cdot L_a \]

a) Interfase entre formulación y refuerzo:

Perímetro de contacto \[P = 2 \cdot (1,3 + 0,8) = 4,2 \text{ cm}. \]
\[F_1 = 190 \cdot L_a = \tau \cdot P \cdot L_a; \quad \tau = \frac{190}{4,2} = 45 \text{ Kp/cm}^2 \]

\(\tau \) es la tensión media de adhesión tangencial en esta interfase en el momento de rotura. Si la comparamos con las determinaciones efectuadas en el apartado 5.1.2.2. sobre barras de sección circular, en pequeña longitud de anclaje, que alcanzaron valores de 180 Kp/cm\(^2\), vemos que queda reducido a la cuarta parte.

b) Interfase entre la formulación y la madera:

En este caso el fallo se produce por la propia madera, ya que su resistencia es inferior a la unión.

Perímetro de contacto \(P = 3 \cdot 1,6 = 4,8 \text{ cm}. \)

Aunque en algunos casos la superficie de rotura no fue la del propio ranurado, sino del conjunto de las dos ranuras. Este es el caso de la probeta n° 6. (Ver figura n° 6.27).

Figura 6.27.- Superficies de rotura de la madera.
Y la tensión media de rotura \(\tau \) sería:

\[
F_1 = 190 \cdot La = \tau \cdot P \cdot La; \quad \tau = \frac{190}{4,8} = 39,58 \text{ Kp/cm}^2
\]

Este valor es muy próximo al anterior de la unión formulación y refuerzo. La tensión de rotura media al esfuerzo cortante del pino insignis es de 110 \(\text{Kp/cm}^2 \), y obtenida en probetas de pequeño tamaño.

Podemos, por tanto, deducir que la causa principal del fallo se encuentra en la propia resistencia a cortante de la madera. En la realidad la distribución de tensiones tangenciales de adherencia a lo largo de la barra no es uniforme como aquí se considera, sino que tendría un aspecto parecido al de la figura 6.28.

![Figura 6.28. Distribución no uniforme de las tensiones de adherencia a lo largo de la longitud de la barra.](image)

Esta diferencia entre la distribución uniforme considerada en el cálculo y la distribución verdadera es la causa de que la tensión media resulte 2,75 veces inferior a la resistencia de la madera a cortadura.

Estas razones obligarían a reducir la resistencia a cortante de la madera, cuando se diseñe un refuerzo de este tipo (Barra trabajando axialmente) y aceptemos una distribución lineal de las tensiones. Esta reducción afectará a la tensión admisible de la madera en un valor aproximado de 2,75.

6.6. CONSOLIDACION DE VIGAS ENSAYADAS

En este apartado se refieren los resultados y el proceso seguido en la reparación de
las piezas que se sometieron a flexión hasta su rotura, según el apartado 3.3.2, y su nuevo ensayo también hasta la rotura, una vez consolidadas.

En el apéndice nº 8, "Consolidación y ensayo de vigas partidas", se recogen los datos y resultados concretos de cada ensayo.

6.6.1.- Objetivos.

La finalidad perseguida con estos ensayos es estudiar el comportamiento mecánico de una viga consolidada frente a de una pieza "sana" o entera.

Para ello se parte de los ensayos a flexión de piezas de pino insignis relatados en 3.3.2. En ellos era posible obtener un coeficiente medio de la relación entre la rotura y la carga admisible.

Estas mismas piezas son consolidadas con placas internas y se vuelven a ensayar hasta la rotura. Los nuevos resultados ofrecerán otro coeficiente de relación entre el valor de rotura y el admisible.

Por otro lado, la comparación entre los dos valores del módulo de elasticidad de cada pieza, permitirá saber si la rigidez del conjunto aumenta o disminuye.

6.6.2.- Metodología.

Si observamos la forma de las roturas de las diez pequeñas vigas ensayadas, según el apartado 3.3.2, descritas en el apéndice nº 4, veremos como casi todas ellas son roturas por flexión, pero combinadas con cortadura.

Esto se debe a la esbeltez de las piezas que las hacía estar cerca del límite entre la rotura y sus grietas afectan a gran longitud de la pieza, ya que el efecto de la cortadura se suma a la flexión produciendo fisuras oblicuas.
Por este motivo la consolidación no era viable en todos los casos. Ya que en algunos la placa debería recorrer prácticamente toda la pieza. De esta forma, las piezas consolidadas quedaron reducidas a cuatro, y el proceso seguido se relata a continuación:

Todas las reparaciones se hicieron con placas de resina de poliester y fibra de vidrio en mat (tipo Vipol), con un espesor de 15 mm. El canto de la placa es de 8 cm. y su longitud total de 56 cm.

La longitud total viene definida por la elección de una longitud de anclaje que sea 2,8 veces el canto de la pieza de madera. Este valor asegura en estas piezas una resistencia de seguridad suficiente, como veremos en el apartado 6.7. La anchura del cajeado es de 19 mm. (Figura. 6.29)

![Diagrama de dimensiones](image)

Figura 6.29.- Cotas en cm.

El tratamiento de la superficie del refuerzo consistió en una limpieza con disolvente para eliminar el polvo y suciedad adheridas, al igual que en casos anteriores.

En primer lugar se intenta enderezar en lo posible la pieza partida, cuando ésta ha quedado cedida. De esta forma las grietas se cierran.

Después se marca la posición del refuerzo procurando que su centro coincida con la zona de la pieza que ha roto por tracción en la parte inferior de la sección.
Es en ese lugar donde se encuentra la zona de mayor discontinuidad.

Siguiendo las indicaciones anteriores, se realiza el ranurado con la escopleadora. En este caso su longitud es alrededor de 0,5 cm, superior a la longitud de la placa, ya que ésta cuenta con unas esquinas inferiores biseladas para acomodarse al perfil curvo de los ángulos que deja la máquina.

Todas las grietas, quedades o nudos sueltos que se comunican con el interior del cajado se sellan al exterior con plastilina, para evitar fugas de la formulación. A partir de éste momento se realiza el llenado parcial de la caja con formulación, se introduce la placa hasta el fondo y se termina de llenar hasta la superficie (figura 6.30).

Figura 6.30.- Proceso de consolidación de una viga partida.
Se utilizaron dos tipos de formulación: Sikadur 42 anclajes con una dosificación reducida en cargas y Sikadur 52 inyección, para comprobar su eficacia y posibilidad de uso.

A continuación se describen cada una de las piezas indicando la posición del refuerzo y la formulación empleada:

- Probeta n° 5: Formulación: Sikadur 52 inyección: (figura 6.31)

![Figura 6.31](image)

- Probeta n° 7: Formulación: Sikadur 52 inyección: (figura 6.32)

![Figura 6.32](image)

![Figura 6.33](image)
Probeta n° 9: Formulación: Sikadur 42 anclajes. Dosificación 7: 4: 30: (figura 6.34)

Posteriormente fueron ensayadas con cargas puntuales en los tercios de la luz hasta su rotura, de la misma manera que cuando eran piezas enteras.

Por otro lado las probetas n° 1 y n° 2, que no llegaron a alcanzar el valor de rotura en los ensayos descritos en 3.3.2, por superar la carga máxima de la máquina de ensayo, se procedió en su caso del siguiente modo:

Se realizó un proceso similar al descrito en el apartado 6.2, "Ensayo de vigas unidas en el centro de la luz, con placas internas". Es decir, se efectuó un cajeado en el centro de la pieza con una longitud ligeramente superior a los 56 cm., de longitud de la placa. La anchura de la caja era de 16 a 17 milímetros.

Esta menor anchura de la caja venía dada por el interés en reducir al mínimo posible la debilitación de la sección de la madera, ya que la formulación a utilizar era sikadur 52 inyección. Esta formulación posee una muy baja viscosidad y no contiene cargas, por lo cual es muy apta para colarse en las pequeñas holguras que quedan entre la placa y la madera.

El material empleado en las placas es el mismo que en los casos anteriores, Vipol con espesor de 15 mm. y un canto de 8 cm. El tratamiento superficial era igualmente una limpieza con disolvente.

La pieza era cortada por su mitad y después se introducía la placa embebida en la formulación. Figura 6.35.
En la elaboración de estas dos probetas el sellado de la junta central se realizó en la superficie exterior para permitir que la formulación rellena la holgura que pueda quedar.

El objeto de estos ensayos era comprobar el comportamiento de la formulación S. 52, frente a los ensayos del apartado 6.2. Además sería posible compararlas con los ensayos en las piezas enteras, aunque no llegarán a rotura.

6.6.3.- Resultados.

Probetas que fueron consolidadas después de la rotura.

En el cuadro 6.11 se resumen los resultados de los ensayos comparados con los anteriores en estado "sano", del apartado 3.3.2.

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>P adm</th>
<th>P_r</th>
<th>P_re</th>
<th>P_r/Padm</th>
<th>P_re/Padm</th>
<th>E_o</th>
<th>E_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.105</td>
<td>2.750</td>
<td>3.890</td>
<td>2.48</td>
<td>3.52</td>
<td>51.850</td>
<td>57.041</td>
</tr>
<tr>
<td>7</td>
<td>< 778</td>
<td>1.700</td>
<td>2.620</td>
<td>> 2.18</td>
<td>> 3.36</td>
<td>48.773</td>
<td>53.184</td>
</tr>
<tr>
<td>8</td>
<td>898</td>
<td>3.400</td>
<td>2.790</td>
<td>3.78</td>
<td>3.10</td>
<td>66.358</td>
<td>51.803</td>
</tr>
<tr>
<td>9</td>
<td>< 925</td>
<td>1.820</td>
<td>3.030</td>
<td>> 1.96</td>
<td>> 3.27</td>
<td>52.982</td>
<td>63.705</td>
</tr>
</tbody>
</table>

Cuadro 6.11.- Comparación entre los resultados de ensayo de piezas antes y después de la reparación.
Siendo:

\[P_{adm} = \text{carga total admisible de la pieza, según "Code of Practice, CP,112" (16). (Kp).} \]

\[P_r = \text{carga de rotura de la pieza en origen. Según ensayos del apartado 3.3.2 (Kp).} \]

\[P_{rc} = \text{carga de rotura de la pieza después de la consolidación. (Kp).} \]

\[E_o = \text{módulo de elasticidad antes de la consolidación. (Kp/cm}^2 \) \]

\[E_c = \text{módulo de elasticidad después de la consolidación. (Kp/cm}^2 \) \]

Ambos módulos de elasticidad, son "aparentes", es decir, se obtienen a partir de las gráficas de deformación de la máquina. Y éstas incluyen la deformación por aplastamiento en compresión perpendicular a la fibra en los apoyos y elementos de carga. En todo caso son comparables.

De éstos resultados se puede deducir que el factor de seguridad (Tomado como la relación entre el valor de rotura y el admisible), en la pieza consolidada aumenta de manera general. Esto es explicable si consideramos que la placa va a sustituir el trabajo que antes realizaba la zona más débil, por donde previamente rompió la pieza. Igualmente la rigidez de la pieza aumenta un 13 % para las piezas consolidadas, de modo general. Únicamente en el caso de la probeta nº 8 el efecto fue el contrario. En ésta el módulo "aparente" de elasticidad disminuye cuando está reparada y por otro lado, la carga de rotura es inferior a la original.

Hay que tener en cuenta que en el lugar donde acaba la placa, la sección de madera se encuentra debilitada por el cajeado de alojamiento del refuerzo. Y puede además coincidir un "defecto" de la madera en ese lugar, determinando una resistencia inferior a la que tuvo en su origen.

Probetas nº 1 y nº 2:

Como antes dijimos, estas dos probetas no alcanzaron la rotura en los ensayos previos.
Por este motivo se siguió un proceso diferente al resto de las probetas, cortando las piezas por la mitad para después consolidarlas. Los resultados fueron los siguientes, resumidos en el cuadro 6.12.

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>P_{adm}</th>
<th>P_r</th>
<th>P_{rc}</th>
<th>P_r</th>
<th>P_{rc}</th>
<th>E_o</th>
<th>E_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.773</td>
<td>>3.900</td>
<td>3.680</td>
<td>>2.20</td>
<td>2.07</td>
<td>78.805</td>
<td>74.353</td>
</tr>
<tr>
<td>2</td>
<td>1.155</td>
<td>>3.900</td>
<td>3.480</td>
<td>>3.37</td>
<td>3.01</td>
<td>69.864</td>
<td>83.114</td>
</tr>
</tbody>
</table>

Cuadro 6.12.- Comparación entre los resultados de los ensayos de las probetas 1 y 2 antes y después de la consolidación.

La nomenclatura es la misma del cuadro 6.11, anterior.

La capacidad resistente del conjunto disminuye como consecuencia de la sección reducida de madera o por la propia menor resistencia de la sección de la placa en la zona de discontinuidad.

Esta última fue la causa de la rotura pues el fallo llegó en ambos casos por flexión de la placa de refuerzo. (Como se puede apreciar en los estadillos del apéndice n° 8).

Respecto a la deformabilidad no es posible concluir si supone un aumento o disminución de la rigidez, por la escasez de datos. Sin embargo lo que sí podemos apreciar en las gráficas de deformación, como tienen un comportamiento muy plástico en la última fase del ensayo. La formulación empleada era sikadur 52 inyección, lo que puede explicar dicho fenómeno, dado su comportamiento marcadamente plástico para tensiones elevadas.

Descripción del modo de rotura.

En las piezas que fueron consolidadas después de su primera rotura se comprueba que
el fallo se produce fuera de la zona de anclaje de la placa. La causa es la rotura por flexión de la madera y ésta siempre ocurre en el final de la placa que resulta más centrado.

En ningún caso se repitió la rotura primitiva ni tampoco hubo fallo por adherencia del anclaje. La descripción del modo de rotura de cada probeta se encuentra en el citado apéndice nº 8, y en el figura nº 6.36 se representa un ejemplo representativo.

Figura 6.36.- Esquema de la rotura de una viga consolidada.

En las probetas 1 y 2, que fueron previamente cortadas por la mitad el proceso de de rotura es el siguiente:

Se observa, cuando la carga ya es elevada, como en la junta central se produce un giro, separándose en su parte inferior y comprimiéndose la superior. Entonces comienzan a aparecer unas fisuras horizontales que separan la zona comprimida de la traccionada. (Figura 6.37)

De esta forma la tracción es resistida por la parte inferior de la placa y la compresión se reparte entre la madera y la placa en la zona superior. Finalmente se llega a la rotura por flexión de la placa.

Conclusiones sobre los resultados.

- Para la sección de madera de las probetas de los ensayos y con una longitud de anclaje igual a 2,8 veces el canto de la viga de madera, el fallo de la pieza no se produce en ningún caso por la adherencia, sino por flexión de la madera o la placa.
Figura 6.37 - Esquema de la rotura de las vigas 1 y 2

- Si la madera tiene una elevada calidad estructural, el efecto de la consolidación puede, para el tipo de ensayo empleado, suponer una disminución de su resistencia, por la debilitación de la sección.

- Las formulaciones muy fluidas y sin cargas, como es el caso del Sikadur 52, permiten realizar el cajeado con una anchura superior tan solo en 1 ó 2 milímetros al ancho de la placa, con la seguridad de que el llenado de las holguras es total.

Pero presenta también el inconveniente de tener una fluidez excesiva, de tal manera, que la propia madera absorbe formulación y cualquier fisura puede originar una fuga si no se ha sellado adecuadamente. Esto supone, que a veces antes de llegar al fraguado sea preciso rellenar por descender el nivel de llenado.

Este inconveniente se puede solucionar añadiendo una carga con un tamaño del árido muy fino, que aumente ligeramente su viscosidad.
El efecto de la carga, además, disminuiría el comportamiento plástico de la formulación.

- La rigidez de la pieza en su conjunto aumenta ligeramente, en vigas que son consolidadas de la manera que aquí se ha descrito

6.7. PLANTEAMIENTO DE LAS POSIBLES HIPÓTESIS DE CÁLCULO PARA EL REFORZAMIENTO CON PLACAS.

En el diseño de un refuerzo de una pieza de madera sometida a flexión mediante la instalación de unas placas de refuerzo, se distinguen dos factores a considerar. El primero consiste en dimensionar la sección transversal de la placa por razones de resistencia del propio material, que deberá sustituir la capacidad mecánica de la sección de madera.

Y el segundo factor, de crucial importancia, es precisar la longitud de anclaje de la placa en la madera. Esta longitud debe ser suficiente para que la transmisión de las tensiones en la placa hacia la madera, realizada por tensiones tangenciales, se mantengan dentro de los límites admisibles. Además, como veremos después, la longitud de anclaje será tal que la concentración de tensiones originada por la descontinuidad sea igualmente admisible.

En adelante, las consideraciones que se hacen para el cálculo de estos elementos se refieren al caso de vigas biplyadas con carga uniformemente repartida, cuando se estudian de manera generalizada. Esto viene motivado por tratarse de un caso frecuente de posible aplicación del método de consolidación aquí tratado.

Por esta razón en el siguiente apartado se resumen las relaciones existentes entre la capacidad resistente de vigas biplyadas y sus dimensiones y esbelteces. Con el fin de utilizarlas bajo la misma notación posteriormente.
6.7.1.- Determinación de la capacidad de carga de una viga biapoyada y con carga uniforme, en función de sus dimensiones y características mecánicas.

Según la notación de la figura 6.38, se obtienen a continuación las cargas uniformemente repartidas máximas y admisibles que puede resistir la viga en función de la esbeltez (canto/luz).

![Diagrama](image)

Figura 6.38

Llamando a:

\[\sigma_m = \text{tensión admisible en flexión de la madera.} \]

\[\tau_m = \text{tensión admisible a cortante de la madera, paralelo a la fibra.} \]

a) Carga \(q_c \) admisible por tensiones de cortante:

\[\tau_c = \frac{3}{2} \cdot \frac{Q}{b \cdot d}; \quad Q = \frac{q \cdot l}{2} \]

\[q_c = \frac{4 \cdot \tau_m \cdot b \cdot d}{3 \cdot l} \]

b) Carga \(q_f \) admisible por tensiones de flexión:

\[M = \sigma_m \frac{b \cdot d^2}{6} = \frac{q \cdot l^2}{8}; \quad \]

\[q_f = \frac{4 \cdot \sigma_m \cdot b \cdot d^2}{3 \cdot l^2} \]
c) Carga \(q_d \) admisible por limitación de la deformación:

\[
f = \frac{5}{384} \frac{q}{E.I} \quad ; \quad f = \frac{l}{x}
\]

Llamando a \(X \) exigencia de la limitación de la deformación

Si hacemos \(q_c = q_f \), obtenemos la esbeltez que limita entre el dimensionado por cortante o por flexión.

\[
q_c = q_f \quad \Rightarrow \quad \frac{l}{d} = \frac{\sigma_m}{C_m}
\]

Y haciendo \(q_f = q_d \), obtenemos la esbeltez que es frontera entre el dimensionado por flexión y por deformación:

\[
q_f = q_d \quad \Rightarrow \quad \frac{l}{d} = \frac{24}{5 \cdot X} \cdot \frac{E}{\sigma_m}
\]

Por tanto la carga máxima admisible será:

a) Si \(l/d < \frac{\sigma_m}{C_m} \) \(\Rightarrow \) \(q_{\text{max.}} = \frac{4 \cdot C_m \cdot b \cdot d}{3 \cdot l} \)

b) Si \(\frac{\sigma_m}{C_m} \leq \frac{l}{d} \leq \frac{24}{5 \cdot X} \cdot \frac{E}{\sigma_m} \) \(\Rightarrow \) \(q_{\text{max.}} = \frac{4 \cdot \sigma_m \cdot b \cdot d^2}{3 \cdot l^2} \)

c) Si \(\frac{l}{d} > \frac{24 \cdot E}{5 \cdot X \cdot \sigma_m} \) \(\Rightarrow \) \(q_{\text{max.}} = \frac{384 \cdot E \cdot b \cdot d^3}{60 \cdot X \cdot l^3} \)

Para unos valores habituales en madera de coníferas empleadas en la construcción:
\[\sigma_m = 100 \text{ Kp/cm}^2 \]
\[\tau_m = 10 \text{ "} \]
\[E = 100.000 \text{ "} \]

y tomando \(X = 300 \)

En este caso los límites serían: \(\frac{1}{d} = 10 \) y 16

6.7.2.- Cálculo de la sección transversal de las placas y de su número.

Cuando se recurre a una consolidación de una viga mediante unos refuerzos de placas, generalmente la sección de la placa o placas debe sustituir mecánicamente en un tramo, más o menos corto, a la sección de madera.

Así, el dimensionamiento vendrá dado por la resistencia ala flexión y cortante, que resulten iguales a los de la madera. Figura 6.39

![Diagrama de sección transversal de placas](image)

Figura 6.39

\[M_m = \frac{\sigma_m \cdot b \cdot d^2}{6} \; ; \; \; M_p = n \cdot \frac{\tau_m \cdot t \cdot h^2}{6} \]

\[Q_m = \frac{2}{3} \cdot \tau_m \cdot b \cdot d \; ; \; \; Q_p = n \cdot \frac{2}{3} \cdot \tau_p \cdot t \cdot h \]

Siendo:

\(M_m \) = momento resistido por la sección de madera.
\[M_p = \text{momento resistido por las placas.} \]
\[\sigma_m^p = \text{tensión admisible a flexión de la madera.} \]
\[\sigma_m^p = \text{tensión admisible a flexión de la placa.} \]
\[C_m = \text{tensión admisible a cortante paralelo a la fibra de la madera} \]
\[C_p = \text{tensión admisible a cortante de la placa.} \]
\[n = \text{número de placas.} \]

Haciendo: \[M_m = M_p \] y \[Q_m = Q_p \]

obtenemos:

\[t \cdot h = \frac{\sigma_m}{\sigma_p} \cdot \frac{b \cdot d^2}{n}; \quad t \cdot h = \frac{C_m}{C_p} \cdot \frac{b \cdot d}{n} \]

Condiciones que en el caso más desfavorable permiten dimensionar la sección transversal del refuerzo.

En la práctica el modo seguido para el diseño puede partir de elegir el canto \(h \) de la placa como el valor máximo posible, siempre dejando unos recubrimientos de al menos un centímetro de madera. Esto viene dado por razones de seguridad frente al incendio, que obligará a mayores recubrimientos según normativa, y por otros motivos, como reducir las variaciones de humedad temporales que son más marcadas en la superficie. Evidentemente, además, existen razones estéticas para evitar que sea visible el refuerzo.

Si admitimos un valor de \(h \) como término medio de \(h = 0,85 \cdot d \); tenemos:

\[\frac{b \cdot d^2}{t \cdot h^2} = \frac{\sigma_p}{\sigma_m} \cdot n; \quad \frac{b \cdot d}{t \cdot h} = \frac{C_p}{C_m} \cdot n \]

\[\frac{b \cdot d^2}{t \cdot 0,85^2 \cdot d^2} = \frac{\sigma_p}{\sigma_m} \cdot n; \quad \frac{b \cdot d}{t \cdot 0,85 \cdot d} = \frac{C_p}{C_m} \cdot n \]
\[
\frac{b}{t} = 0,72 \cdot \frac{\sigma_p}{\sigma_m^*} \cdot n \quad ; \quad \frac{b}{t} = 0,85 \cdot \frac{\tau_p}{\tau_m} \cdot n
\]

Si fijamos un espesor \(t \) de la placa y hacemos \(n = 1 \), obtenemos cual es el ancho \(b_1 \) de madera que es sustituido mecánicamente por una placa. Esto nos daría la separación entre las placas.

\[
b_1 = 0,72 \cdot \frac{\sigma_p}{\sigma_m^*} \cdot t \quad ; \quad b_1 = 0,85 \cdot \frac{\tau_p}{\tau_m} \cdot t
\]

Para las placas de resina de poliéster y fibra de vidrio en mat aquí estudiadas, se han obtenido las tensiones medias de rotura a flexión y cortante en los apartados 3.2.2 y 3.2.3. La tensión media de flexión resulta aproximadamente de 2,500 kP/cm², y la cortante sobre los 930 kP/cm². Como valores orientativos podemos suponer un coeficiente de seguridad respecto a la rotura de 4 a 5, de tal forma que las tensiones admisibles resulten las siguientes. (Los valores admisibles a emplear en casos reales, deberán deducirse de un número superior de ensayos y un cierto control de fabricación, teniendo en cuenta factores como la fluencia elevada de las resinas).

\[
\sigma_p = 600 \text{ kP/cm}^2 \quad ; \quad \tau_p = 150 \text{ kP/cm}^2
\]

Y tomando como valores frecuentes para la madera

\[
\sigma_m^* = 100 \text{ kP/cm}^2 \quad ; \quad \tau_m = 10 \text{ kP/cm}^2
\]

Para un espesor \(t = 15 \text{ mm} \), resultaría:

\[
b_1 = 4,32 \cdot t = 6,48 \text{ cm}.
\]

\[
b_1 = 12,75 \cdot t = 19 \text{ cm}.
\]
Generalmente prevalece la condición de resistencia a la flexión, como en este ejemplo donde las placas de 15 mm. de espesor se colocarán cada 6,5 cm. de separación.

6.7.3. - Cálculo de la longitud de anclaje de la placa.

6.7.3.1. - Introducción.

En este apartado se intenta llegar a un modelo teórico simplificado que explique la relación que existe entre la longitud de anclaje de la placa en la madera y la resistencia de la pieza. Este modelo deberá ser coherente con los resultados experimentales, ya comentados.

Una pieza de madera sometida a flexión que tenga un punto de discontinuidad recuperado por una placa que se embebe dentro de ella, deberá ser capaz de transmitir a través de la superficie de anclaje las solicitudes de momento y cortante.

Esta transmisión se efectúa mediante tensiones tangenciales que se producen en las superficies de contacto entre refuerzo-formulación y entre formulación-madera. Generalmente empleando formulaciones epoxi y materiales de refuerzo compatibles en su adherencia, el punto más débil en esa transmisión de tensiones es la propia madera. Por este motivo la resistencia a cortante de la madera es la que dominará en el dimensionado del anclaje.

La cuantificación de esta relación de una manera técnica y lo más cercano a la realidad implicaría la consideración de la naturaleza anisótropa de la madera. De esta forma en la solución del problema aparecerían las distintas constantes elásticas de la madera según la dirección considerada. Así considerando la madera como material ortotrópico con tres direcciones: longitudinal, transversal y radial tenemos las siguientes relaciones. Figura 6.40
Para estados lineales de tensión.

\[
\begin{align*}
\tau_{TR} &= \tau_{RT} ; \quad \tau_{LT} = \tau_{TL} ; \quad \tau_{LR} = \tau_{RL} \\
\varepsilon_L &= \frac{\sigma_L}{E_L} ; \quad \varepsilon_T = \nu_{LT} \cdot \frac{\sigma_L}{E_L} ; \quad \varepsilon_R = \nu_{LR} \cdot \frac{\sigma_L}{E_L} \\
\varepsilon_{LT} &= \frac{\tau_{TL}}{G_{LT}} ; \quad \varepsilon_{RL} = \frac{\tau_{LR}}{G_{RL}} ; \quad \varepsilon_{TR} = \frac{\tau_{RT}}{G_{TR}}
\end{align*}
\]

Siendo en términos generales:

\[
\begin{align*}
E &= \text{módulo de elasticidad a flexión} \\
E_L &= 1,1 \cdot E \\
E_T &= 0,05 \cdot E_L \\
E_R &= 0,10 \cdot E_L
\end{align*}
\]

\[
\begin{align*}
G_{LT} &= 0,06 \cdot E_L \\
G_{LR} &= 0,075 \cdot E_L \\
G_{RT} &= 0,018 \cdot E_L
\end{align*}
\]

Como después veremos las hipótesis que se siguen aquí son muy simplificadas para poder acotar en cierta medida el problema.

Además a este factor de la adherencia tangencial, se añade otro fenómeno
como es el de la concentración de tensiones, también de esfuerzo cortante, que a partir de una determinada longitud de anclaje es más limitativo.

Las tensiones tangenciales que se originan en la superficie de contacto de la madera con la formulación epoxi se dan en planos paralelos al longitudinal - radial (L R) y al longitudinal-transversal (L T). Es decir, según la notación de la figura 6.40, pueden ser respectivamente τ_{TL}, τ_{TR} y τ_{RL}, τ_{RT}

En este aspecto no debemos dejar de considerar la diferencia que existe en la resistencia a cortante, según la dirección considerada. De tal forma, que si admitimos la madera como un material de estructura fibrosa constituída por un haz de tubos dispuestos en dirección paralela a la longitudinal se distinguen tres tipos diferentes de cortantes:

- Cortante por "deslizamiento de fibras". Es el cortante comúemente conside-rado en el cálculo de estructuras de madera, denominado "cortante paralelo a la dirección de las fibras". Tiene un valor de tensión admisible que oscila entre 8 y 16 kp/cm^2 aproximadamente. El fallo se produce por un deslizamiento de unas fibras respecto a otras. Figura 6.41 a.

- Cortante por "rodaduras de fibras". En este caso el esfuerzo está contenido en un plano paralelo a la dirección de las fibras, pero en dirección perpen-dicular a ellas. Tiene un valor poco estudiado experimentalmente por tratarse de un esfuerzo muy poco frecuente en estructuras de madera, y suele admi-tirse como aproximación desde un 15 % a un 50 % del valor del esfuerzo cortante paralelo a la fibra. Es por tanto, mucho menor y como término medio se suele tomar una tercera parte del cortante paralelo.

Esta tensión, sin embargo, si se produce en la madera cuando se ha consoli-dado con un refuerzo de placas. El fallo se produce por un efecto de rodadura de las fibras. Figura 6.41 b
Cortante por "cizalladura de fibras". Este se da cuando el esfuerzo está contenido en un plano perpendicular a la dirección longitudinal de la madera. Es tan frecuente como el cortante paralelo a la fibra en estructuras de madera, pero tiene un valor de resistencia muy superior a éste y en la práctica el fallo llega por aplastamiento de las fibras por una compresión perpendicular a ellas, sin alcanzar una rotura clara. (Figura 6.41 c)

Lógicamente dentro de cada tipo de cortante citado existen las dos direcciones radial y tangencial, pero las diferencias entre ambas son pequeñas, tomando la menor de ellas. En todo caso normalmente el esfuerzo se producirá en direcciones intermedias o desconocidas de antemano.

6.7.3.2. La adherencia tangencial y la longitud de anclaje

Se analiza a continuación un posible modelo teórico que valore la capacidad de transmisión por adherencia tangencial entre la placa y la madera, de las solicitudes que actúan a un lado y otro de la zona de anclaje. En el caso de piezas sometidas a flexión, estas serán el momento y el cortante

Hipótesis 1

Momento flector: Admitimos que la placa se comporta como un sólido rígido que
gira alrededor de el centro de simetría de su alzado incluido en la madera, figura 6.42

Figura 6.42

El momento flector produce un giro de un ángulo α de la posición relativa entre la superficie de la madera y la placa conectadas a través de la formulación. En la superficie de la madera, se originarán tensiones tangenciales que son proporcionales al desplazamiento sufrido. De tal forma, que la distribución de las tensiones tienen una ley triangular, siendo nula en el centro de giro y máxima en los puntos más alejados. (Figura 6.43).

Ahora bien, como las tensiones en la dirección X son paralelas a la fibra y las de dirección Y perpendiculares, deberemos tener en cuenta el diferente valor del módulo de deformación transversal en uno y otro plano. La relación entre los módulos G_{LT}/G_{RT} y G_{LR}/G_{RT}, vale aproximadamente 3. Esto implicaría que una deformación según el eje Y produciría una tensión tres veces inferior a la que se dá en la dirección del eje X.

Figura 6.43
Por tanto, podemos obtener cuales son las fuerzas que tienen por resultante un momento flector igual al aplicado. Para ello se descomponen las tensiones en dos volúmenes cada uno, según la dirección X y Y. (Figura 6.44)

\[
\frac{\tau_Y}{L_a/2} = \frac{\tau_X}{3h/2} \Rightarrow \frac{\tau_Y}{\tau_X} = \frac{L_a}{3 \cdot h}
\]

Las fuerzas F_y y F_x y sus momentos respectivos M_y y M_x:

\[
F_y = \frac{1}{2} \cdot \tau_y \cdot \frac{L_a}{2} \cdot h = \tau_y \cdot \frac{L_a \cdot h}{4}
\]

\[
M_y = F_y \cdot \frac{2}{3} \cdot L_a = \tau_y \cdot \frac{L_a^2 \cdot h}{6}
\]

\[
F_x = \frac{1}{2} \cdot \tau_x \cdot \frac{h}{2} \cdot L_a = \tau_x \cdot \frac{L_a \cdot h}{4}
\]

\[
M_x = F_x \cdot \frac{2}{3} \cdot h = \tau_x \cdot \frac{L_a \cdot h^2}{6}
\]

El momento total M será la suma de M_x y M_y; multiplicado por 2, ya que po cada placa actúan sus dos caras:

\[
M = 2 \cdot (M_x + M_y) = \tau_y \cdot \frac{L_a^2 \cdot h}{3} + \tau_x \cdot \frac{L_a \cdot h^2}{3}
\]
Para \(T_y = T_x \cdot \frac{L_a}{3 \cdot h} \)

\[M = \frac{T_x \cdot L_a}{9} \left(L_a^2 + 3 \cdot h^2 \right) \]

Para \(T_x = T_y \cdot \frac{3h}{L_a} \)

\[M = \frac{T_y \cdot h}{3} \left(L_a^2 + 3 \cdot h^2 \right) \]

Las tensiones \(T_x \) y \(T_y \) deben mantenerse dentro de las admisibles de la madera:

\[
\begin{align*}
T_x & \leq T_m \\
T_y & \leq T_m \cdot K_r
\end{align*}
\]

siendo:

\(T_m \) = tensión admisible a cortante paralelo a la fibra de la madera.

\(K_r \) = coeficiente que reduce la tensión admisible a cortante paralelo a la fibra, para obtener la tensión admisible a cortante por rodadura de fibras. Su valor varía con la especie entre 0,15 y 0,50. Para el pino insignis empleado en este estudio, se ha deducido de unos ensayos orientativos un valor medio de 0,33

Luego:

\[
\frac{9 \cdot M}{L_a \cdot (L_a^2 + 3 \cdot h^2)} \leq T_m \quad \text{(Hipótesis 1.a)}
\]

\[
\frac{3 \cdot M}{h \cdot (L_a^2 + 3 \cdot h^2)} \leq \frac{T_m}{3} \quad \text{(Hipótesis 1.b)}
\]

Cortante: Para la transmisión del cortante desde la madera hacia la placa a través de la zona de anclaje se supone una distribución de tensiones tangenciales en la dirección del eje y siguiendo una ley parabólica, del mismo modo, que en una sección rectangular. (Figura 6.45).
La tensión máxima deducida se suma a la tensión tangencial en la dirección y, obtenida de la transmisión del momento flector.

\[\tau'_y = \frac{3}{2} \cdot \frac{Q}{L_a \cdot h} \cdot 2 \quad \text{(El factor 2 viene dado por las dos caras de la placa).} \]

Por tanto, sumando las tensiones debidas al cortante y al momento flector, tendremos:

\[\tau_x = \frac{9 \cdot M}{L_a \cdot (L_a^2 + 3 \cdot h^2)} \leq \tau_m \quad \text{(Hipótesis 1.a)} \]

\[\tau_y + \tau'_y = \frac{3 \cdot M}{h \cdot (L_a^2 + 3 \cdot h^2)} + \frac{3 \cdot Q}{L_a \cdot h} \leq \frac{\tau_m}{3} \quad \text{(Hip.1.b)} \]

Consideraciones sobre esta hipótesis

Combinación de tensiones: Aunque para la madera no hay teorías generales de rotura, si se han desarrollado fórmulas empíricas de comprobación de combinación de tensiones, para los casos habituales. De esta forma podríamos pensar en efectuar una comprobación de al menos las dos tensiones tangenciales \(X \) é \(Y \) combinadas. Pero sin embargo, no se ha hecho así, por resultar unos valores demasiado conservadores si los comparamos con los datos de los ensayos. (Más adelante se trata de la comparación con los datos experimentales).
Placas embebidas en un cajead en la madera: Este es el caso más frecuente de instalación de la placa en el interior de la pieza. Como ya dijimos se consigue una mayor seguridad frente a incendios y se oculta el refuerzo, logrando un mejor aspecto estético.

Para que la hipótesis antes citada se cumpla, debería la placa tener libertad para girar en torno al centro de simetría. Sin embargo, cuando la placa es interior, se encuentra impedida de movimientos en su encuentro con la madera. Por este motivo el giro ya no sería alrededor de su centro, sino alrededor de un vértice.

De esta manera podríamos modificar la anterior hipótesis considerando éste efecto. Así en una placa con una relación muy pequeña entre la longitud de anclaje y su canto (L_a/h), el giro de ella podría suponer de manera aproximada una compresión en su vértice superior contra la madera en sentido longitudinal, y una distribución triangular de tensiones tangenciales en la superficie. (Figura 6.46)

![Figura 6.46](image)

Si por el contrario la placa tiene una proporción L_a/h elevada, las tensiones en la dirección y adquieren mayor relevancia. Dando lugar a unas compresiones en la madera (Figura 6.47)
En la realidad se darían de manera combinada ambas distribuciones, de tal suerte, que la existencia de esas compresiones sobre la madera aumentarían la eficacia del anclaje, frente a una placa adosada. No obstante, el considerar que la placa gira alrededor de su centro y con libertad en placas internas, va a favor de la seguridad.

Placas con relaciones de \(\frac{L_a}{h} \) muy elevadas.

Si la longitud de anclaje \(L_a \) es muy grande frente a su canto \(h \), llegará un momento en el que no sería posible despreciar la deformabilidad de la placa. De tal forma, que en una placa de gran longitud no toda ella colaboraría en la transmisión de tensiones, existiendo parte de la placa que no se vería afectada. Esto determinaría una longitud eficaz de anclaje. (Figura 6.48)

La evaluación de ello requeriría considerar el problema en su conjunto con las constantes elásticas de la madera y de la placa.
6.7.3.3.- La longitud de anclaje de la placa y la concentración de tensiones de cortadura.

La forma de rotura de las probetas, como se ha comentado anteriormente, se inicia generalmente con una fisura horizontal y longitudinal en la zona central del anclaje. Esto parece indicar un fallo de cortante paralelo a la fibra, de tipo rasante.

Este hecho se observa sólo en aquellas probetas que tenían la placa en su interior; lo que es lógico ya que en este caso, la sección de madera queda reducida por el cajeado.

Por el contrario la rotura de las probetas con placas adosadas perece obedecer más al fenómeno de adherencia y transmisión de tensiones tangenciales, llegando al arranque de fibras de la madera en su zona superficial.

Por este motivo se pensó que la causa de la rotura podía ser en algún caso una concentración de tensiones tangenciales en la madera, aunque la adherencia estuviera garantizada. Y a continuación se intenta explicar y cuantificar este hecho.

Supongamos una pieza de madera que en una zona se encuentra interrumpida y sustituida por una placa embebida en su interior. (Figura 6.49).

Si se encuentra sometida a flexión pura, la madera en una sección fuera de la zona de anclaje, tendrá una distribución de tensiones equivalente al momento flector aplicado en la pieza. Este estado es el mismo en la sección que limita el final de la placa, encontrándose ésta sin tensiones de flexión y todo el momento flector lo resiste la madera. En una sección intermedia que corte a la placa y a la madera, el momento flector quedará repartido entre ambos componentes.

En el punto donde la madera termina y sólo queda la placa, ésta última asumirá toda la flexión, quedando sometida al momento flector aplicado. Por el contrario la madera quedará sin tensiones de flexión. (Figura 6.49).
La parte de madera de la pieza compuesta pasará, por tanto, de un momento flector M hasta un valor nulo a través de la longitud de anclaje L_a.

Este efecto en la madera podemos hacerlo equivalente a un par de fuerzas que actuarían en los extremos de la longitud de anclaje y con un valor tal, que anulen el momento en el extremo de la madera. (Figura 6.50). Este par de fuerzas sería aportado por la acción de la placa sobre la madera a través de las tensiones tangenciales.

De esta forma la zona de anclaje se encuentra sometida a un cortante T, que vale:

$$T \approx \frac{M}{L_a}$$
Esta origina unas tensiones tangenciales, cuyo valor, despreciando la pequeña colaboración del recubrimiento del cajeado en su borde inferior, es el siguiente:

\[
\tau = \frac{3}{2} \cdot \frac{T}{b_e \cdot d}
\]

siendo:

\(\tau\) = tensión tangencial paralela a la fibra, máxima. Debe ser menor o igual a la admisible de la madera.

\(b_e\) = ancho efectivo de la sección de madera. Es decir, descontando el ancho de la caja, \(e : (b_e = b - n \cdot e)\), siendo \(n\) el número de placas.

\(d\) = canto de la pieza.

Luego:

\[
\tau = \frac{3}{2} \cdot \frac{M}{b_e \cdot d \cdot L_a} \leq \tau_m
\]
Sobre ésta hipótesis cabe hacer una corrección, que se ajusta algo más a la realidad. Esta es considerar el par de fuerzas \(T \), como una cierta distribución triangular de cargas, en lugar de puntual. Lo que estaría más de acuerdo con el origen de estas fuerzas, a partir de un efecto del giro de la placa y su traducción a tensiones sobre la madera.

En este supuesto la tensión máxima de cortante sería algo mayor: (Figura 6.51)

![Figura 6.51](image)

Así tendríamos:

\[
T = \frac{M}{\frac{2}{3}L_a} = \frac{3}{2} \cdot \frac{M}{L_a}
\]

\[
\tau = \frac{9}{4} \cdot \frac{M}{b_e \cdot d \cdot L_a}
\]

Sin embargo, el contraste entre los resultados experimentales con los teóricos que se trata en el apartado siguiente, se efectúa con la primera fórmula, que se denomina como hipótesis n° 2.
Cuando además del momento flector, la pieza se encuentra sometida a un cortante, podríamos suponer de manera similar al razonamiento anterior, que irá progresivamente compartiéndose con la placa, hasta que sea ésta última quien reciba todo.

Este cortante, que decrecerá de una forma más o menos lineal, se sumará al equivalente del momento flector. Según tomemos una distribución del cortante debida al momento, parabólica o rectangular, el lugar más desfavorables será distinto así como su valor. (Figura 6.52).

![Figura 6.52](image)

Para el caso 2), determinamos a continuación cuál sería el lugar donde se produce el máximo cortante $T + Q$.

\[
T = \frac{p \cdot L_a}{4} ; T = \frac{3 \cdot M}{2 \cdot L_a} ; p = \frac{6 \cdot M}{L_a^2}
\]

\[
T_m = b \cdot \frac{x}{2} + (p - b) \cdot \frac{x}{2}
\]

\[
\frac{p}{L_a^2} = \frac{b}{L_a/2 - x} ; b = p \left(1 - \frac{2 \cdot x}{L_a}\right)
\]
\[T_m = p \left(x - \frac{x^2}{L_a} \right) = \frac{6 \cdot M}{L_a^2} \left(x - \frac{x^2}{L_a} \right) \]

\[\frac{Q}{L_a} = \frac{T_Q}{L_a - x}; \quad T_Q = Q \left(1 - \frac{x}{L_a} \right) \]

\[C = T_m + T_Q = \frac{6 M}{L_a^2} \left(x - \frac{x^2}{L_a} \right) + Q \left(1 - \frac{x}{L_a} \right) \]

\[\frac{d c}{d x} = 0 = \frac{6 M}{L_a^2} \left(1 - \frac{2x}{L_a} \right) - \frac{Q}{L_a} \Rightarrow x = \frac{L_a}{2} - \frac{L_a^2}{12} \cdot \frac{Q}{M} \]

El valor de \(X \) sería el correspondiente al valor máximo de la suma de los dos cortantes, para el cual deberíamos comprobar las tensiones.

En el caso 1) se toma de manera más simplificada la suma de los valores máximos de ambos cortantes.

6.7.4.- Comparación de los modelos teóricos con los resultados de los ensayos.

Se comparan mediante gráficos las leyes de los modelos teóricos antes comentados (adherencia tangencial y tensiones rasantes) con las relaciones obtenidas del análisis de regresión de los ensayos.

 Esto se realiza para los casos de placas internas, placas adosadas y placas en apoyos.

Los datos generales adoptados para incluir en los modelos teóricos, son los siguientes:
\[C_m = 110 \text{ Kp/cm}^2 \]. Tensión media de rotura a cortante paralelo a la fibra del pino insignis.

Krod = 0,33. Coeficiente que minora \(C_m \) para obtener la tensión de rotura a cortante por rodadura.

\[\sigma_m = 850 \text{ Kp/cm}^2 \cdot 0,75 \text{ ó } 0,65. \text{Tensión media de rotura a flexión del pino insignis, multiplicada por la razón de calidad.} \]

\[\sigma_P = 2,500 \text{ Kp/cm}^2 \]. Tensión media de rotura a flexión de las placas de refuerzo. (Tipo Vipol).

6.7.4.1.- Placas internas en el centro del vano.

En la figura 6.57 se comparan los diferentes modelos de relación entre la longitud de anclaje y la carga de rotura, para el caso de los ensayos de vigas unidas en el centro de su luz con placas internas. (Ensayos descritos en el apartado 6.2)

Resumiendo los datos generales del ensayo, tendremos:

Sección de la madera : \(b \times d = 6,7 \times 10 \text{ cm}. \)

Anchura del cajeado : \(e = 2,1 \text{ cm}. \)

Sección de la placa : \(t \times h = 1,5 \times 8 \text{ cm}. \)

Ensayo según figura 6.53

Figura 6.53
En la figura se comparan las siguientes leyes:

a - Puntos que representan los resultados concretos de cada ensayo.

b - Recta de regresión de los resultados de los ensayos:

\[P = 1091 + 126 \cdot L_a \]

Siendo:

\[P = \text{carga total de rotura en Kp} \]
\[L_a = \text{longitud de anclaje de la placa en cm} \]
\[r = 0,9106 \quad (\text{Coeficiente de correlación}) \]

c - Curva de regresión de potencia de los resultados de los ensayos:

\[P = 682 \cdot L_a^{0,545} \]

con \[r = 0,9150 \quad (\text{Coeficiente de correlación}) \]

d - Hipótesis, de la adherencia tangencial, según se describe en 6.7.3.2

H. 1.a) Comprobación de las tensiones tangenciales en la dirección paralela a la fibra:

\[\frac{9 \cdot M}{L_a \cdot (L_e^2 + 3 \cdot h^2)} \leq C_m \quad ; \quad M = \frac{P \cdot l}{6} \]

Luego:
\[P = \frac{6 \cdot C_m \cdot L_a \cdot (L_e^2 + 3 \cdot h^2)}{9 \cdot l} \]

H.1,b) Comprobación de las tensiones tangenciales en dirección perpendicular a la fibra:

\[\frac{3 \cdot M}{h \cdot (L_e^2 + 3 \cdot h^2)} + \frac{3 \cdot Q}{L_a \cdot h} \leq \frac{C_m}{3} \]

El primer sumando se debe al momento flector aplicado, que vale:

\[M = \frac{P \cdot l}{6} \]
Y el segundo al cortante que puede afectar a la zona de anclaje cuando la longitud de anclaje se acerca o alcanza el punto de aplicación de la carga. De tal forma, que se han distinguido tres casos.

1.- Cuando la longitud de anclaje es tal, que no queda influida por el cortante. (Zona 1 de la figura nº 6.54)

En nuestro caso: Si \(L_a \leq 5 \text{ cm} \Rightarrow Q = 0 \), luego:

\[
P = \frac{2 \cdot \mathcal{C} \cdot h \cdot (L_a^2 + 3 \cdot h^2)}{3 \cdot \ell}
\]

2.- Cuando la longitud de anclaje es tal que el final de la placa queda a una distancia menor del canto de la madera del punto de aplicación de la carga. (Zona 2 de la figura nº 6.54).

Aquí se admite que el cortante que existe debajo de la carga, extiende su influencia de manera linealmente decreciente, hasta una distancia igual al canto de la pieza.

Si \(5 \text{ cm} \leq L_a \leq 15 \text{ cm} \)

\[
\frac{Q}{L_a - 5} = \frac{P/2}{10} \quad ; \quad Q = \frac{(L_a - 5)}{20} \cdot P
\]

\[
P = \frac{2 \cdot \mathcal{C} \cdot h}{3 \cdot \left[\frac{1}{(L_a^2 + 3 \cdot h^2)} + \frac{3 \cdot (L_a - 5)}{40 \cdot L_a} \right]}
\]

3.- Cuando la longitud de anclaje es tal que sobrepasa el punto de aplicación de la carga. Por lo que el cortante total afecta al anclaje:

Si \(L_a \geq 15 \text{ cm} \Rightarrow Q = \frac{P}{2} \)

Luego:
$$p = \frac{2 \cdot \pi \cdot h}{3 \cdot \left[\frac{1}{\left(L_a^2 + 3 \cdot h^2 \right)} + \frac{3}{4 \cdot L_a} \right]}$$

Figura 6.54

e - Hipótesis 2, de la concentración de tensiones de cortadura, según se describe en el apartado 6.7.3.3

Se ha tomado como valor del cortante debido al efecto del momento flector

$$T_m = \frac{M}{L_a}$$

Y para el cortante propio de la pieza se sigue un razonamiento igual al anterior de la hipótesis 1 b. De tal forma que se distinguen 3 zonas diferentes, y el cortante total se ha tomado como la suma de los valores máximos de ambos:
Zona 1

\[L_a \leq 5 \text{ cm.} \Rightarrow T_Q = 0 \quad y \quad T_m = \frac{M}{L_a} \]

\[T_m = \frac{P \cdot l}{6 \cdot L_a}; \quad P = \frac{4 \cdot \tau_m \cdot b_e \cdot d}{l} \cdot L_a \]

Siendo el ancho efectivo \(b_e = 6.7 - 2.1 = 4.6 \text{ cm.} \)

Zona 2

\[5 < L_a < 15 \text{ cm.} \Rightarrow T_m = \frac{M}{L_a}, y \]

\[T_Q = \frac{(L_a - 5)}{20} \cdot P; \quad P = \frac{2 \cdot \tau_m \cdot b_e \cdot d}{3 \cdot \left[\frac{L_a - 5}{20} + \frac{1}{6 \cdot L_a} \right]} \]

Zona 3

\[L_a > 15 \text{ cm} \Rightarrow T_Q = \frac{P}{2} \quad y \quad T_m = \frac{M}{L_a} \]

\[P = \frac{4 \cdot \tau_m \cdot b_e \cdot d}{3 \cdot \left[1 + \frac{1}{3 \cdot L_a} \right]} \]

f.- Límites de rotura:

Se dan como valores medios y orientativos las cargas que producirían la rotura por encima de los cuales no tendría sentido aumentar la capacidad del anclaje.

Estos son la flexión de la placa y de la madera. Para ésta última se dan según dos calidades 0.65 y 0.75, valores entre los que se mueven las piezas ensayadas.
6.7.4.2.- Placas adosadas en el centro del vano

En la figura 6.58 se comparan gráficamente diferentes modelos teóricos que relacionan la longitud de anclaje con la carga de rotura de la pieza, frente a los resultados experimentales según los ensayos descritos en el apartado 6.3

Datos generales del ensayo:

Sección de la madera: \(b \cdot d = 6.7 \times 9.5 \text{ cm} \)

Sección de las placas: \(t \cdot h = 1.3 \times 9.5 \text{ cm} \).

Ensayo según figura 6.55

Figura 6.55

Se contrastan los siguientes criterios y modelos:

a - Puntos que representan los resultados concretos de cada ensayo.

b - Recta de regresión de los resultados de los ensayos:

\[
P = 347 + 214 \times L_a;
\]

Siendo:

\(P \) = carga total de rotura en Kp.

\(L_a \) = longitud de anclaje de la placa en cm.

\(r = 0.8811 \) (Coeficiente de correlación)
c - Curva de regresión de potencia de los resultados de los ensayos.

\[P = 385 \times L^0.8 \]

con un coeficiente de correlación \(r = 0.9098 \)

d - Hipótesis 1, de la adherencia tangencial, según se describe en 6.7.3.2. Con el mismo razonamiento descrito para el caso anterior de placas internas, se obtuvieron las leyes H.1a y H.1b.

e - Hipótesis 2, de la concentración de tensiones de cortadura, según se describe en el apartado 6.7.3.3.

Se realizó siguiendo análogo razonamiento al descrito en las placas internas.

f - Límites de rotura.

Se dan los límites de rotura, por encima de los cuales no interesa aumentar la capacidad del refuerzo. La flexión de la placa queda muy por encima de la flexión de la madera para calidades comprendidas entre 0,65 y 0,75.

6.7.4.3.- Placas en los apoyos.

En la figura 6.59 se comparan gráficamente los diferentes modelos teóricos que relacionan la longitud de anclaje con la carga de rotura de la pieza, frente a los resultados experimentales según los ensayos descritos en el apartado 6.4.

Datos generales del ensayo:

Sección de la madera : \(b \times d = 6.5 \times 9.7 \) cm.

Anchura del cajado : \(e = 2.1 \) cm

Sección de la placa : \(t \times h = 1.5 \times 7.5 \) cm.

Ensayo según figura 6.56.
Figura 6.56

Al igual que en los casos anteriores se representan gráficamente:

a - Puntos que representan los resultados concretos de cada ensayo.

b - Recta de regresión de los resultados de los ensayos.

(Como se vió en 6.4 no se cuenta con las probetas nº 1 y 2, por no tener la misma luz entre apoyos, por lo que no son comparables con el resto).

\[P = 1553 + 244 \cdot L_a \]

Siendo:

\[P \] = carga total de rotura en Kp.
\[L_a \] = longitud de anclaje de la placa en cm.
\[r = 0,7019 \] (Coeficiente de correlación)

c - Curva de regresión de potencia de los resultados de los ensayos:

\[P = 1.113 \times L_a^{0,55} \]

Con un coeficiente de correlación \[r = 0,6586 \]
d - Hipótesis 1, de la adherencia tangencial, según se describe en 6.7.3.2.

H.1 a). Comprobación de las tensiones tangenciales en la dirección paralela a la fibra:

\[
\frac{9 \cdot M}{L_a \cdot (L_a^2 + 3 \cdot h^2)} \leq \frac{C_m}{m} \quad ; \quad M = \frac{p}{2} \cdot (11 + L_a)
\]

\[
P = \frac{2 \cdot L_a \cdot (L_a^2 + 3 \cdot h^2) \cdot C_m}{9 \cdot (11 + L_a)}
\]

H.1 b). Comprobación de las tensiones tangenciales en dirección perpendicular a la fibra:

\[
\frac{3 \cdot M}{h \cdot (L_a^2 + 3 \cdot h^2)} + \frac{3 \cdot Q}{2 \cdot h \cdot L_a} \leq \frac{C_m}{3}
\]

\[
M = \frac{p}{2} \cdot (11 + L_a) \quad ; \quad Q = \frac{p}{2}
\]

Luego:

\[
P = \frac{2 \cdot h \cdot C_m}{9 \left[\frac{11 + L_a}{L_a^2 + 3 \cdot h^2} + \frac{1}{4 \cdot L_a} \right]}
\]

e - Hipótesis 2, de la concentración de tensiones de cortadura, según se describe en el apartado 6.7.3.3.

El cortante \(T \) de comprobación es:
\[
T = T_m + T_Q \quad ; \quad T_m = \frac{M}{L_a} \quad y \quad T_Q = \frac{p}{2}
\]

\[
M = \frac{p}{2} \left(11 + L_a \right)
\]

Si \[
T = \frac{2 \cdot T_m \cdot b_e \cdot d}{3}
\]
tendremos:

\[
p = \frac{4 \cdot T_m \cdot b_e \cdot d}{3} \cdot \frac{1}{\left[1 + \left(\frac{11 + L_a}{L_a} \right) \right]}
\]

f - Límites de rotura.

En este caso el menor valor de la carga de rotura se espera por la capacidad resistente a cortadura de la sección de madera debilitada por el cajeado. Supuesta una calidad media de 0,75.

6.7.5.-Conclusiones sobre la comparación entre los modelos teóricos y los datos experimentales.

1 - En primer lugar podemos comprobar como prácticamente son coincidentes las dos regresiones efectuadas, lineal y de potencia, en el tramo correspondiente a las longitudes de anclaje ensayadas.

Sin embargo para longitudes de anclaje pequeñas, la resistencia decrece hasta llegar al valor nulo para la regresión curva. Lo cual está más de acuerdo con la realidad, que el valor inicial que daría el ajuste lineal.

2 - Las hipótesis 1 y 2 se ajustan más a los resultados experimentales de los ensayos con placas adosadas externamente. En el resto quedan siempre en valores más conservadores que la realidad.
 Esto es coherente con el fundamento de la hipótesis 1, en la que se supone que la placa no tiene ninguna coacción perimetral a su giro. Esto se cumple cuando la placa es adosada, mientras que es de esperar una mayor eficacia cuando la placa se encuentra embebida en el interior y el giro ya no se produciría alrededor de su centro de simetría.

3 - En todos los casos la hipótesis 2, de la concentración de tensiones de cortadura, parece seguir valores próximos a la combinación de las dos hipótesis 1, en sus valores menores.

Esta hipótesis, nº 2, tiene una forma parecida a la experimental, quedando en todo caso a favor de la seguridad.

4 - En la hipótesis nº 1 se distinguen claramente las dos curvas que la forman, H1a y H1b, correspondientes, respectivamente, a la comprobación de las tensiones tangenciales en dirección paralela o perpendicular a la fibra.

El punto de intersección de ambas separa los dos campos en los que el dominio de las tensiones tangenciales pasa de la tensión de cortante paralelo a las fibras al de rodadura, (perpendicular a la fibra). Esta intersección se produce para relaciones de L_α/h iguales o inferiores a la unidad, dependiendo de la influencia del cortante, y de otros factores relacionados con la anisotropía de la madera.

Y a partir de una relación L_α/h mayor de 1,8 a 2,3 aproximadamente, comienza a tener mayor peso la hipótesis nº 2, de la concentración de tensiones de cortadura.

5 - La mayor diferencia entre los modelos teóricos y la realidad, se dá en el caso de las placas de refuerzo en apoyos. Este caso de placas en sustitución del apoyo se realizó de manera que la influencia del cortante fuera mayor que la del momento flector.

Por lo que ésta mayor diferencia puede indicar que el peso del cortante en el modelo teórico está sobrevalorado. Ya que en los ensayos con vigas
unidas en el centro de su luz, en las que era mayor la importancia del momento, la separación entre la teoría y la realidad es menor.

6 - Los modelos experimentales alcanzan un valor de resistencia máxima limitada por la propia capacidad de la madera. Esto ocurre a distintas relaciones de L_a/h según el ensayo: Para placas internas en el centro del vano entre 1,8 y 2,2 aproximadamente. Para placas adosadas entre 1,8 y 2. Y en placas en apoyos entre 1,2 y 1,4.

7 - Para tener una confirmación más precisa de los modelos teóricos, sería necesario un número mayor de ensayos, que abarcaran las siguientes posibilidades:

Además de las longitudes de anclaje aquí estudiadas (L_a/h entre 0,5 y 2), debería incluir relaciones L_a/h inferiores y superiores a este campo. Para así comprobar cuál es la relación existente en los extremos.

Ensayos sobre piezas de madera con una sección que tenga un ancho mayor, estudiando la influencia del ancho de la sección en el anclaje de la placa. Esto indicaría cuál es la colaboración a efectos de la concentración de tensiones del ancho de la pieza.

Y ensayos de piezas de madera con longitud y sección de tamaño real. Para la comprobación general de los resultados a pequeña escala.

Por otro lado, para realizar el estudio de la influencia del momento flector, de manera aislada, en la longitud de anclaje, se precisarían piezas de mayor esbeltez que las utilizadas, y mayor longitud. Para de esta forma en un ensayo con cargas en los tercios de la luz, la zona de anclaje de la placa quedará fuera de la influencia del cortante.
Figura 6.57 Placas embebidas
Figura 6.58.- Placas adosadas.
Figura 6.59.- Placas en apoyos.
6.7.6.- Método simplificado para el diseño del refuerzo.

En este apartado se expone lo que podría ser un método simplificado para el diseño de una consolidación mediante el refuerzo con placas, en el caso de vigas biapoyadas con carga uniformemente repartida.

En cierta manera resumen los pasos descritos en este subcapítulo 6.7, por lo que se hacen referencias a los resultados antes citados.

Datos necesarios.

De la madera:

- ancho y canto de la sección : b, d
- luz de la viga : l
- σ_m = tensión admisible a flexión.
- τ_m = tensión admisible a cortante paralela a la fibra.
- K_r = coeficiente que minora la tensión admisible a cortante paralelo para obtener la resistencia a cortante por rodadura de las fibras.

Del material de la placa de refuerzo:

- σ_m = tensión admisible a flexión
- τ_m = tensión admisible a cortante.

Si el material es anisótropo deberán conocerse las resistencias anteriores en cada dirección.

Determinación de la sección transversal y número de las placas.

Se obtiene para el punto más desfavorable de la viga biapoyada:

Canto de la placa: $h = d - 2\text{ cm}$.
Espesor de la placa, t: normalmente se elige de antemano por disponibilidad comercial o por razones obligadas por la maquinaria que debe realizar el caja-do.

Además deberá aportar suficiente sección para que no presente problemas de pandeo lateral y abolladura cuando la placa tenga una longitud libre sin la confinación de la madera.

Número de placas necesarias, n: será el mayor valor de los dos siguientes:

\[n = \frac{\sigma_m}{\sigma_p} \cdot \frac{b \cdot d^2}{t \cdot h^2} \]

\[n = \frac{\tau_m}{\tau_p} \cdot \frac{b \cdot d}{t \cdot h} \]

Longitud de anclaje de cada placa.

Se determina para vigas biapoyadas que tengan una esbeltez tal que:

\[\frac{l}{d} \geq \frac{\sigma_m}{\tau_m} \]

Siguiendo la hipótesis 1, descrita en el apartado 6.7.3.2, y teniendo en cuenta que para la longitud de anclaje L_a, siempre se dispondrá un valor mínimo que será superior al canto h de la placa, el dimensionamiento vendrá definido por la denominada hipótesis 1 b. (Con tensiones de cortante por rodamuda).

Si despreciamos a favor de la seguridad y sin cometer un error grande, el momento Mx apartado por las tensiones en dirección paralela a la fibra, tendremos:

\[M_y = \tau_y \cdot \frac{L_a^2 \cdot h}{6} \]

\[M_x = \tau_y \cdot \frac{L_a^2 \cdot h}{3} \]

\[\tau_y = \frac{3 \cdot M}{L_a^2 \cdot h} \leq \tau_m \cdot K_r \]
Sumando a esta tensión la producida por el cortante Q de la barra:

$$\frac{3\cdot M}{La \cdot h} + \frac{3\cdot Q}{La \cdot h} \leq C_m \cdot Kr$$

De donde:

$$L_a^2 \cdot \frac{C_m \cdot K_r \cdot h}{3} - L_a \cdot Q - M = 0$$

Llamando a:

$$\frac{C_m \cdot K_r \cdot h}{3} = E$$

y despejando L_a:

$$L_a = \frac{Q}{2 \cdot E} + \sqrt{\left(\frac{Q}{2 \cdot E}\right)^2 + \frac{M}{E}}$$

La anterior expresión permite obtener la longitud de anclaje en función del momento y cortante existentes en la sección correspondiente al centro de la longitud de anclaje. Para lo cual es preciso predimensionar dicha longitud.

Sin embargo, es posible simplificar la expresión de la longitud de anclaje por un procedimiento como el siguiente: Distingúyamos tres zonas en la longitud de la viga según el punto donde se presente la discontinuidad. Ver figura 6.60. En cada tramo adoptamos el valor de momento y el cortante constantes y en su caso más desfavorable.

De esta forma tendríamos para cada zona una expresión diferente:

Zona 1: Cuando $C \leq \frac{1}{8} - \frac{L_a}{2}$; como aproximación se puede considerar $C \leq \frac{1}{8} - 1,2 \cdot d$.

$$Q = \frac{q \cdot l}{2}; \quad M = \frac{q \cdot l^2}{18,3}$$
\[
\frac{Q}{2 \cdot E} = \frac{\sigma_m}{C_m \cdot K_r} \cdot \frac{b \cdot d^2}{1 \cdot h \cdot n}
\]

\[
\frac{M}{E} = 0.218 \cdot \frac{\sigma_m}{C_m \cdot K_r} \cdot \frac{b \cdot d^2}{h \cdot n}
\]

Siendo la carga máxima admisible para la viga y para cada placa:

\[
q = \frac{4 \cdot \sigma_m \cdot b \cdot d^2}{3.12 \cdot n}
\]

\(n = \) número de placas.

\[\text{Zona 2: Cuando } \frac{1}{8} - \frac{L_a}{2} < C < \frac{1}{4} - \frac{L_a}{2}; \text{ o bien}\]

aproximadamente \(\frac{1}{8} - 1.2 \cdot d < C < \frac{1}{4} - 1.2 \cdot d\)

\[
Q = \frac{3 \cdot q l}{8}; \quad M = \frac{q \cdot l^2}{10.6}
\]

\[
\frac{Q}{2 \cdot E} = \frac{3 \cdot \sigma_m}{4 \cdot C_m \cdot K_r} \cdot \frac{b \cdot d^2}{1 \cdot h \cdot n}
\]

\[
\frac{M}{E} = \frac{3 \cdot \sigma_m}{8 \cdot C_m \cdot K_r} \cdot \frac{b \cdot d^2}{h \cdot n}
\]

\[\text{Zona 3: Cuando } C \geq \frac{1}{4} - \frac{L_a}{2}; \text{ o bien } C \geq \frac{1}{4} - 1.2 \cdot d\]
Figura 6.60.- Simplificación por zonas.

\[Q = \frac{ql}{4}; \quad M = \frac{ql^2}{8} \]

\[\frac{Q}{2E} = \frac{\sigma_m}{2C_mK_r} \cdot \frac{b d^2}{1 \cdot h \cdot n} \]

\[\frac{M}{E} = \frac{\sigma_m}{2C_mK_r} \cdot \frac{b d^2}{h \cdot n} \]

Siendo: \[E = \frac{C_m K_r h}{3} \]
Si admitimos como valores comunes en la madera una relación entre las resistencias de flexión y cortante de $\sigma_m / \tau_m = 10$. Y una valor del coeficiente de "rodadura" de 0,3. (Este valor depende de la especie de madera).

Además como aproximación el valor del canto de la placa h, puede tomarse como un porcentaje del canto de la pieza. Así tendríamos:

$$\frac{\sigma_m}{\tau_m} = 10 \quad ; \quad K_r = 0,3$$

$h = 0,9 \cdot d$; Este valor es válido cuando tomando $h = d - 2 \text{ cm}$, el canto d es igual o superior a 20 cm.

En este caso tendríamos las siguientes expresiones para la:

Zona 1:
$$L_a = 37 \cdot \frac{b \cdot d}{l \cdot n} + \sqrt{\left(37 \cdot \frac{b \cdot d}{l \cdot n}\right)^2 + 8 \cdot \frac{b \cdot d}{n}}$$

Zona 2:
$$L_a = 27,7 \cdot \frac{b \cdot d}{l \cdot n} + \sqrt{\left(27,7 \cdot \frac{b \cdot d}{l \cdot n}\right)^2 + 13,8 \cdot \frac{b \cdot d}{n}}$$

Zona 3:
$$L_a = 18,5 \cdot \frac{b \cdot d}{l \cdot n} + \sqrt{\left(18,5 \cdot \frac{b \cdot d}{l \cdot n}\right)^2 + 18,5 \cdot \frac{b \cdot d}{n}}$$

En la figura 6.61 se representa un ábaco que para la zona 1, da la longitud de anclaje para una viga, entrando con la sección transversal dividida por el número de placas y la luz.
Figura 6.61.- Longitud de anclaje para la zona 1
CAPÍTULO VII

7. ESTUDIO DE LA INFLUENCIA DE LAS VARIACIONES DE LA TEMPERATURA Y DE LA HUMEDAD EN ESTOS SISTEMAS.

7.1. OBJETIVOS

Los métodos de consolidación que aquí se tratan, implican el trabajo solidario de tres materiales de naturaleza diversa. Estos son: la madera, la formulación epoxi y el material de refuerzo, en nuestro caso de tipo compuesto.

Estos tres materiales presentan diferentes coeficientes de dilatación térmica y por tanto, una variación de la temperatura origina tensiones en los propios materiales y en la superficie de unión entre ellos. Las que actúan normalmente, es decir, sobre el material no tienen gran importancia frente a las tensiones de trabajo. Sin embargo, las que son de tipo tangencial entre las superficies de contacto, pueden alcanzar valores con relativa importancia frente a las de trabajo, a las que se sumarían.

Por otro lado, debemos considerar la propiedad que tiene la madera de variar sus dimensiones al modificar su contenido de humedad, fenómeno conocido como hinchazón y merma. El contenido de humedad de la madera varía cuando las condiciones higro-térmicas del ambiente se modifican, en virtud de la higroscopicidad de la madera, o bien cuando entra en contacto con el agua.

Al igual que con la variación de temperatura, la diferencia de humedad producirá tensiones entre los materiales. En la cuantificación del fenómeno intervienen de manera decisiva los módulos de elasticidad de cada material. En la madera aparecerían diferentes módulos de elasticidad, coeficientes de dilatación térmica y de humedad según la dirección considerada, al tratarse de un material anisotrópico.
Desde el punto de vista práctico, nos interesará conocer cuáles son la magnitud de éstas tensiones y su relevancia en la seguridad de la consolidación. Para ello debemos estimar cuáles son las condiciones extremas higrotérmicas a las que se encuentra sometida una madera determinada. Un ejemplo de una estructura de madera que se encuentra con valores extremos de humedad y temperatura, sería la armadura de una cubierta o la estructura porticada de una galería o corredor, donde el agua de lluvia entra en contacto con la madera. Lógicamente y en todo caso dependerá de su localización geográfica con sus variaciones anuales de condiciones higrotérmicas.

La finalidad de este capítulo es estudiar este fenómeno por el camino de la experimentación y después contrastarlo con un estudio teórico.

Para ello se han realizado unos ciclos de condiciones extremas de temperatura y otros de humedad, en los que se incluyeron probetas del mismo tipo que las empleadas en el resto del trabajo. Unas eran de adherencia tangencial entre madera y formulación, otras de adherencia tangencial entre refuerzo y formulación; y a mayor tamaño se realizaron probetas en forma de pequeñas vigas con refuerzo de placas en un apoyo.

Durante el transcurso de los ciclos eran anotadas las observaciones que visualmente se apreciaban del estado de las probetas. Y al final de los mismos, después de un periodo de estabilización, se sometían a ensayo. De esta forma podremos comparar sus resultados con los anteriormente descritos, sin ciclos de envejecimiento.

En el apéndice nº 9 "Ciclos de humedad y temperatura" se refieren los datos concretos de los ensayos.

7.2. CICLOS DE CONDICIONES EXTREMAS DE TEMPERATURA.

En estos ciclos se introdujeron las siguientes probetas:

- 6 vigas de pequeña luz, con placas de refuerzo en un apoyo. Iguales a las utilizadas en el apartado 6.4. La madera era de pino insignis. La formulación Sikadur 42
anclajes con la dosificación modificada para facilitar su vertido:

Y la placa de refuerzo era de resina de poliéster y fibra de vidrio en mat; "Vipol" con un espesor de 15 mm y un canto de 75 mm.

- Pequeñas probetas de adherencia tangencial entre madera y formulación: 16 con Sikadur 42 anclajes (Dosificación normal : 7 : 4 : 40) y 16 con Sikadur 31 adhesivo. En todas ellas la superficie de contacto era "lisa", es decir, salida de la cepilladora. Son del tipo de las empleadas en el capítulo 4.

- Pequeñas probetas de adherencia tangencial entre placas tipo "Vipol" y formulación epoxi: 2 probetas con S. 42 anclajes (7 : 4 : 40) y 2 con S. 31 adhesivo. El espesor de las placas era de 15 mm y el tratamiento de la superficie un simple lavado con disolvente.

Estas probetas son similares a las descritas en el partado 5.1.1.

En el apéndice nº 9.1. "Ensayo de las probetas sometidas a ciclos de temperatura", se encuentran los estadillos de los ensayos.

7.2.1.- Descripción de los ciclos.

Se repitió cuatro veces el proceso que continuación se describe, y que tiene una duración aproximada de 12 días:

1 - Se introducen en estufa a 60° C durante 48 h. La humedad inicial de la madera era del 12 %.

2 - Periodo de estabilización con una duración de 5 a 7 días. De tal forma que la
madera, en las piezas de mayores dimensiones, recuperen la humedad inicial, de equilibrio con el ambiente.

3 - Se introducen en una cámara frigorífica a - 20º C, durante 48 horas.

4 - Periodo de estabilización con una duración entre 12 y 48 horas, hasta que la madera adquiera la temperautra ambiente.

Con este procedimiento el fin buscado era conocer la influencia de la temperatura en las probetas. Sin embargo el aumento de temperatura en la estufa implica una pérdida de humedad de la madera, efecto que viene a sumarse al de la temperatura.

Para determinar cual era el contenido de humedad de la madera, se acompañaba a las probetas con una pieza "testigo" con las mismas dimensiones que las probetas. Esta era pesada al comienzo de los ciclos y al salir de la estufa.

Así la humedad inicial correspondiente a las maderas de pequeño tamaño era del 12 % y para las de tamaño mayor, vigas, del 14 %.

Después de las 48 horas en estufa a 60º C, la humedad bajaba aproximadamente a un 3 % y en piezas grandes a un 4 %. Aunque como la placa se encuentra colocada en un extremo de la pieza, la humedad cerca de las testas siempre decrece más rápidamente, pudiendo considerar el 3 %, en general.

7.2.2.- Observaciones durante los ciclos.

Se describen aquí las anotaciones realizadas durante el proceso con posibles interpretaciones:

1) - Al cabo de las 24 h. del primer ciclo en la estufa, se apreciaban pequeñas fisuras entre refuerzo y madera en las vigas. Y en las probetas de adherencia
madera-formulación algunas grietas y separaciones de la formulación.

Después de las 48 h. en estufa, las probetas son sacadas y se aprecia ya más generalizado el proceso de fisuración.

En las probetas grandes, vigas, se forman fisuras que en la superficie de arriba separan la placa de la formulación; mientras que en la testa se forman entre madera y formulación.

En la figura 7.1 se describen estas fisuraciones.

Figura 7.1.- Fisuración de las probetas.

Como se aprecia en la figura anterior, las fisuras en la parte superior, siempre desaparecen cuando la placa termina. Es decir, no hay fisuración donde sólo
hay formulación. Esto parece indicar que la dilatación térmica de la placa es crítica sumada a la merma de la madera.

En la figura 7.2 se describe gráficamente el fenómeno: Mientras que el refuerzo y la formulación por efecto de la temperatura intentan aumentar de volumen, la madera pierde humedad siendo superior su merma a la dilatación térmica. De tal forma, que las tensiones tangenciales entre placa-formulación y madera terminan fisurando zonas para permitir su movimiento relativo.

En el borde superior de la pieza las fisuras, según hemos comentado anteriormente se producen rompiendo la propia formulación separando la placa de ésta, al menos en la zona visible externa. En cambio el fallo en el sentido transversal se produce por la interfase madera formulación o madera - madera. Esto puede deberse a la diferencia de resistencia a esfuerzo cortante, superior en sentido paralelo a la fibra de la madera que en la dirección perpendicular, en la que se da "rodadura de fibras".

![Figura 7.2 - Efecto del aumento de la temperatura.](image)

2 - Igualmente al cabo de las primeras 48 horas en estufa, en las probetas de adherencia madera-formulación se observan los siguientes cambios:

a) En las que tenían por formulación el Sikadur 42 anclajes, 8 de ellas presentan grietas en ambos lados de la probeta, fallando por formulación. Otras 7 tienen fisuras en un sólo lado, y una no presenta fisuras aparentes. (Figura 7.3)
b) En aquellas realizadas con S. 31 adhesivo, el estado aparente era correcto.

3 - Por el contrario en las probetas de adherencia entre placas y formulación, tanto con S. 42 como con S. 31, no presentan fisuras ni deterioros visibles.

Esto indica que ambos materiales, son compatibles en su deformación debida al cambio de temperatura. Al menos en su aspecto visual.

4 - El aspecto de las probetas una vez pasado el período de estabilización y el primer intervalo de 48 horas en cámara frigorífica no ha variado, excepto el tamaño de las fisuras que ha disminuido ligeramente. Lo que es lógico debido a que los materiales recuperan su volumen inicial.

En la cámara frigorífica la humedad de la madera permanece constante como se demuestra por las pesadas realizadas.

5 - Después del segundo período de estufa a 60°C. las vigas presentan en todos los casos las fisuras de la parte superior afectando a toda la longitud y a ambos lados de la placa de refuerzo. (Figura 7.4). Además se forman algunas fendas en la madera producidas por el secado.

Las probetas pequeñas de adherencia tangencial siguen aproximadamente en el mismo estado. Es decir, sólo las del S. 42 de madera-formulación tienen algunas fisuras laterales.
Figura 7.4.- Fisuras generalizadas en las vigas después del segundo ciclo.

6.- Al finalizar los cuatro ciclos, el estado aparente de las probetas es prácticamente el mismo que ya hemos definido. Excepto una mayor generalización de las fisuras en las probetas de adherencia de madera con S. 42.

Podemos hacer notar como la fisuración de las probetas de adherencia madera – formulación S. 42, definida en la figura 7.3, se debe a una contracción en dirección perpendicular a la fibra, donde el coeficiente de contracción es de 20 a 50 veces superior al longitudinal.

7.2.3.- Probetas de adherencia tangencial entre madera y formulación.

En el apéndice nº 9.1 "Ensayo de las probetas sometidas a ciclos de temperatura", se pueden consultar los datos concretos de cada ensayo.

Metodología de ensayo

Los ensayos siguen el mismo proceso de ensayo definido en 4.1 "Descripción de los ensayos: método y normas", para la adherencia entre formulación epoxi y madera. La descripción de los datos reflejados en los estadillos es la misma que la definida en 4.2
Se elaboraron dos grupos de 16 probetas con madera de pino insignis, uno con formulación S. 42 y otro con S. 31. Ambos con dosificación normal. La textura de la superficie de contacto era en todos los casos "lisa" (Cepillada).

Resultados de los ensayos

En el cuadro 7.1 se resumen los resultados de los ensayos en sus valores medios. Y son comparados con las probetas equivalentes, que no fueron sometidas a ciclos de temperatura, con el fin de contrastar los resultados. La comparación se hace con los ensayos realizados con formulación de edad igual a 21 días, ya que las probetas cuando comenzaron los ciclos ya tenían esa edad.

<table>
<thead>
<tr>
<th></th>
<th>SIKADUR 42</th>
<th></th>
<th>SIKADUR 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEN. ROTURA</td>
<td>% FIBRAS</td>
<td>TEN. ROTURA</td>
</tr>
<tr>
<td></td>
<td>C. V.</td>
<td>C. V.</td>
<td>C. V.</td>
</tr>
<tr>
<td>SIN CICLOS</td>
<td>118</td>
<td>46</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>CON CICLOS TEMPERATURA</td>
<td>60</td>
<td>3</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2,5</td>
<td>19</td>
</tr>
</tbody>
</table>

Cuadro 7.1.- Comparación entre los resultados de probetas de adherencia tangencial entre madera y formulación epóxi, sometidas a ciclos de temperatura y no sometidas.

Madera de pino insignis, superficie lisa, edad de la formulación de 21 días. Valores medios de tensión de rotura en Kp/cm² y coeficientes de variación en %.

Conclusiones, teniendo en cuenta el aspecto de la rotura.

Del cuadro anterior deducimos una disminución a la mitad de la tensión de rotura en el caso del Sikadur 42. Y para el Sikadur 31, se mantiene prácticamente el mismo valor medio, mejorando el porcentaje de fibras arrancadas de madera.
De la observación de la superficie de rotura podemos sacar interesantes conclusiones. En las probetas con formulación Sikadur 42, la rotura se produce por cortante de la misma formulación. Quedando en ambas superficies de madera adherida la resina. Además se aprecia que los áridos, carga de arena de cuarzo, que entra en la dosificación, quedan más o menos disgregados del mortero epoxi, y son fácilmente separados al rozarlos.

Este fenómeno no se daba en las probetas de igual formulación sometidas a esfuerzo cortante, en la que los granos quedaban más adheridos. (ver figura 7.5)

![Diagrama de adherencia madera formulación y cortante formulación](image)

Figura 7.5.- Comparación entre las superficies de rotura de la formulación 5.42 sometidas o no a ciclos de temperatura.

Por lo que podemos deducir que las variaciones de temperatura desde la inicial de +20°C hasta +60°C y -20°C, produce un deterioro en la formulación posiblemente debida a microfisuración entre los granos de árido y la resina con diferentes coeficientes de dilatación.

Esta explicación viene reforzada por el menor coeficiente de variación, de la tensión de rotura, un 8% frente al 25% más propio de la rotura de la madera. Igualmente el porcentaje de fibras arrancadas es prácticamente nulo, dado que la rotura se dá por la formulación.

Esta debilitación de la resistencia a cortadura de la formulación Sikadur 42, no ocurre en el Sikadur 31. Esto es lógico pensando que carece de carga de áridos, teniendo unas cargas de otro tipo como fibras mucho más finas. En las de Sikadur 31 la rotura se produce por cortante de la madera.
Resumiendo, la formulación Sikadur 31 adhesivo no queda afectada por los ciclos, y la Sikadur 42 anclajes pierde cohesión y por tanto, resistencia propia al cortante, aunque no falla su adherencia a la madera.

7.2.4.- Probetas de adherencia entre formulación y placas de fibra de vidrio.

La relación detallada de estos ensayos se encuentra en el apéndice 9.1 "Ensayos de las probetas sometidas a ciclos de temperatura".

Metodología de ensayo.

El método de ensayo es el mismo que se ha comentado en el apartado 5.1.1. "Metodología de ensayo de adherencia tangencial entre placas de material compuesto y formulación", del capítulo 52.

Se elaboraron un grupo de tres probetas para cada formulación (S. 42 y S. 31), con dosificación normal. El tratamiento de la superficie de unión consistió en una limpieza con disolvente. La placa era de tipo "Vipol" con espesor de 15 mm.

Resultados de los ensayos.

En el cuadro 7.2 se resumen los valores medios de las tensiones de rotura. Y son comparados con sus homólogos, del capítulo 52, que no habían sido sometidos a temperaturas extremas. Y cuyo tratamiento era el mismo, es decir el lavado con disolvente.
<table>
<thead>
<tr>
<th></th>
<th>SIKADUR 42</th>
<th></th>
<th>SIKADUR 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEN. ROTURA</td>
<td>% FIBRAS</td>
<td>TEN. ROTURA</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td>C.V.</td>
<td>C.V.</td>
</tr>
<tr>
<td>SIN CICLOS</td>
<td>129</td>
<td>81</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>CON CICLOS</td>
<td>77</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>TEMPERATURA</td>
<td>9</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

Cuadro 7.2.- Comparación entre los resultados de probetas de adherencia entre placas "Vipol" y formulación sometidas o no a ciclos de temperatura. Tensiones de rotura medias en Kp/cm² y coeficientes de variación en %.

Conclusiones.

Del cuadro anterior podemos deducir las mismas consecuencias que para el caso precedente de las probetas de madera y formulación, apartado 7.2.3.

En la formulación Sikadur 42 la resistencia se reduce a poco más de la mitad del valor inicial. El fallo se produce por cortante de la propia formulación a una tensión de 77 Kp/cm², muy próxima a los 60 Kp/cm² de madera-formulación del apartado anterior. Lo que es congruente con la idea deterioro interno de la formulación, por dilatación térmica diferencial entre cargas y resinas.

Igualmente se aprecia en la superficie de rotura como los granos de carga de arena de cuarzo, se separan fácilmente del resto. Del mismo modo que en las probetas de madera, descrito en la figura 7.5. Sin embargo la formulación se mantiene adherida a las superficies de la placa.

En la formulación Sikadur 31 adhesivo la tensión de rotura media por adherencia tangencial no se modifica, y en todo caso hay una mayor proporción de fibras arrancadas en la rotura.
7.2.5.- Vigas de pequeña luz con placas en el apoyo.

La relación detallada de estos ensayos se encuentra en el apéndice n° 9.1, "Ensayos de las probetas sometidas a ciclos de temperatura".

Metodología de ensayo.

El método de ensayo es el mismo que se llevó a cabo en el apartado 6.4.2. Se elaboraron seis probetas con tres longitudes de anclaje diferentes: 5, 6 y 8 cm.

Las condiciones de formulación y refuerzo se describieron en el apartado 7.2.

Resultados de los ensayos.

En el cuadro siguiente 7.3, se resumen los resultados de estos ensayos, relacionando la longitud de anclaje con la carga total de rotura.

<table>
<thead>
<tr>
<th>PROBETA N°</th>
<th>LONGITUD DE ANCLAJE L_a cm</th>
<th>CARGA DE ROTURA P Kp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1.820</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.250</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.660</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.600</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2.480</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2.590</td>
</tr>
</tbody>
</table>

Cuadro 7.3
Descripción del modo de rotura.

Se observa una tendencia hacia la rotura por fallo de la propia formulación por cortadura. Únicamente en el caso de las longitudes de anclaje superiores se dan fallos por cortante de la madera.

Este modo de rotura es por tanto, distinto al que presentaban las probetas que no estuvieron sometidas a temperaturas extremas. En aquellas el fallo se producía por cortadura de la propia madera.

La justificación de este fenómeno puede estar en la menor resistencia que presenta la formulación después de los ciclos de temperatura, tal y como se deduce de los ensayos precedentes en pequeñas probetas. La causa podría ser la disgregación entre la carga y la resina.

En la figura 7.6 se muestra la rotura típica de una probeta después de los ciclos de temperatura. Generalmente, se combinan los fallos de cortante en la formulación, en la fibra de vidrio y en algún caso adherencia fibra de vidrio formulación o bien, cortante de la madera.

![Diagrama de rotura típica después de los ciclos de temperatura.](image)

Figura 7.6. Rotura típica después de los ciclos de temperatura.

Conclusiones.

El ajuste según una regresión de potencia de las parejas de valores de longitud de
anclaje y carga de rotura, da la expresión siguiente:

\[P = 10\% \cdot L_a^{0.42} \] con un coeficiente de correlación \(r = 0.62 \)

Si comparamos ésta con el ajuste obtenido para piezas no sometidas a los ciclos:

\[P = 1113 \cdot L_a^{0.55} \]

Resulta para el tramo comprendido entre longitudes de anclaje de 5 y 8 cm., una relación media de 0.77 entre las cargas de rotura de una y otra expresión.

Según los modelos teóricos, la carga resistida es directamente proporcional a la tensión media de cortadura de la madera. De este modo la reducción de la carga resistida, a un 77% de la original, implicaría una tensión media de cortadura en la propia formulación, por donde se produce el fallo, de \(110 \times 0.77 = 84 \) Kp/cm².

Este valor se aproxima a los obtenidos anteriormente en probetas pequeñas. Con lo que la pérdida de resistencia que se produce después de los ciclos de temperatura parece obedecer a la pérdida de resistencia de la propia formulación.

Otro aspecto que podemos destacar es como a pesar de ocurrir una disminución de la resistencia notable (Reducción del valor original a un 77%), sin embargo no es tan alta como aparentemente podríamos esperar de la observación externa de las fisuras producidas entre los materiales, a causa de movimientos diferenciales.

 Esto puede indicar que la profundidad de la fisuración no era muy elevada, y que el efecto de la temperatura y pérdida de humedad puede resultar de mayor gravedad en las zonas externas.
7.3. CICLOS DE CONDICIONES EXTREMAS DE HUMEDAD.

En estos ciclos se incluyeron las siguientes probetas.

- 6 vigas de poca luz, con placas de refuerzo en un apoyo. Son idénticas en formato a las empleadas en el apartado 6.4 y el 7.2 de los ciclos de temperatura. La madera era de pino insignis. La formulación Sikadur 42 anclajes con la dosificación modificada para facilitar su vertido (A : B : C = 7 : 4 : 25, Resina : Endurecedor : Cargo).

Y la placa de refuerzo era de resina de poliéster y fibra de vidrio en mat; tipo "Vipol", con un espesor de 15 mm. y un canto de 75 mm.

- Probetas pequeñas de adherencia tangencial entre madera y formulación: 16 con Sikadur 42 anclajes (Dosificación normal: 7 : 4 : 40) y 16 con Sikadur 31 adhesivo. En todas ellas la superficie de contacto era "lisa", es decir salida de la cepilladora. Son del mismo formato que las empleadas en el capítulo 4.

- Probetas pequeñas de adherencia tangencial entre placas tipo "Vipol" y formulación epoxi: 2 probetas con Sikadur 42 anclajes (7 : 4 : 40) y 2 con Sikadur 31 adhesivo. El espesor de las placas era de 15 mm. y el tratamiento de la superficie un simple lavado con disolvente.

Estas probetas son similares a las descritas en el apartado 5.1.1. Y en el apéndice n° 9.2 "Ensayos de las probetas sometidas a ciclos de humedad", se encuentran los estadíos de los ensayos.

7.3.1. Descripción de los ciclos.

Se repitió cuatro veces el proceso que a continuación se describe, y que tiene una duración aproximada de 14 días.
1 - Inmersión en agua a temperatura ambiente durante 54 horas. Este tiempo resultó ser suficiente para que la madera alcanzara una humedad igual o superior al punto de saturación de la fibra (30 %) a partir de la humedad inicial del 12 al 14 %.

2 - Periodo de secado en las condiciones ambientales del laboratorio hasta la recuperación de un valor de la humedad próximo a la inicial. (14 - 16 %). La duración aproximada era de 12 días.

La finalidad de este procedimiento es estudiar los efectos de la variación de la humedad en las probetas. Después de los ciclos serán ensayadas en las mismas condiciones que las anteriores lo cual permitirá determinar si disminuye su eficacia.

La variación de la humedad de la madera de las probetas se hace oscilar entre la humedad inicial de un 12 - 14 %, (Humedad de equilibrio con el ambiente en condiciones normales del laboratorio) y el punto de saturación de la fibra, valor próximo al 30 %.

A partir del punto de saturación de la fibra las variaciones dimensionales por hincharzón de la madera son despreciables, motivo por el que se tomó dicho límite superior.

De esta forma se puede simular, de manera exagerada, el efecto de una elevación del grado de humedad de la madera de una pieza consolidada por estos sistemas, bien por entrar en contacto directo con el agua (goteras, inundación) o por variación de las condiciones higrotérmicas ambientales.

Para determinar cuál era el contenido de humedad de las probetas durante los ciclos, se acompañaba a estas con una pieza "testigo" con las mismas dimensiones que las probetas. Mediante la pesada de ésta pieza era posible conocer la humedad de las probetas, conociendo el peso seco de la misma.
7.3.2.- Observaciones durante los ciclos.

Se resumen aquí las anotaciones efectuadas durante el proceso de los ciclos y sus posibles interpretaciones.

1) Después del primer periodo de inmersión en agua el estado de las probetas recién sacadas era el siguiente:

- En las vigas el estado aparente no había sufrido modificación. No se aprecian fisuras.

- En las probetas pequeñas de adherencia tangencial entre madera y formulación se observó lo siguiente: las realizadas con Sikadur 42 mantenían su estado correcto aparentemente.

Y, en cambio, las de sikadur 31 presentaban fisuras en la formulación, siguiendo la dirección paralela a la fibra de la madera. Excepto 3 probetas cuyo estado no había variado el resto presentaba una grieta en el centro, en seis de ellas (Figura 7.7 a) o bien dos grietas equidistantes con los bordes, en 7 de las probetas (Figura 7.7b)

- En las probetas de adherencia tangencial entre formulación y placa de fibra de vidrio no se aprecia ningún cambio o agrietamiento.

La causa de esta fisuración está en la hinchazón de la madera en la dirección perpendicular a la fibra (Puede ser tangencial o radial, ya que en el corte de la madera no se ha considerado una orientación determinada).

La formulación rompe por tracción al no poder acompañar a la madera en su deformación. Sin embargo parece extraño que en el Sikadur 42, formulación más rígida que el Sikadur 31 y con una resistencia parecida no presente la misma fisuración.
Figura 7.7.- Fisuración de las probetas de adherencia tangencial entre madera y formulación después de la inmersión en agua.

2) Después del primer periodo de estabilización hasta la humedad inicial:

- Las probetas de mayor tamaño, vigas, no presentan en general grandes modificaciones. Excepto alguna fenda en la madera por el proceso de secado, y una pequeña fisura entre formulación y madera en la probeta nº 3, según figura 7.8.

- Probetas de adherencia tangencial entre madera y formulación:

En las elaboradas con Sikadur 42 se aprecian notables cambios después del secado.
Figura 7.8.— Fisura en la parte inferior de la placa

Excepto cuatro que no presentan deterioros visibles el resto se agrieta lateralmente por efecto del movimiento de la madera con una tendencia a comprarse (Figura 7.9a) Este fenómeno se dá en diez de las probetas, mientras que en las otras dos el agrietamiento ocurre en la parte superior. (Figura 7.9 b)

En estas grietas podemos observar como la separación se da por la misma formulación, quedando en ambas caras de la madera la formulación adherida. (Figura 7.9 c)

Figura 7.9.— Agrietamientos en las probetas de Sikadur 4 2.
Por otro lado las probetas cuya formulación era Sikadur 31 adhesivo, también presentaban fallos de agrietamientos y despegues en su borde superior o laterales. (Figura 7.10). Es de notar cómo la separación producida por el movimiento de la madera se traduce en un despegue entre la formulación y una de las caras de la madera, al contrario que con sikadur 42, donde el fallo se producía por la rotura de la formulación.

- **Figura 7.10.** Agrietamientos en las probetas de Sikadur 31.

- Probetas de adherencia tangencial entre placa de fibra de vidrio y formulación. El estado aparente es correcto sin apreciarse fisuración alguna.

La razón del agrietamiento y movimiento de la madera en las probetas de adherencia tangencial, está en el proceso de secado desde la humedad superior al 30 % hasta el 12 % aproximadamente.

Si este proceso se realiza con rapidez, se originan tensiones en la madera que causan su combadura. Esto puede agravarse cuando el corte de las dos mitades encoladas sea tal que sus movimientos sean de sentido contrario. En este primer periodo de estabilización el secado se hizo cercano a la calefacción para acelerarlo, lo que puede ser la causa de esta excesiva deformación en la madera.
3) Al final de los cuatro ciclos de humedad y a través de todo el proceso se observó lo siguiente:

- Las probetas grandes, vigas:

Después del segundo periodo de secado la probeta nº 1 tiene una fisura pequeña en la parte inferior, igual a la de la probeta nº 3, según figura 7.8.

Pero al final de todos los ciclos estas fisuras ya no se aprecian, sin embargo la probeta nº 1 tiene una fisura en la parte superior. (Figura 7.11)

- Probetas de adherencia tangencial entre madera y formulación:

Tanto las de Sikadur 42 como 31 continúan con las fisuras, antes comentadas, en todo caso se observa una generalización de este estado.

Así en el caso de las fisuras verticales en las de Sikadur 31 las fisuras se generalizan a 3 en vez de 2. Algunas alcanzan cuando la madera está recién sacada del agua, 1 mm. de espesor, y se cierran al secarse.

- Las probetas de adherencia tangencial entre material compuesto y formulación, siguen sin cambios aparentes ni fisuras visibles.
7.3.3.- Probes de adherencia tangencial entre madera y formulación

En el apéndice 9.2 "Ensayo de probetas sometidas a ciclos de humedad", se encuentran los datos concretos de cada ensayo.

Metodología de ensayo.

Los ensayos siguen el mismo método de ensayo definido en 4.1 "Descripción de los ensayos: método y normas", para la adherencia entre formulación y madera. La descripción de los datos reflejados en los estadillos es la misma que la relatada en el apartado 4.2.

Se elaboraron dos grupos de 16 probetas con madera de pino insignis, uno con formulación Sikadur 42 anclajes y otro con Sikadur 31 adhesivo. En ambos casos la dosificación era "normal", es decir la ofrecida por el fabricante, y la textura de la superficie de encolado "lisa" (Cepillada).

Resultados de los ensayos.

Después de los ciclos de humedad variable, las probetas son ensayadas de la forma antes definida. En el cuadro 7.4, se resumen los resultados de estos ensayos en sus valores medios. Son comparados con las probetas equivalentes, que no fueron sometidas a los ciclos, con una edad de la formulación de 21 días, ya que las probetas tenían esa edad cuando comenzaron los ciclos.

Conclusiones.

Del cuadro anterior se deduce una tensión de rotura media de la mitad del valor original, para ambas formulaciones. No obstante debemos considerar que la sección efectiva en la rotura es inferior debido al agrietamiento sufrido, por lo que la
tensión real de rotura sería mayor.

<table>
<thead>
<tr>
<th></th>
<th>SIKADUR 42</th>
<th>SIKADUR 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEN. ROTURA</td>
<td>% FIBRAS</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td>C.V.</td>
</tr>
<tr>
<td>SIN CICLOS</td>
<td>118</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>CON CICLOS</td>
<td>53</td>
<td>2</td>
</tr>
<tr>
<td>HUMEDAD</td>
<td>27</td>
<td>249</td>
</tr>
</tbody>
</table>

Cuadro 7.4.- Comparación entre los resultados de los ensayos sobre probetas de adherencia tangencial entre madera y formulación, sometidas o no a ciclos de humedad. Madera de pino insignis, superficie lisa, edad de la formulación de 21 días. Valores medios de la tensión de rotura en kp/cm² y coeficientes de variación en %.

Al igual que ocurría en los ciclos de temperatura con la formulación Sikadur 42 anclajes, aquí se observa una superficie de rotura con el mismo aspecto que se explica en 7.2.3. , y se representa en la figura 7.5. Es decir la formulación aparece con cierta disgregación, y menor resistencia como demuestra la rotura producida por la propia formulación. Siendo el porcentaje de fibras de madera arrancadas prácticamente nulo.

La explicación de esta pérdida de resistencia podría estar en el movimiento que sufre la madera como consecuencia de la variación de humedad y que somete a tensiones de tracción a la formulación que pueden producir deterioros entre la carga y la resina.

Sin embargo, como veremos después, también se dió una reducción de la tensión de rotura en las probetas con material compuesto, aunque no tan marcada. Y en este caso el material compuesto no sufre cambio de volumen por variación de la humedad.
Por el contrario cuando se trata de la formulación Sikadur 31 adhesivo, aunque la tensión media de rotura desciende también a la mitad aproximadamente, el fallo del agrietamiento se produce por despegue entre la madera y la formulación. La disminución de la resistencia en este caso probablemente venga dada, en gran parte, por la reducción de la superficie encolada como consecuencia de la mencionada separación.

Por otro lado el porcentaje de fibras arrancado en el Sikadur 31 sólo ha bajado al 44 % frente al 54 % inicial, valor relativamente elevado considerando la reducción de la superficie encolada.

7.3.4.- Probetas de adherencia entre formulación y placas de fibra de vidrio.

La relación detallada de estos ensayos se encuentra en el apéndice nº 9.2 "Ensayos de las probetas sometidas a ciclos de humedad".

Metodología de ensayo.

El método de ensayo es el mismo que se ha comentado en el apartado 5.1.1. "Metodología de ensayo de adherencia tangencial entre placas de material compuesto y formulación", del capítulo 59.

Se elaboraron un grupo de dos probetas para cada formulación (S. 42 y S. 31), con dosificación normal. El tratamiento de la superficie de encolado consistió en una limpieza con disolvente. La placa era de tipo "Vipol" con espesor de 15 mm.

Resultados de los ensayos.

En el cuadro 7.5 se resumen los valores medios de las tensiones de rotura. Estos son comparados con los de las probetas equivalentes del capítulo 59, que no fueron
sometidos a ciclos de humedad variable. El tratamiento era en ambos casos el mismo, es decir, una limpieza de la superficie con disolvente.

<table>
<thead>
<tr>
<th></th>
<th>SIKADUR 42</th>
<th></th>
<th>SIKADUR 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEN.ROTURA</td>
<td>% FIBRAS</td>
<td>TEN.ROTURA</td>
</tr>
<tr>
<td></td>
<td>C.V.</td>
<td>C.V.</td>
<td>C.V.</td>
</tr>
<tr>
<td>SIN CICLOS</td>
<td>129</td>
<td>81</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>CON CICLOS</td>
<td>86</td>
<td>12</td>
<td>119</td>
</tr>
<tr>
<td>HUMEDAD</td>
<td>4</td>
<td>141</td>
<td>5</td>
</tr>
</tbody>
</table>

Cuadro 7.5.- Comparación entre los resultados de los ensayos de probetas de adherencia entre placas y formulación sometidas o no a ciclos de humedad. Tensiones de rotura medias en Kp/cm² y coeficientes de variación en %.

Conclusiones.

Se observa una reducción de la tensión media de rotura en el caso del Sikadur 42, no tan marcada como en el caso de la madera. La rotura se produce en una de las probetas por fallo de la propia formulación con signos de disgregación iguales a los descritos en la figura 7.5. Y en la otra probeta por fallo de la interfase de unión, es decir por despegue entre placa y formulación.

En todo caso el número de probetas es muy pequeño para poder explicar este fenómeno y aunque si parece constatarse una reducción de la resistencia, podría pensarse en un defecto de la amasada, ú otra razón externa.

Por otro lado, la formulación Sikadur 31 adhesivo mantiene su misma tensión media de rotura y aumenta el porcentaje de fibras arrancadas, después de los ciclos.
hecho también se daba en los ciclos de temperatura. Por lo que se puede decir que no queda afectada.

7.3.5.- Vigas de pequeña luz con placas en el apoyo.

La relación detallada de estos ensayos se encuentra en el apéndice nº 9.2, "Ensayo de las probetas sometidas a ciclos de humedad".

Metodología de ensayo.

El método de ensayo es el mismo que se llevó a cabo en el apartado 6.4.2. Se elaboraron seis probetas con tres longitudes de anclaje diferentes: 5,6 y 8 cm. Las condiciones de la formulación y del refuerzo se describieron en el apartado 7.3

Resultados de los ensayos.

En el cuadro siguiente, 7.6, se resumen los resultados de estos ensayos, relacionando la longitud de anclaje con la carga total de rotura.

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>LONGITUD DE ANCLAJE</th>
<th>CARGA DE ROTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>L_a cm</td>
<td>P Kp</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2.090</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.570</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.880</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3.010</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>3.700</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>3.480</td>
</tr>
</tbody>
</table>

Cuadro 7.6.- Resultado de los ensayos en vigas con placas en los apoyos. (Humedad).
Descripción del modo de rotura.

La rotura de estas probetas se produce del mismo modo que el descrito en el apartado 6.4, con piezas que no estuvieron sometidas a ciclos de humedad. De tal forma que el fallo se produce por cortadura de la madera. A veces viene combinada con fallos de cortadura de la placa de fibra de vidrio en planos paralelos al de la placa.

En la figura 7.12 se describe la rotura típica de estas probetas.

Figura 7.12.- Rotura después de los ciclos de humedad.

Conclusiones.

El ajuste según una regresión de potencia de las parejas de valores de la longitud de anclaje y la carga de rotura, da la siguiente expresión:

\[P = 455 \cdot L_a^{0.97} \]

con un coeficiente de correlación \(r = 0.75 \).

o bien, si se trata de una regresión lineal:

\[P = 441 \cdot L_a - 9.6 \approx 441 \cdot L_a \]

con un coeficiente de correlación de \(r = 0.81 \).

Si comparamos ésta con el ajuste obtenido anteriormente para las piezas no sometidas a los ciclos:

\[P = 1113 \cdot L_a^{0.55} \]
Resulta que para el tramo comprendido entre las longitudes de anclaje de 5 y 8 cm, se tiene una relación media entre las cargas de rotura de una y otra expresión de 0,90 aproximadamente. Siendo inferiores las de los ciclos de humedad.

De estos resultados podemos deducir, que los ciclos de humedad variable, no tienen apenas influencia en estas probetas ensayadas. En todo caso se aprecia una pequeña disminución de la resistencia más marcada en las que tienen longitudes de anclaje inferiores.

Se puede comprobar como la probeta n° 1 que presentaba una fisura en la cara superior, no ha tenido una carga de rotura claramente rebajada.

7.4. PLANTEAMIENTO TEORICO PARA LA DETERMINACION DE LAS TENSIONES ORIGINADAS POR LA VARIACION DE LAS CONDICIONES HIGROTERMICAS

7.4.1.- Introducción.

En estos sistemas hemos visto que se emplean tres materiales de naturaleza diferente, como son el refuerzo, la formulación epoxi y la propia madera de la estructura. La diferencia de coeficientes de dilatación térmica, al encontrarse ligados entre sí, da lugar con la variación de la temperatura a unos esfuerzos y por lo tanto, a unas tensiones en los materiales y entre las superficies de contacto entre ellos, que se sumarían a las propias de trabajo para las que fueron diseñados.

Por otro lado, la particularidad de la propiedad que tiene la madera de variar sus dimensiones al modificar su contenido de humedad, introduce un nuevo factor a considerar.

Sabemos que la madera tiende a un equilibrio higroscópico con la humedad relativa del ambiente, es decir, para cada estado higrotérmico del aire (una determinada temperatura y humedad relativa) corresponde una humedad en la madera. Esta variación del contenido de humedad de la madera origina igualmente una variación de
sus dimensiones, lo que tiene como consecuencia unas tensiones que se sumarán a las de origen térmico.

Estos fenómenos aquí comentados, serían parte de la causa que produce los fallos ocurridos en las probetas sometidas a ciclos de temperatura y humedad de este capítulo. A continuación se intenta evaluar la magnitud de las tensiones.

7.4.2.- Delimitación de las condiciones extremas.

Se trata de definir cuál es el campo de variación de la temperatura y de la humedad que debemos considerar en un caso real. En primer lugar intervienen las condiciones higrotérmicas correspondientes al momento de la ejecución del trabajo. Estas constituyen un punto de origen para estimar las condiciones extremas.

Otro de los factores a considerar es la situación del a estructura de madera dentro de la construcción, así como el grado de exposición a los cambios de humedad y temperatura en que se encuentra. De tal forma, que es posible encontrar ubicaciones más protegidas como puede ser el interior de un local donde las variaciones de temperatura y humedad son inferiores a una estructura en contacto con el ambiente exterior.

O situaciones intermedias, como es el caso de los elementos de una cubierta ventilada, donde la temperatura oscila en alto grado del día a la noche o de una estación a otra. Incluso es posible admitir por un fallo de la impermeabilización una gran elevación de la humedad, sobre todo en su zona más superficial.

Por último podemos considerar la localización geográfica de la estructura como otro factor que condiciona los valores extremos de temperatura y humedad. Así para una madera al exterior y una determinada situación geográfica corresponde unos valores máximo y mínimo del contenido de humedad de equilibrio higroscópico, como consecuencia de su variación anual. A este respecto puede consultarse en la bibliografía "Contenido de la humedad de la madera según su empleo" (18). En el se describen dichos límites para las provincias de la península española, siendo en general el
campo de variación de la humedad menor en las zonas costeras.

7.4.3.- Características físico-mecánicas de los materiales implicados y su adecuación.

En primer lugar tenemos las características físico-mecánicas de la madera, que dependerán de la especie y de la dirección considerada. Aunque lógicamente estas propiedades no es posible "elegirlas", sí es interesante conocerlas para prever su comportamiento. De tal forma, que serán menores los efectos de la humedad en aquellas especies con pequeños coeficientes de contracción. En este aspecto, podemos mencionar como la antigüedad de la madera contribuye favorablemente con la disminución del coeficiente de contracción debida a un fenómeno de histéresis.

Como ejemplo, se dan a continuación estas propiedades para el pino insignis:

\[
\begin{align*}
E_L & = 96.800 \text{ Kp/cm}^2 \quad \text{(al 12 %)} \\
E_T & = 4.840 \quad " \quad " \\
E_R & = 9.680 \quad " \quad "
\end{align*}
\]

- Coeficiente de contracción lineal longitudinal unitario (No determinado, estimación media de coníferas) 0,004 (%).

- Coeficiente de contracción lineal tangencial unitario = 0,206 (%)

- Coeficiente de contracción lineal radial unitario = 0,137 (%)

- Coeficiente de dilatación térmica para coníferas:

 - paralelo a la fibra = 2 a 7 x 10^{-6} \text{ m/m}^\circ \text{ C}
 - perpendicular a la fibra = 26 a 72 x 10^{-6} \text{ m/m}^\circ \text{ C}

En cuanto al material de refuerzo y la formulación epoxi las propiedades que resultarían más adecuadas, en principio, para disminuir los efectos de las dilataciones serían un módulo de elasticidad bajo y un coeficiente de dilatación térmica pequeño.
Una elevación de la temperatura en la madera tendría un efecto de contracción dimensional, ya que la disminución de la humedad daría lugar a una merma superior a la dilatación térmica. Si además tenemos en cuenta la anisotropía de la madera, con la cual, las propiedades son diferentes en cada dirección, vemos que a no ser que empleáramos también madera como material de refuerzo es imposible encontrar un material que tuviera los mismos movimientos.

Por último, podemos citar que existe una importante modificación de las propiedades de las formulaciones epoxi con el aumento de la temperatura. En efecto, además de una disminución de la resistencia con el incremento de la temperatura se produce un ligero aumento del coeficiente de dilatación térmica de la formulación a partir de los 50 °C aproximadamente.

Pero de mayor relevancia es la fuerte disminución del módulo de elasticidad a partir de los 35° C. aproximadamente para quedar reducidos a una décima parte para una temperatura de 50° C.

Estas variaciones dependen del contenido de cargas de la formulación, así como de la propia formulación. Se trata de datos citados en "Las resinas epoxi en la construcción" (13).

Es preciso tener en cuenta estas modificaciones al calcular las tensiones originadas por el aumento de la temperatura. Sobre todo a partir de los 30 ó 40° C en adelante, donde la disminución del módulo de elasticidad es importante.

Como resumen de las características de las formulaciones y materiales compuestos empleados en este estudio se recogen los valores obtenidos en los ensayos en cuanto al módulo de elasticidad y de manera orientativa se dan los coeficientes de dilatación térmica obtenidos de bibliografía o documentación técnica del fabricante.

Formulación epoxi:
. Coeficiente de dilatación térmica lineal = 30×10^{-6} m/m °C
. Módulo de elasticidad.
 S. 42 $\approx 45,000$ Kp/cm2
 S. 31 $\approx 35,000$ "
 S. 52 $\approx 6,000$ "

Materiales compuestos:

- Placas de resina de poliéster y fibra de vidrio en mat. (Tipo Vipol).
 . Coeficiente de dilatación térmica lineal = $15 - 22 \times 10^{-6}$ °C$^{-1}$
 (Dependiendo del porcentaje de refuerzo de fibra de vidrio, para el caso del Vipol de un 60 %, podemos estimar un coeficiente de 16×10^{-6} aproximadamente).
 . Módulo de elasticidad : $150,000$ Kp/cm2.

- Barras de resina de poliéster y fibra de vidrio en roving unidireccional (60 - 75 % en peso):
 . Coeficiente de dilatación térmica lineal = $8 - 10 \times 10^{-6}$ °C$^{-1}$
 . Módulo de elasticidad = $310,000$ Kp/cm2

7.4.4.- Cálculo de los esfuerzos.

Si los distintos materiales no se encontraran unidos, ante la variación de las condiciones de temperatura y humedad, cada uno modificaría sus dimensiones en función de sus propiedades. Pero al encontrarse ligados entre sí, la deformación del conjunto será la misma para todos los materiales. El establecimiento de esta condición nos permitirá determinar los esfuerzos que se originan.

En la figura 7.13 se representa esquemáticamente el conjunto de los tres materiales y sus movimientos probables si tuvieron libertad, así como las fuerzas originadas sobre cada material, consecuencia de las coacciones mutuas.
En adelante admitimos que el refuerzo ocupa en la sección transversal de la pieza de madera una posición simétrica para sus dos ejes. De esta forma, las dilataciones no darán lugar a momentos de flexión y sólo precisaremos establecer el equilibrio de fuerzas.

Figura 7.13

Así tendremos:

a) Alargamiento de la formulación epoxi:

El alargamiento de la formulación epoxi, con una longitud inicial \(l_o \), un coeficiente de dilatación térmica linear \(\alpha_e \) y para un incremento de la temperatura \(T \), es:

\[
\Delta l' = l_o \cdot \alpha_e \cdot \Delta T
\]

Y la variación de longitud debida a la fuerza \(F_e \), originada por diferencias de dilatación de los otros materiales, es:

\[
\Delta l'' = \frac{F_e \cdot l_o}{E_e \cdot S_e}
\]
siendo:

\[E_e = \text{módulo de elasticidad de la formulación.} \]

\[S_e = \text{sección transversal a la dirección del movimiento, de formulación.} \]

Por tanto la resultante:

\[\Delta l_e = l_0 \cdot \alpha_e \cdot \Delta T + \frac{F_e \cdot l_0}{E_e \cdot S_e} \]

b) Alargamiento del refuerzo.

Análogamente al caso anterior y llamando \(\alpha_r \) al coeficiente de dilatación térmica lineal del material del refuerzo, tenemos:

\[\Delta l' = l_0 \cdot \alpha_r \cdot \Delta T \]

Y por otro lado el efecto de la fuerza aplicada en el refuerzo, \(F_r \), transmitida de los otros materiales:

\[\Delta l'' = \frac{F_r \cdot l_0}{E_r \cdot S_r} \]

siendo:

\[E_r = \text{módulo de elasticidad del material de refuerzo.} \]

\[S_r = \text{sección transversal a la dirección del movimiento, del refuerzo.} \]

Luego:

\[\Delta l_r = l_0 \cdot \alpha_r \cdot \Delta T + \frac{F_r \cdot l_0}{E_r \cdot S_r} \]

c) Alargamiento de la madera.

De igual modo obtenemos el alargamiento de la madera debido a la dilatación
términa, \(\Delta l' \), y el originado por la igualdad de movimientos, es decir, debido a la fuerza \(F_m \), \(\Delta l'' \):

\[
\Delta l' = l_o \cdot \alpha_m \cdot \Delta T
\]
\[
\Delta l'' = \frac{F_m \cdot l_o}{E_m \cdot S_m}
\]

Siendo:

\(\alpha_m \) = coeficiente de dilatación térmica lineal de la madera en la dirección estudiada.

\(E_m \) = módulo de elasticidad en la dirección estudiada.

\(S_m \) = sección de la madera transversal a la dirección del movimiento.

A estas incrementos debemos sumar el efecto de la variación de la humedad de la madera. De tal forma, que para un incremento de humedad \(\Delta H \) de la madera corresponde un alargamiento:

\[
\Delta l'' = l_o \cdot \alpha_h \cdot \Delta H
\]

Siendo:

\(\Delta H \) = incremento del contenido de humedad de la madera, en \% respecto al peso seco.

\(\alpha_h \) = coeficiente de contracción lineal unitario de la madera en la dirección estudiada en \(m/m \) \%.

Para obtener este último, se procede del siguiente modo: a partir del coeficiente de contracción lineal total (Porcentaje de variación de la dimensión desde el 0 \% de humedad hasta el punto de saturación de la fibra), obtenemos el unitario dividiendo por el punto de saturación de la fibra.
El valor unitario da la variación dimensional en % por cada grado de humedad de la madera. Si lo dividimos por 100 obtendremos el valor precisado en las dimensiones adecuadas, \(\frac{m}{m} \) grado de humedad (%).

Sumando, finalmente, los tres alargamientos:

\[
\Delta l_m = l_o \cdot \alpha_m \cdot \Delta T + l_o \cdot \alpha_h \cdot \Delta H + \frac{F_m \cdot l_o}{E_m \cdot S_m}
\]

Del siguiente sistema de tres ecuaciones con tres incógnitas despejamos las fuerzas \(F_e, F_m, F_r \):

\[
\begin{cases}
F_m + F_e + F_r = 0 \\
\Delta l_m = \Delta l_e = \Delta l_r
\end{cases}
\]

De donde:

\[
F_e = \frac{\Delta T \cdot \left[E_m \cdot S_m \cdot (\alpha_m - \alpha_e) - E_r \cdot S_r \cdot (\alpha_e - \alpha_r) + E_m \cdot S_m \cdot \alpha_h \cdot \Delta H \right]}{1 + \frac{E_m \cdot S_m}{E_e \cdot S_e} + \frac{E_r \cdot S_r}{E_e \cdot S_e}}
\]

\[
F_m = \left[\Delta T \cdot (\alpha_e - \alpha_m) + \frac{F_e}{E_e \cdot S_e} - \alpha_h \cdot \Delta H \right] \cdot E_m \cdot S_m
\]

\[
F_r = - F_m - F_e
\]

Siendo positiva la tracción y negativa la compresión.

Las tensiones de compresión o tracción en cada material serán:
\[\sigma_m = \frac{F_m}{S_m}; \quad \sigma_e = \frac{F_e}{S_e}; \quad \sigma_r = \frac{F_r}{S_r} \]

Y las tensiones tangenciales entre las superficies de contacto de los diversos materiales son:

Tensión tangencial entre madera y formulación epoxi; \(\tau_{m-e} \)

\[\tau_{m-e} = \frac{F_m}{S_{m-e}} \]

Tensión tangencial entre el refuerzo y la formulación epoxi; \(\tau_{r-e} \)

\[\tau_{r-e} = \frac{F_r}{S_{r-e}} \]

siendo:

\(S_{m-e} = \) superficie de contacto entre madera y formulación

\(S_{r-e} = \) superficie de contacto entre refuerzo y formulación.

7.4.5.- Casos que se presentan:

Se definen aquí cuáles son las variables que corresponden en cada caso considerado:

a) Refuerzo con placas:

- En dirección longitudinal: (Figura 7.14)

\[S_m = (b - n \cdot e) \cdot d \]

\[S_e = (e - t) \cdot n \cdot \frac{(h + d)}{2} \]

\[S_r = n \cdot t \cdot h \]

\(n = \) número de placas instaladas.
$E_m = \text{módulo de elasticidad longitudinal.}$

$\alpha_h = \text{coeficiente de contracción lineal unitario, longitudinal (m/m%)}$

$S_{m-e} = n \cdot (e + h + d) \cdot L_a$

$S_{r-e} = n \cdot (t + 2h) \cdot L_a$

- En dirección transversal (Perpendicular a la fibra): (Figura 7.14)

$S_m = (b - n \cdot e) \cdot L_a$

$S_e = n \cdot (e - t) \cdot L_a$

$S_r = n \cdot t \cdot L_a$

$n = \text{número de placas.}$

$E_m = \text{módulo de elasticidad de la madera en dirección normal a la fibra. Puede ser tangencial o radial. Tomaremos un valor intermedio.}$

$\alpha_h = \text{Coeficiente de contracción lineal unitario, en dirección perpendicular a la fibra. Puede ser tangencial o radial. Tomaremos un valor intermedio o el más desfavorable.}$

$S_{m-e} = n \cdot (d + h) \cdot L_a$

$S_{r-e} = 2 \cdot n \cdot h \cdot L_a$

b) Refuerzo con barras de sección circular macizas: (Figura 7.15)

- En dirección longitudinal:
\[S_m = b \cdot d - \frac{\pi \cdot \varnothing_t^2}{4} \cdot n \]
\[S_e = n \cdot \frac{\pi \cdot (\varnothing_t^2 - \varnothing_u^2)}{4} \]
\[S_r = n \cdot \frac{\pi \cdot \varnothing_v^2}{4} \]

\(n \) = número de barras o varillas.

\(E_m \) = módulo de elasticidad de la madera en dirección paralela a la fibra.

\(\alpha_h \) = coeficiente de contracción lineal unitario longitudinal.

\(S_{m-e} = n \cdot \frac{\pi \cdot \varnothing_t \cdot L_a}{4} \)

\(S_{r-e} = n \cdot \frac{\pi \cdot \varnothing_v \cdot L_a}{4} \)

Figura 7.15

Para el caso de barras, considerando la dirección perpendicular a la fibra, el análisis de las tensiones sería algo más complejo. En lugar de tensiones tangenciales, se trataría de tensiones radiales que serán de compresión o tracción perpendicular a la fibra. Además sería preciso conocer el coeficiente de dilatación térmica del material compuesto en sentido perpendicular a la dirección de la fibra de vidrio. Ya que en principio parece que no será igual al longitudinal. Lo mismo ocurre con su módulo de elasticidad.
7.4.6.- Aplicación a los casos de las probetas ensayadas.

Si aplicamos las fórmulas anteriormente deducidas a las probetas sometidas a los ciclos de humedad y temperatura, podremos tener una idea orientativa del valor de las tensiones que se han producido. Se aplicarán únicamente a las vigas con refuerzo de placas en un apoyo.

Son valores orientativos y no totalmente precisos, ya que hay coeficientes y propiedades que se estiman de manera aproximada por no conocerse con exactitud. Dentro de este caso tendríamos los coeficientes de dilatación térmica de los materiales, tanto para la madera como para el refuerzo y la formulación que son deducidos de bibliografía general del tema. Igualmente tampoco sabemos en qué grado varía el módulo de elasticidad de la formulación y del refuerzo empleados con la necesaria precisión. Así como la consideración del efecto de la humedad sobre la madera de manera uniforme, cuando en la realidad existirá un cierto gradiente de tensiones.

No obstante, puede ofrecer una aproximación de la cuantificación de las tensiones. Se estudia en las dos direcciones: longitudinal y transversal a la fibra:

a) Ciclos de temperatura:

a 1).- Disminución de la temperatura (Frío):

\[\Delta T = -20^\circ - 20^\circ = -40^\circ C \]
\[\Delta H = 0 \% \]

- En dirección longitudinal:

\[E_m = 96.800 \text{ Kp/cm}^2 \quad ; \quad \alpha_m = 4 \cdot 10^{-6} \text{ m/m } ^{\circ} \text{C} \]
\[\alpha_h = 4 \cdot 10^{-5} \text{ m/m } \% \]
\[E_e = 45.000 \text{ kp/cm}^2 \quad ; \quad \alpha_e = 30 \cdot 10^{-6} \text{ m/m } ^{\circ} \text{C} \]
\[E_r = 150.000 \text{ Kp/cm}^2 \quad ; \quad \alpha_r = 16 \cdot 10^{-6} \text{ m/m } ^{\circ} \text{C} \]
\[S_m = 42.75 \text{ cm}^2 ; \quad S_e = 5.1 \text{ cm}^2; \quad S_r = 11.25 \text{ cm}^2 ; \quad n = 1 \]

Y para una longitud de anclaje de \(L_a = 8 \text{ cm} \):

\[S_{m-e} = 152.8 \text{ cm}^2 ; \quad S_{r-e} = 132 \text{ cm}^2 \]

. Resultados obtenidos: (en Kp y Kp/cm²):

\[F_e = 198 ; \quad F_m = -733 ; \quad F_r = 535 \]
\[\sigma_m = -17 ; \quad \sigma_e = 39 ; \quad \sigma_r = 47 \]
\[\tau_{m-e} = 5 ; \quad \tau_{r-e} = 4 \]

- En dirección transversal:

. Valores adoptados:

\[E_m = 7.000 \text{ kp/cm}^2 ; \quad \alpha_m = 50 \cdot 10^{-6} \text{ m/m}^0 \text{ C} \]
\[\alpha_h = 1.8 \cdot 10^{-3} \text{ m/mm} \% \]
\[E_e = 45.000 \text{ kp/cm}^2 ; \quad \alpha_e = 30 \cdot 10^{-6} \text{ m/m}^0 \text{ C} \]
\[E_r = 150.000 \text{ kp/cm}^2 ; \quad \alpha_r = 16 \cdot 10^{-6} \text{ m/m}^0 \text{ C} \]

Para una longitud de anclaje \(L_a = 8 \text{ cm} \):

\[S_m = 36 \text{ cm}^2 ; \quad S_e = 4.8 \text{ cm}^2 ; \quad S_r = 12 \text{ cm}^2 ; \quad n = 1 \]
\[S_{m-e} = 136 \text{ cm}^2 ; \quad S_{r-e} = 120 \text{ cm}^2 \]

. Resultados obtenidos (en Kp y Kp/cm²):

\[F_e = 77 ; \quad F_m = 291 ; \quad F_r = -368 \]
\[\sigma_m = 8 ; \quad \sigma_e = 16 ; \quad \sigma_r = -30 \]
\[\tau_{m-e} = 2 ; \quad \tau_{r-e} = 3 \]
a 2).- Aumento de la temperatura : (Calor)

\[\Delta T = 60^\circ - 20^\circ = 40^\circ C \]
\[\Delta H = 4\% - 14\% = -10\% \]

- En dirección longitudinal:

. Valores adoptados:

Se admite que el módulo de elasticidad de la madera aumenta un 20% para la humedad del 4%. Y se estima que el módulo de elasticidad de la formulación baja aproximadamente a un 10% del valor inicial y su coeficiente de dilatación térmica aumenta ligeramente, a causa del aumento de la temperatura. Igualmente el refuerzo disminuye su módulo de elasticidad, en menor grado que la formulación, a la mitad.

\[E_m = 116.000 \, \text{Kp/cm}^2 \; ; \; \alpha_m = 4 \cdot 10^{-6} \, \text{m/m}^\circ \text{C} \]
\[\alpha_h = 4 \cdot 10^{-5} \, \text{m/m} \% \]
\[E_e \approx 5.000 \, \text{Kp/cm}^2 \; ; \; \alpha_e = 40 \cdot 10^{-6} \, \text{m/m}^\circ \text{C} \]
\[E_r \approx 75.000 \; ; \; \alpha_r = 16 \cdot 10^{-6} \]

Las superficies se obtienen para \(L_a = 8 \, \text{cm} \).

. Resultados obtenidos (en Kp y Kp/cm²):

\[F_e = -43 \; ; \; F_m = 694 \; ; \; F_r = -650 \]
\[\sigma_m = 16 \; ; \; \sigma_e = -8.5 \; ; \; \sigma_r = -58 \]
\[\tau_{m-e} = 4.5 \; ; \; \tau_{r-e} = 4.9 \]

- En dirección transversal:

. Valores adoptados:
\[E_m \simeq 7.000 \text{ Kp/cm}^2 \quad ; \quad \alpha_m = 50.10^{-6} \text{ m/m}^\circ \text{C} \]
\[\alpha_h = 1.8 \cdot 10^{-3} \text{ m/m } \% \]
\[E_e \simeq 5.000 \text{ Kp/cm}^2 \quad ; \quad \alpha_e = 40.10^{-6} \text{ m/m}^\circ \text{C} \]
\[E_r = 75.000 \text{ kPa/cm}^2 \quad ; \quad \alpha_e = 16.10^{-6} \text{ m/m}^\circ \text{C} \]

Las superficies para \(L_a = 8 \text{ cm} \).

Resultados obtenidos; (en Kp y Kp/cm²):

\[F_e = -108 \quad ; \quad F_m = 3.301 \quad ; \quad F_r = -3.193 \]
\[\sigma_m = 91 \quad ; \quad \sigma_e = -22 \quad ; \quad \sigma_r = -266 \]
\[\tau_{m-6} = 24 \quad ; \quad \tau_{r-6} = 26 \]

b) Ciclos de humedad:

\[\Delta T \simeq 0 \]
\[\Delta H \simeq 34 \% - 14 \% = 20 \% \]

- En dirección longitudinal:

Valores adoptados:

Se admite que el módulo de elasticidad de la madera disminuye aproximadamente un 20 % para humedades próximas al punto de saturación de la fibra. Así tendremos:

\[E_m \simeq 77.000 \text{ Kp/cm}^2 \quad ; \quad \alpha_h = 4 \cdot 10^{-5} \text{ m/m } \% \]
\[E_e = 45.000 \text{ kPa/cm}^2 \]
\[E_r \simeq 150.000 \text{ Kp/cm}^2 \]

Longitud de anclaje \(L_a = 8 \text{ cm} \).
Resultados obtenidos (en K_p y K_p/cm^2):

$$F_e = 116 ; \quad F_m = -967 ; \quad F_r = 851$$

$$\sigma_m = -22 ; \quad \sigma_e = 22 ; \quad \sigma_r = 75$$

$$\tau_{m-e} = 6,3 ; \quad \tau_{r-e} = 6,4$$

- En dirección transversal:

Valores adoptados:

$$E_m = 6.000 \text{ Kp/cm}^2 ; \quad \alpha_h = 1,8 \cdot 10^{-3} \text{ m/m %}$$

$$E_e = 45.000 \text{ Kp/cm}^2 ; \quad E_r = 150.000 \text{ kpa/cm}^2$$

Longitud de anclaje $L_a = 8 \text{ cm.}$

Resultados obtenidos (en kp y kpa/cm2):

$$F_e = 836 ; \quad F_m = -6.940 ; \quad F_r = 6.104$$

$$\sigma_m = -192 ; \quad \sigma_e = 174 ; \quad \sigma_r = 508$$

$$\tau_{m-e} = 51 ; \quad \tau_{r-e} = 51$$

Conclusiones:

- Las tensiones tangenciales entre las superficies de contacto de los distintos materiales son, lógicamente, menores cuanto mayor es la superficie. Por tanto, en la dirección longitudinal es posible reducirlas aumentando la longitud de anclaje de la placa.
Normalmente para longitudes obtenidas por el cálculo estático, estas tensiones serán mínimas.

Sin embargo en la dirección transversal no es posible aumentar el canto de la placa, por la propia limitación del canto de la viga, siendo por tanto de mayor gravedad.

Además de las tensiones tangenciales entre las superficies se producen por la misma causa unas tensiones en dirección perpendicular a las superficies que pueden ser de compresión o de tracción, según la madera hinche o merme, respecto al refuerzo y formulación. El caso desfavorable sería la tracción, que intentaría despegar el refuerzo, pero para el caso de placas la solución está en el efecto mismo.

Es decir, podemos esperar una fisuración de la madera en su parte más débil, zona inferior de pequeño espesor y con un esfuerzo de tracción perpendicular a la fibra, que separe ambas, consiguiendo libertad de movimiento (Figura 7.16).

![Figura 7.16](image)

- Si analizamos los resultados obtenidos en los ciclos de temperatura veremos como la situación más desfavorables se dieron cuando se produce el aumento de la temperatura, y sobre todo en la dirección transversal. Esto es así, porque el aumento de temperatura viene acompañado de una importante pérdida de humedad de la madera provocando elevadas tensiones tangenciales que llegarían a la rotura.

Además de estos fenómenos es posible pensar en una degradación de la formulación por efecto de la temperatura, como comentamos al tratar de los ciclos correspondientes.
Las tensiones calculadas en el caso transversal y con aumento de temperatura, implicarían unas tensiones de tracción perpendicular a la fibra de la madera que suponen su fisuración, y unas tensiones tangenciales muy próximas al valor de rotura de cortante por rodamura de la fibra.

- De los resultados obtenidos en los ciclos de humedad, donde la temperatura no varía y por tanto, sólo actúa la hinchazón de la madera, se deducen para la dirección transversal unas tensiones tangenciales excesivamente elevadas para ser resistidas por rodamura de las fibras. Así como tensiones de compresión muy elevadas en la madera.

Contrastando estas deducciones teóricas con los resultados mecánicos de las probetas, se puede constatar una diferencia notable, ya que la pérdida de resistencia no fué muy grande después de los ciclos. Es de suponer un comportamiento de la madera saturada de agua mucho más plástico y una cierta relajación de las tensiones que mejore la situación.

Por otro lado la degradación de la formulación observada en los ensayos de las probetas sometidas a ciclos de humedad, presentando una cierta desgregación entre árido y resina, que se daba también en las probetas pequeñas, podría explicarse por las fuertes tensiones a que se encuentra sometida la formulación al quedar adherida a las dos superficies. Una de ellas fija, la del refuerzo, y la otra aumentando de dimensiones, la madera.

- Si aplicamos el planteamiento teórico, antes descrito, para el cálculo de las tensiones en un caso de una consolidación de una pieza de madera en las condiciones normales, obtendremos una idea del orden de magnitud de estas tensiones.

Para ello supongamos una pieza y su refuerzo, definidos en la figura 7.17.
Datos generales:

Luz de la viga $l = 500 \text{ cm}$, longitud de anclaje $L_a = 65 \text{ cm}$.

$E_{m\|} = 100.000 \text{ kp/cm}^2$; $\alpha_{m\|} = 4 \cdot 10^{-6} \text{ m/m}^0 \text{ C}$

$\alpha_{h\|} = 4 \cdot 10^{-5} \text{ m/m} \%$

$E_{m\perp} = 6.000 \text{ kp/cm}^2$; $\alpha_{m\perp} = 50 \cdot 10^{-6} \text{ m/m}^0 \text{ C}$; $\alpha_{h\perp} = 1,5 \cdot 10^{-3} \text{ m/m} \%$

Estas características corresponden aproximadamente a la especie pino silvestre, habitual en construcción.

$E_e = 45.000 \text{ kp/cm}^2$; $\alpha_e = 30 \cdot 10^{-6} \text{ m/m}^0 \text{ C}$

$E_r = 150.000 \text{ kp/cm}^2$; $\alpha_r = 16 \cdot 10^{-6} \text{ m/m}^0 \text{ C}$

Si suponemos unas condiciones de ejecución del trabajo, de una temperatura de 30^0 C y una humedad de la madera del 8%, lo que podría coincidir con la estación del verano en zonas interiores. Y una situación extrema de un 12% de contenido de humedad en la madera junto a una temperatura de 17^0 C, que podrían ser las condiciones de invierno en un local interior.

Tendremos, por tanto, un incremento de la humedad de $+4 \%$ y un incremento de temperatura de -13^0 C. En estas condiciones resultarán unas tensiones tangenciales en la dirección longitudinal entre madera y formulación de $0,47 \text{ kp/cm}^2$, y entre
formulación y placa de 0,4 \(\text{kp/cm}^2 \). Estos valores son muy bajos y dentro de los admisibles.

Sin embargo, en el sentido transversal estas tensiones alcanzan valores importantes, 4,6 \(\text{kp/cm}^2 \) entre formulación y madera y 4,1 \(\text{kp/cm}^2 \) entre formulación y refuerzo. Además en el sentido transversal la resistencia a cortante de la madera, lo es por rodadura de la fibra, cuyo valor admisible es muy inferior al paralelo a la fibra. Estos valores están prácticamente en el límite admisible de una conífera.

Vemos por tanto, que el punto crítico se dá en el sentido transversal, mientras que el longitudinal no presenta problemas. En la causa principal de estas fuertes tensiones, se encuentra el coeficiente de contracción en sentido perpendicular a las fibras. Para ver hasta que punto influye podemos hacer, en el ejemplo anterior, que la variación de humedad sea nula, manteniendo el incremento de temperatura.

En este caso, las tensiones tangenciales quedarían muy reducidas, a 0,34 \(\text{kp/cm}^2 \) (madera-formulación) y 0,42 \(\text{kp/cm}^2 \) (placa-formulación).

O también si reducimos el incremento de humedad a un 2 \%, las tensiones tangenciales quedan prácticamente disminuidas a la mitad, 1,4 y 1,8 \(\text{kp/cm}^2 \), respectivamente.

En cuanto a las medidas que pueden pensarse para reducir estos efectos no deseados, podemos citar las siguientes:

- Utilizar materiales de refuerzo y formulaciones con pequeños, módulos de elasticidad. Al igual que con bajos coeficientes de dilatación térmica.

Si reducimos únicamente el módulo de elasticidad de la formulación, se disminuyen las tensiones normales en la propia formulación, pero las tangenciales pueden no variar mucho.
Otra posible solución que favorece el resultado, sería emplear un número mayor de placas con espesor inferior, aunque la suma de los espesores fuera la misma, lo cual aumenta la superfi cie de contacto entre madera y formulación disminuyendo las tensiones. Esta medida resulta contraria a la facilidad constructiva.

Realización de los trabajos de consolidación cuando las condiciones higrotermicas de la madera sean intermedias entre sus valores extremos. O al menos evitar las situaciones extremas. De esta forma, reducimos el campo de variación de las condiciones.

Situar los refuerzos en el interior de la madera, procurando evitar las situaciones superficiales, donde las variaciones de la temperatura y humedad son mayores.

Sellar en lo posible las superficies de madera próximas al refuerzo, sobre todo si se trata de testas o cortes transversales, para de esta forma retrasar el fenómeno de la higroscopicidad.

No obstante, sabemos que la variación de la humedad de la madera, al buscar el equilibrio higroscópico con el ambiente, es mucho menor en las zonas interiores de la sección que en la superfi cie. Por tanto, resultaría de interés un estudio en profundidad sobre la variación del grado de humedad en secciones de madera en función de su espesor, y de su situación en la construcción.

Así como la realización de ensayos de envejecimiento prolongado de piezas consolidadas, incluyendo una variación de la humedad. Ya que si analizamos los resultados de los ensayos de las probetas sometidas a ciclos de humedad, llevados a cabo en este estudio, resultan mucho más eficaces que lo que se puede prever mediante el planteamiento teórico.

En todo caso, a falta de estudios más precisos, se puede recurrir a aumentar el coeficiente de seguridad en una cantidad adecuada que compense la pérdida de resistencia observada en los ensayos de pequeñas vigas. Este factor deducido de los ciclos de temperatura, vale 1,3.
CAPÍTULO VIII

8. RESUMEN GENERAL DE LAS CONCLUSIONES.

En este capítulo se resumen brevemente las conclusiones deducidas a lo largo del trabajo y que han sido expuestas en cada apartado. Además se incluyen las consecuencias que pueden tener en la aplicación práctica de estos métodos de consolidación.

8.1. SOBRE LOS MATERIALES QUE INTERVIENEN.

8.1.1.- La madera

Aunque el desarrollo de los ensayos se dirigen al estudio de otros materiales actuando conjuntamente con la madera, y no directamente a ésta, sin embargo, si podemos recalcar la necesidad de conocer el comportamiento físico-mecánico de este material, lo que resulta imprescindible para la correcta aplicación de estos sistemas.

Ante la rehabilitación de una estructura de madera, es preciso realizar un reconocimiento visual detallado que permita evaluar los daños que ha sufrido y distinguir aquellas piezas que no puedan ser reparadas.

Igualmente resulta de gran ayuda la identificación de la especie y el tipo de ataque xilófago que pueda tener, que suele ser el motivo que obliga a la rehabilitación. A cada tipo de ataque corresponde una manera de degradación de la pieza, lo que puede condicionar el proceso de consolidación.

Por otro lado, el tratamiento químico a que suele someterse la madera, deberá ser compatible con las formulaciones utilizadas. En todo caso será recomendable realizar el tratamiento después de la consolidación, para evitar que en caso contrario la impregnación de la madera pueda perjudicar la adherencia con la formulación epoxi.
8.1.2.- La formulación epoxi

Resistencia al cortante

La resistencia a cortante de las formulaciones empleadas es muy elevada, cerca de los 200 kp/cm². En todo caso la tensión admisible será suficiente para transmitir las tensiones tangenciales a la madera. Puesto que la tensión admisible a cortadura de la madera no suele superar los 16 kp/cm².

Además se puede citar como una ventaja la gran velocidad que poseen para adquirir resistencia. En el caso del cortante se observó que a las 24 h. se habría adquirido de un 50 a un 74% de la resistencia final, a los 7 días entre un 85 a un 92%, según la formulación. Y finalmente al cabo de 21 días las resistencias (Consideradas como resistencia final) de cada formulación no difieren en más de un 5%.

Resistencia a la flexión y compresión

Se dan grandes diferencias de comportamiento según la formulación: Las formulaciones cargadas (como el S. 42 y S.31) presentan un comportamiento en su deformación elástico hasta muy cerca del valor de rotura. Así como un módulo de elasticidad más elevado, cuanto mayor es la proporción de la carga.

Por el contrario las formulaciones puras (como el S. 52) mantienen un comportamiento elástico hasta el 50 ó 60% del valor de rotura. A partir de entonces presenta un marcado periodo plástico. El módulo de elasticidad es mucho menor que en los sistemas cargados.

En cuanto a las tensiones que podrían tomarse como admisibles comparadas con las de la madera, en flexión resultarían algo inferiores a la madera, mientras que en compresión en general serán ligeramente superiores.
8.1.3.- El refuerzo con materiales compuestos

Los materiales compuestos empleados en este estudio, están formados por una matriz de resina de poliéster y un refuerzo de fibra de vidrio. La deformabilidad observada en los ensayos de flexión de estos materiales mostró un comportamiento prácticamente elástico hasta la rotura.

A continuación se resumen las conclusiones deducidas para cada formato de material utilizado:

- **Barras con fibra de vidrio en hilos paralelos y continuos (Roving):**

 Los resultados obtenidos de resistencia a flexión, sobre productos de similares características de tres fabricantes diferentes, son del mismo orden. Una muy elevada tensión de rotura, 5.000 - 6.000 kp/cm² y un módulo de elasticidad de 300.000, - kp/cm².

 Por tanto, se puede considerar este producto como adecuado a su empleo en refuerzos que precisen este formato, dada su buena relación resistencia/precio.

- **Placas con fibra de vidrio en estratificados en hilos cortados (Mat):**

 Con una tensión de rotura de 2.500 Kp/cm², un módulo de elasticidad de 150.000, - kp/cm² y una resistencia al esfuerzo cortante de aproximadamente 900 kp/cm². Presenta unas características mecánicas en principio suficientes para su empleo como refuerzo. Si bien, podría mejorarse su resistencia al esfuerzo tangencial en planos paralelos al de la placa, como se demuestra en los ensayos de adherencia entre placa y formulación.

 En algunos casos cuando las exigencias de resistencia sean muy elevadas, puede ser necesario recurrir a otros tipos de materiales compuestos de mayores resistencias. (Por ejemplo empleando como matriz una resina epoxi y refuerzos mediante
tejidos de fibra de vidrio.

- **Placas con fibra de vidrio en hilos paralelos continuos (Roving):**

De resistencias muy elevadas, parecidas a las de las barras, ya que se trata del mismo sistema de fabricación, este material puede presentar un inconveniente cuando precise trabajar con elevados cortantes.

Ya que su resistencia al esfuerzo rasante paralelo a las fibras resulta pequeña. Este problema puede solucionarse incluyendo tramos de fibra orientada perpendicularmente a los hilos continuos.

La desventaja de los productos planos con fibras orientadas en una sola dirección es la posibilidad de un corte equivocado de orientación.

Por último podemos comentar la falta de apoyo que existe en el momento de adoptar una tensión admisible para estos materiales no tradicionales. Generalmente se recurre a emplear coeficientes de seguridad de 4 a 5 respecto a rotura.

8.2. SOBRE LA ADHERENCIA ENTRE LOS MATERIALES

8.2.1.- Madera y formulación

- La calidad de la unión: la adherencia entre la madera y la formulación es excelente. El valor de la tensión de adherencia tangencial suele ser superior a la resistencia a cortante paralelo a la fibra de la madera. Y muy por encima de la cortadura por rodadura de fibras.

Se podrá tomar, por tanto, como valor más débil la resistencia a cortante de la propia madera.

- El tipo de formulación: se han comprobado buenas adherencias para las
tres formulaciones utilizadas. La carga de la formulación no disminuye la adherencia con la madera. A no ser que se trate de una proporción exagerada.

Únicamente existe una relación entre la adherencia y el tipo de formulación, en cuanto que una formulación que sea más pastosa puede tener dificultades para mojar por completo una superficie rugosa. (Como se ve al tratar de la textura de la superficie de encolado).

- La especie de madera: cuanto mayor es la resistencia a cortante de la madera utilizada, mayor es la tensión de rotura por adherencia tangencial, a la vez que disminuye el porcentaje de fibras arrancadas. Se tiende a llegar a la tensión límite de adherencia, que implicaría el fallo por la interfase.

Las características anatómicas de la especie pueden influir, como ocurre con la especie Quercus robur que llegó a mejor calidad en la unión. Motivada por la existencia de unos radios leñosos mayores que en las coníferas.

- Textura superficial del soporte: la superficie rugosa de la madera ofrece en general mejores resultados de adherencia, sobre todo con formulaciones muy fluidas. Sin embargo con formulaciones pastosas puede resultar contraproducente, por dificultar el contacto completo.

En todo caso las superficies lisas dan resultados suficientemente elevados.

- Edad de la formulación: la tensión de rotura por adherencia tangencial aumenta con la edad de la formulación. (Comprobada en períodos de 1 a 21 días).

Este incremento resulta algo más rápido que el aumento de la propia resistencia a cortante.

8.2.2. - Material compuesto y formulación

- La calidad de la unión: la adherencia entre los materiales compuestos y la formulación epoxi, empleados en este estudio es muy elevada. Es preciso una
compatibilidad entre ambos materiales que en éste caso se cumplía perfectamente.

Las tensiones de rotura alcanzan valores próximos a los 180 kp/cm² en el caso de materiales con fibra en roving. Y de unos 120 kp/cm² cuando son placas con fibra en mat. En éste último caso la rotura se producía normalmente por la propia placa.

- Tratamiento de la superficie:

La limpieza previa al uso del refuerzo, con un disolvente común es recomendable en todo caso, para eliminar impurezas y manchas que dificulten la adhesión. Sobre todo si el material está almacenado sin protección.

El lijado superficial del material compuesto, previo a la limpieza con disolvente, tiene resultados positivos o negativos en la adherencia según el tipo de material y formulación:

En el caso de barras (Resina de poliéster y fibra de vidrio en roving), el lijado aumentó la tensión de rotura ligeramente y ofrecía menor dispersión de los resultados, lo que favorece la adherencia.

En el caso de placas fabricadas con fibra de vidrio en mat, resultó positivo para la formulación S.52 (Muy fluida) y ligeramente negativo con el resto. Se explica por la facilidad de penetración del S.52 entre las fibras que quedan algo más sueltas después del lijado de la capa superior más colmatada de resina.

Por tal motivo cuando se precise el lijado de la placa, de este tipo de composición, se puede mejorar la adherencia de una formulación más viscosa, impregnando previamente la superficie con una formulación de muy baja viscosidad.

En todo caso, si se realiza el lijado, debemos cuidar que la limpieza con disolvente sea completa y no deje rastros de polvo.
- La rugosidad o relieve de la superficie: No parece necesario utilizar materiales de refuerzo con relieves o resaltos que tengan por fin mejorar la adherencia mecánica, puesto que la tensión de rotura en superficies lisas se acerca a la resistencia a cortante de la formulación.

Sin embargo siempre suponen una mayor garantía que en caso de fallo de la adhesión comienza a trabajar por "adherencia mecánica".

8.3.- CONSOLIDACION DE PIEZAS

8.3.1.- Mediante placas.

Es posible mediante el refuerzo con placas, la consolidación de piezas de madera, devolviendo la continuidad a secciones que se encuentran partidas, así como recuperar la seguridad en las cabezas de una viga, cuando por degradación biológica ha perdido el apoyo suficiente.

Si se compara este procedimiento frente a la posibilidad de utilizar refuerzos con varillas y restituir las zonas perdidas con un mortero epoxi, presenta en principio la ventaja de un menor consumo de resinas, y una mayor adecuación para la reparación de roturas en secciones partidas y alejadas del apoyo. En este último caso el refuerzo con placas queda oculto y protegido por la propia madera, mientras que en la solución con barras se recurre a su instalación superficial.

- Refuerzos internos o externos:

El empleo de placas de refuerzo embebidas dentro de la madera tienen mayor eficacia mecánica que las placas adosadas exteriormente. Es debido a la situación de mayor confinamiento en que se encuentran.

Además con las placas internas es posible aumentar la superficie de adherencia con la madera aumentando el número de placas. Y lógicamente al quedar ocultas no
presentan el inconveniente estético del refuerzo adosado, al que podemos sumar la mayor exposición frente al incendio y a las variaciones de humedad y temperatura, si no se protege adecuadamente. Aunque debemos recordar que el cajeadado para el alojamiento de una placa supone una reducción de la sección de madera.

- Variación de la deformabilidad de la pieza después de la consolidación.

La deformabilidad de la pieza queda modificada por la consolidación y su magnitud depende de los siguientes factores: longitud de anclaje en la madera, sección transversal de las placas y módulo de elasticidad de la resina y la placa. Lógicamente cuanto mayores sean dichos factores más rigidez se confiere al conjunto.

Para las longitudes de anclaje habituales por cálculo mecánico la consolidación produce un efecto de rigidización de la pieza.

- Adecuación de la formulación para el relleno de cavidades.

El cajeadado realizado para alojar la placa deberá tener un espesor ligeramente superior al espesor de la placa para permitir el vertido de la formulación hasta rellenar por completo las holguras.

Por un lado interesa que la holgura sea suficientemente grande para que la formulación penetre con facilidad. Y por otro lado que sea lo más pequeña posible para disminuir el gasto de la resina, reducir la pérdida de sección de madera que ello supone y a la vez minimizar el efecto de la fluencia de la formulación.

Se ha comprobado en la elaboración de las probetas que una holgura a cada lado de la placa de 3 a 4 mm. es suficiente para el vertido de una formulación cargada como el sikadur 42. Y de 1 mm. para el caso del sikadur 52, de menor viscosidad.
También se deduce que las formulaciones excesivamente fluidas como el Sikadur 52, presenta el inconveniente de que es en parte absorbida por la madera y puede a través de pequeñas fisuras producirse una fuga que obliga a vigilar el fraguado para rellenar si hace falta.

Así como el caso de la formulación Sikadur 42, si bien, puede ser vertida con holguras de 3 a 4 mm, en profundidades pequeñas, resultaría preciso modificar su dosificación en carga de áridos cuando la profundidad es mayor, y no hay garantías completas de su llenado. De esta forma, lo más indicado parece emplear una formulación como el Sikadur 42, eliminando de la carga de árido el tamaño del grano superior a los 0,8 mm aproximadamente, aunque se conserve la proporción en peso.

El cálculo de la longitud de anclaje.

Según los ensayos realizados se deduce que la rotura de la consolidación, cuando el punto crítico corresponde a la longitud de anclaje, obedece a dos factores: el primero es el posible fallo por adherencia tangencial que viene dado generalmente por el fallo de la madera al esfuerzo cortante al transmitir las tensiones tangenciales. Podría también ocurrir que si la resistencia de la formulación a cortante fuera reducida (como ocurre después de los ciclos de temperaturas extremas) la rotura venga dada por la propia formulación.

Y el segundo factor consiste en la concentración de tensiones de cortadura paralela a la fibra que se originan como consecuencia de la falta de continuidad de sección entre placa y madera. Dando lugar a la rotura de la madera por un rasante en la zona de anclaje.

De la comparación entre los modelos simplificados de cálculo que se describen en el estudio y los resultados de los ensayos, se comprueba como se ajustan más al comportamiento de las placas adosadas, lo cuál es lógico pues se basan en este funcionamiento. Resultan más conservadores cuando se comparan con las placas
internas, y más todavía cuanto mayor es la influencia del cortante.

Simplificando los modelos de cálculo, es posible llegar a un sencillo procedimiento que permite obtener la longitud de anclaje de la placa en función de las dimensiones de la pieza. Tal como se describe anteriormente.

Por último, cabe destacar como el coeficiente de seguridad de una viga reparada después de su rotura, suele tender a su aumento. Como se deduce de los ensayos realizados sobre piezas previamente ensayadas. Si bien, el número de ensayos es muy bajo, y el tamaño y esbeltez de las piezas demasiado pequeños.

8.3.2.- Mediante barras

Aunque el número de ensayos sobre la consolidación con elementos lineales es reducido, por dirigirse el trabajo principalmente al estudio de las placas, se pueden destacar algunas conclusiones.

Los ensayos realizados consisten en la consolidación de pequeñas vigas situando el refuerzo de barras en ranurados efectuados en las caras inferior y superior de la pieza. No obstante, es posible y más recomendable la instalación interior de las barras. Y pueden tener aplicaciones no sólo en elementos que trabajan a flexión, sino es soportes o piezas a compresión y a tracción donde estos elementos pueden hacer la función de conectores o llaves.

- Deformabilidad.

En las probetas ensayadas se ha observado un incremento de la deformabilidad del conjunto de la pieza consolidada. Aunque debemos hacer notar que las longitudes de anclaje fueron muy pequeñas para provocar el fallo deseado. Es por tanto, explicable por el hecho de utilizar secciones pequeñas de refuerzo con pequeñas longitudes de anclaje, lo que implica un nivel de tensiones muy elevado en toda la
superficie y por tanto, mayor deformación.

Podemos suponer que con longitudes superiores de anclaje la deformabilidad no quede incrementada.

Tensiones de adherencia en el cálculo.

Dado que el trabajo de las barras es exclusivamente de tracción o de compresión resulta fácil obtener las tensiones de rotura por adherencia tangencial entre los tres materiales.

De esta forma se dedujo que la tensión de rotura media de la madera por esfuerzo cortante adquiría un valor igual a la resistencia a cortadura paralela a la fibra de la madera reducida por un factor de valor 2,75, aproximadamente. Esto se debe a la distribución no uniforme de las tensiones a lo largo de la barra.

Como consecuencia se deberán reducir la tensión admisible de la madera al esfuerzo cortante, por dicho factor, cuando se dimensione la longitud de anclaje de una barra trabajando axialmente.

8.4. SOBRE LA VARIACIÓN HIGROTERMICA Y SUS EFECTOS EN EL SISTEMA

8.4.1.- La variación de temperatura.

Al efecto de la variación de la temperatura (-20°; 20°, 60° C), se añade cuando se trata de una elevación de ésta, una disminución de la humedad de la madera. Y podemos concluir lo siguiente:

- La formulación S.42 queda fuertemente afectada, reduciéndose su propia resistencia a cortadura a un valor mitad de la tensión de adherencia con ambos materiales.
Se observa durante el desarrollo de los ciclos que se produce un agrietamiento por la formulación en las probetas de adherencia con la madera.

Después del ensayo de las probetas que contienen S.42, se aprecian signos de disgregación entre árido y resina. La explicación de este fenómeno puede estar en una degradación de la formulación por las temperaturas extremas sufridas, así como por las tensiones elevadas que se producen por los movimientos de origen higrotérmico entre los materiales de soporte.

- La formulación S. 31 no queda afectada por los ciclos de temperatura, según se desprende de los resultados de los ensayos de adherencia con la madera y materiales compuestos.

Se puede indicar como justificación posible, la ausencia de áridos en la carga de esta formulación y un módulo de elasticidad más bajo que el del S. 42.

- Por último se comprueba tras los ensayos de las vigas con placas en un apoyo sometidas a los ciclos, que la rotura del anclaje se produce por cortadura de la propia formulación, representando una disminución de la capacidad mecánica de un 25 % aproximadamente. Además se observó una fisuración generalizada durante el desarrollo de los ciclos, en las zonas superficiales entre refuerzo, formulación y madera.

8.4.2. - La variación de humedad.

De los ciclos de humedad variable (14 % - 34 %), a que fueron sometidas las probetas se extraen las siguientes deducciones:

- Las tensiones de rotura por adherencia tangencial, después del proceso de humedad, quedan reducidas a la mitad del valor inicial, en ambas formulaciones.

Se observa una separación entre madera y formulación S. 31, y una fisuración de la
propia formulación S. 42, durante los ciclos. Viene provocada por movimientos de hinchazón de la madera. Y en gran parte la disminución de la tensión de rotura viene dada por la pérdida de superficie de contacto que ello supone.

Ahora bien, si consideramos las probetas de adherencia tangencial con el material compuesto, comprobamos como el S. 31 no queda afecta en la tensión rotura, mientras que el S. 42 si lo está. Este último efecto es extraño, puesto que no parece lógico que la humedad afecte a estos materiales poco higroscópicos. Puede pensarse en un defecto de la amasada.

- En los ensayos de las vigas con placas en un apoyo que fueron sometidas a estos ciclos de humedad, se constata que se produce una ligera reducción de la capacidad mecánica del anclaje, del 10 %.

8.4.3.- El planteamiento teórico de los efectos de la variación de humedad y temperatura.

La variación de la temperatura y de humedad, en estos sistemas de consolidación dan lugar a tensiones en los materiales y a tensiones tangenciales entre sus superficies.

Las tensiones originadas por la variación de las condiciones higrotérmicas en un refuerzo con placas de material compuesto de una pieza de madera, son de mayor importancia por la humedad que por la temperatura.

Asimismo, dichas tensiones son en general, mayores en la dirección perpendicular a la fibra, donde además la resistencia de la madera es menor, y de poca importancia en la dirección longitudinal, donde es posible aumentar la longitud de anclaje, minimizando su valor.

No obstante, se puede constatar que las deducciones del cálculo resultan excesivamente pesimistas, si se comparan con los resultados de los ensayos anteriores. Por
tanto, se considera de interés el estudio en profundidad de este tema, puesto que podría resultar un grave inconveniente para la durabilidad de la consolidación.

De tal forma que sería conveniente conocer las constantes elásticas y térmicas con precisión de los materiales implicados. Así como la variación de la humedad en el interior de la sección de una pieza de madera, como respuesta a la modificación de las condiciones ambientales anuales.

De todas formas es posible reducir estos efectos siguiendo las recomendaciones siguientes:

- Reducir la sección del refuerzo al mínimo posible, actuando en el espesor.

- Utilizar preferiblemente un número mayor de placas, con menor espesor, para aumentar la superficie de contacto y reducir las tensiones.

- Emplear materiales de refuerzo y formulaciones con módulos de elasticidad pequeños.

- Evitar los refuerzos superficiales ó adosados.

- Realizar el trabajo cuando las condiciones higrotérmicas sean lo más intermedias entre valores extremos posibles. Así reducimos el campo de variación de las condiciones.

- Sellar en lo posible las superficies de madera que rodean el refuerzo, sobre todo si se trata de testas o cortes transversales. Así reducimos en parte la higroscopicidad de la madera.

En todo caso se puede recurrir a aumentar el coeficiente de seguridad en una cantidad que compense la pérdida de resistencia observada en los ensayos de vigas sometidas a los ciclos, a falta de estudios más precisos.
APÉNDICE NO 1

DOCUMENTACIÓN TÉCNICA DE LOS MATERIALES

1.1 Formulaciones epoxi
1.2 Materiales compuestos
1.1 Formulaciones epoxi.
Aplicación
El SIKADUR 42 ANCLAJES se utiliza para la reparación, relleno y sellado de grandes grietas, juntas y coqueras en elementos de hormigón, fibrocemento, cerámica, asfalto, poliéster o epoxi. También se utiliza para el anclaje de cables y piezas de hierro, para mejorar las resistencias de los bordes y superficies de hormigón y para verter bajo máquinas o apoyos de puentes.

Descripción
El SIKADUR 42 ANCLAJES es un producto de tres componentes a base de resinas epoxi, de endurecimiento rápido. Los tres componentes se mezclan en proporciones fijas, tanto en peso como en volumen. El producto preparado es autonivelante, fácil de manejar y fluye bien. Una vez endurecido, posee altas resistencias mecánicas, adhiere bien y resiste el ataque químico del agua, aceite, gasolina, soluciones salinas, alcalis, ácidos diluidos, etc., y el agua de las plantas depuradoras. El SIKADUR 42 ANCLAJES no tiene retracción ni efectos corrosivos.

Características
Duración de utilización de 2 Kg. de mezcla (Pot-life):
 a 20°C.: 90 minutos.

 Resistencia a compresión: 950 Kg./cm² aprox.
 Resistencia a flexirotación: 350 Kg./cm² aprox.

Densidad: 1,90 Kg./litro.

Modo de empleo
a) Materiales y herramientas:
 Componente A: resina de baja viscosidad.
 Componente B: endurecedor de baja viscosidad.
 Componente C: arena de cuarzo especial.
 Mezcladora eléctrica de baja velocidad de rotación, con agitador, llanas, guantes, gafas protectoras, trapos, agente de limpieza.

b) Preparación:
La limpieza del soporte es fundamental para obtener buenos resultados en la aplicación del SIKADUR 42 ANCLAJES. En todos los casos la superficie debe estar limpia y exenta de manchas de aceite o grasa. Se deben eliminar las partes mal adheridas y la lechada superficial del cemento. Se puede utilizar con soportes húmedos, pero nunca en presencia de filtraciones o agua estancada.

c) Mezcla y aplicación:
El SIKADUR 42 ANCLAJES debe aplicarse con una temperatura ambiente y del soporte superior a ± 3°C. La temperatura de los componentes antes de la mezcla debe ser de unos 20-25°C. Si fuera necesario, los componentes pueden calentarse al baño maría cuidando de no introducir agua. Nunca deben calentarse al fuego directo. Una vez que la resina se ha calentado, deben dejarse enfriar hasta 20°C. sus componentes antes de mezclarlos, puesto que si no se hace así, se corre el peligro de una reacción excesivamente rápida que no nos permitiría su utilización.

Para hacer la mezcla, se vierte el contenido del componente B (endurecedor) dentro del bote que contiene la resina (componente A). Se mezclará mecánicamente o a mano hasta obtener un producto homogéneo; más tarde, se añade el componente C, prosiguiendo la agitación.

Si no se necesita la cantidad completa del envase, se mezclarán los componentes en la siguiente proporción:

 - Componente A 2 partes en peso.
 - Componente B 1 parte en peso.
 - Componente C 12 partes en peso.

El producto ya mezclado se puede aplicar mediante la mano guantada, llana, espátula o simplemente por vertido. El sistema de aplicación se elegirá teniendo en cuenta las características de la obra. Si el SIKADUR 42 ANCLAJES se vierte en un molde de madera o metal, las superficies se protegerán mediante hojas de PVC o
polietileno, pues si no, será muy difícil o imposible des-
prender el molde, debido a que la resina adhiere muy
bien a la madera y metal.

d) Consumo:
Alrededor de 2 Kg. por litro de mezcla.

e) Limpieza de las herramientas:
Todas las herramientas se deben limpiar inmediatamente
despues de su uso con SIKADUR-Limiador. El producto,
una vez endurecido, únicamente puede eliminarse por me-
dios mecánicos.
El SIKADUR-Limiador es un agente de limpieza para todas
las herramientas e instrumentos que se utilizan durante
los trabajos. Se suministra en envases de 4 y 20 Kg. Infla-
mable, peligro de incendio. Contiene disolventes volátiles,
por lo que hay que tener en cuenta las prescripciones
oficiales existentes a este respecto.

Presentación y almacenamiento
Envases predosificados, listos para su empleo, de 1 y 5 Kg.
Almacenado en lugar fresco, no expuesto al hielo, en enva-
ses cerrados y no deteriorados, el material se conserva
durante un año.

Recomendaciones importantes
Toda persona que sea alérgica deberá usar guantes y
chas protectores, debido a que el componente B (en-
recedor) puede causar una irritación en la piel. Es muy
importante utilizar ropa protectora, así como tener una
limpieza esmerada. Si a pesar de todas estas precaucio-
nes la resina entra en contacto con la piel, debe lavarse
con agua y jabón. Si salpicase a los ojos, lavarlos inme-
diatamente con agua y consultar al médico.
Para cualquier aclaración, rogamos consulten con nuestro
Departamento Técnico.
Utilización

El SIKADUR 31 ADHESIVO es un producto de alta calidad destinado a la unión o reparación de elementos prefabricados de hormigón, fibrocemento, metales, madera, grés, vidrio, cerámica sin silicona, piezas de resinas poliéster o epoxi. Sirve para realizar:

- la unión de hormigones endurecidos.
- el relleno rígido de juntas estrechas.
- el anclaje de hierros para ensamblar, de soportes y tirantes.
- el refuerzo y reparación de las aristas y de las caras vistas del hormigón.

Gracias a su consistencia tixotrópica permite compensar las tolerancias en las dimensiones de las piezas a unir, así como trabajar sobre superficies verticales o en techo.

Descripción

El SIKADUR 31 ADHESIVO es un material de dos componentes de endurecimiento rápido, a base de resina epoxi modificada con cargas. Se fabrica en dos tipos: tipo normal (duración normal de la reacción) y tipo rápido (duración muy corta de la reacción) para trabajos en tiempo frío o para aplicaciones especiales. La dosificación de los dos componentes es extremadamente simple: es suficiente con observar la relación de pesos indicada. Mezclado en frío el adhesivo se extiende fácilmente, no produce rebabas, no contiene disolventes volátiles y moja bien.

La masa, una vez endurecida, de color gris hormigón, posee altas resistencias mecánicas, muy buen poder adherente y una resistencia química excepcional contra el agua, el aceite, la gasolina, las soluciones salinas, los ácidos y bases diluidas, así como contra las aguas residuales. El SIKADUR 31 ADHESIVO no tiene tendencia a la retracción ni tampoco efecto nocivo sobre los materiales que constituyen las piezas unidas.

Características

Duración de utilización de 2 Kg. de mezcla (Pot-life):
- Tipo normal: 40 min. a 20° C.
- Tipo rápido: 10 min. a 20° C.

Resistencias mecánicas:
- Tracción: 250-350 Kg./cm²
- Compresión: 800-900 Kg./cm²
- Flexo-tracción: 400-500 Kg./cm²

Densidad:
- Tipo normal: 1,67 Kg./litro
- Tipo rápido: 1,65 Kg./litro

Aplicación

Materiales y utillaje:
Componente A: resina blanca con cargas incorporadas. Componente B: endurecedor negro con cargas incorporadas, tipo normal o tipo rápido.

Taladradora de mano eléctrica, de pequeña velocidad de rotación, provista de un agitador especial, recipiente para la mezcla, recipientes graduados que permiten medir los volúmenes, espátula de caucho, espátula de metal, paletas, guantes, SIKADUR-Limiador, estopa o trapos de limpieza, etc.

Preparativos:
Es imprescindible un tratamiento preliminar muy cuidadoso de las superficies a tratar para obtener resultados satisfactorios. Se puede aplicar sobre zonas secas o húmedas debiendo estar exentas de polvo, aceite, pintura y grasa y tener una contextura sólida y sana. Estas condiciones se aplican para:

- los elementos de construcción relacionados con el cemento: quitar, mediante chorro de arena, la película superficial de cemento. Decapar con la ayuda de cepillo metálico o muelas. Quitar todas las zonas en que los áridos estén dañados o mal adheridos. No debe limpiarse con ácido.

- para los metales: quitar completamente, mediante chorro de arena o muela, la capa de óxido o pintura. Cuando esto no sea posible, limpiar a fondo con un cepillo metálico y SIKADUR-Limiador.
para las piezas de resina poliéster o epoxi: quitar con muela las capas más superficiales y limpiar a fondo con ayuda del SIKADUR-Limpiador.

Cuando se unen los elementos pegándolos hay que mantener de una forma segura y firme las piezas por unir.

Mezcla y colocación:

En el caso de envases predosificados, echar el contenido entero del endurecedor negro (componente B) en el envase de la resina blanca (componente A), después mezclar a mano o mecánicamente hasta que la mezcla adhesiva tenga un color completamente homogéneo; no debe quedar ningún resto de color diferente ni en el fondo ni en los bordes del envase.

Si no se necesitara la cantidad completa del envase, se mezclarán los componentes en la siguiente proporción:

- resina o componente A: 75 partes en peso.
- endurecedor o componente B: 25 partes en peso.

Si la temperatura de aplicación es extrema, hay que almacenar los productos que se van a mezclar de tal forma que la temperatura del adhesivo, una vez preparado, no sea inferior a 10°C ni superior a 25°C. Si hubiera necesidad de calentar, no debe hacerse directamente sobre el fuego, sino al baño maría de agua o aceite.

Se puede colocar el adhesivo así preparado con ayuda de paletas, espátulas, peines repartidores o con las manos guantes, esto en función de cada caso particular.

La temperatura ambiente y la del soporte deben ser de por lo menos 3°C, sin lo cual la adherencia al soporte estará comprometida.

Para que la temperatura de la mezcla adhesiva no suba mucho durante el endurecimiento y para evitar una retracción, hace falta que la capa no tenga más de 2 cm. de espesor. Para realizar capas de espesores mayores se debe recurrir al SIKADUR 41 MORTERO.

Consumo:

Valor indicativo alrededor de 1.7 Kg./m² de superficie y milímetro de espesor de capa.

Limpieza:

Las herramientas y utensilios empleados se deben limpiar inmediatamente después del empleo con SIKADUR-Limpiador. Una vez endurecido el adhesivo, únicamente puede eliminarse mediante medios mecánicos.

Presentación y conservación

En envases predosificados de:

- 1.6 y 25 Kg., tipo normal
- 1 y 6 Kg., tipo rápido

Debe especificarse al hacer el pedido el tipo de reacción deseada (rápido o normal). La conservación del producto, almacenado en envases no deteriorados y bien cerrados en un lugar fresco y al abrigo del hielo, es de un año.

Un componente helado puede ser utilizado, sin pérdida de calidad, después de haber sido lentamente recalentado (nunca bajo fuego directo y jamás por encima de 50°C) y cuidadosamente mezclado. La temperatura de los componentes en el momento de la mezcla no será superior a 20°C.

SIKADUR-Limpiador:

Producto de limpieza para las herramientas y los utensilios utilizados durante la preparación del producto. La limpieza debe hacerse inmediatamente después de la utilización.

Se proporciona en bidones metálicos de 4 y 20 Kg. Contiene disolventes volátiles (peligro de incendio). Deben tomarse las medidas de seguridad pertinentes.

Aviso importante

Una capa superficial del SIKADUR 31 ADHESIVO realiza una función de barrera de vapor. Dobe, por tanto, utilízarse sobre superficie aireada por debajo o bien protegida mediante una barrera de vapor. No conviene para una construcción sometida al efecto del hielo.

El componente B puede, en ciertos casos, provocar una irritación en la epidermis. Son indispensables guantes, trajes protectores de buena calidad y la observación de una gran limpieza. Si el producto tuviera contacto con los ojos, deben lavarse inmediatamente con mucha agua y ver a un médico sin demora.

La mezcla con temperaturas más altas o la preparación de una mayor cantidad de producto aportan notablemente la duración de la trabajabilidad. No puede compensarse este efecto nada más que almacenando los materiales en temperaturas bajas antes de la mezcla, o procediendo a un enfriamiento artificial de los dos componentes A y B por separado en un baño de hielo o agua fría, evitando que entren en contacto con el agua.

Para cualquier aclaración rogamos consulten con nuestro Departamento Técnico.

Las indicaciones y datos técnicos que aparecen en este folleto están basados en nuestra experiencia y conocimientos actuales. Según las condiciones de puesta en obra, en las que no tenemos ninguna participación, los valores específicos pueden sufrir ciertas variaciones. Por esta razón nuestro garantía se limita únicamente a la calidad del producto suministrado.
Aplicación

El SIKADUR 52 INYECCION se utiliza para rellenar; por inyección o por vertido, las fisuras no sometidas a movimiento, las juntas finas y rígidas, las partes porosas y las pequeñas cavidades que se encuentran en construcciones industriales, puentes, carreteras, elementos prefabricados, etc. Se recomienda igualmente para realizar impresiones con alto poder de penetración.

— permite reparar elementos que están fisurados o agrietados,
— restablece la protección de los hierros de armadura contra la corrosión en las partes del hormigón que están fisuradas,
— mejora la superficie de los materiales absorbentes, tales como el hormigón, la piedra natural o artificial, etc.

Descripción

El SIKADUR 52 INYECCION es un material de dos componentes, a base de resinas epoxi modificadas. El material, una vez mezclado, es muy fluido y no contiene disolventes. Las resistencias finales se alcanzan rápidamente.

La resina, una vez endurecida, ligeramente amarillenta posee resistencias mecánicas altas, es dura, sin ser frágil, y posee una buena adherencia sobre superficies secas o húmedas y no grasientas, tales como piedra, cemento, hormigón, hierro, madera y asfalto colado. La resina no tiene retracción ni acción corrosiva alguna sobre los materiales que debe unir.

Características

Duración de utilización de 1 Kg. de mezcla (Pot-life):

A 20°C.: 75 minutos.

Resistencias mecánicas:

- Compresión: 850 Kg./cm² aprox.
- Tracción: 400 Kg./cm² aprox.

Densidad: 1,09 Kg./litro.

Modo de empleo

a) Materiales y herramientas:

Perforadora eléctrica portátil (de baja velocidad de rotación) con agitador de un diámetro máximo de 5 cm. y con brocas para piedra para el montaje de los tubitos de inyección.

Pincel o rodillo para la impresión.

Masilla IGAS-P para poder preparar un pequeño reborde alrededor de la fisura. Occasionalmente, puede utilizarse el IGAS-Fremoldeado.

Tubitos finos, de unos 5 cm. de longitud, de cobre, latón, aluminio o cualquier otro metal blando.

Tubos flexibles que resistan la presión prevista para la inyección. Hilo metálico para sujetar los tubos flexibles.

Aparato para la inyección que sea apropiado, con depósito para aire comprimido y canalizaciones adecuadas. En los casos sencillos se puede utilizar un cartucho de masilla vacío con pistola manual.

SIKADUR 31 ADHESIVO, tipo rápido, para pegar los tubitos y tapar fisuras.

Guantes, gafas de protección, cuchillo, tijeras, trapos y SIKADUR-Limiador.

b) Preparación:

Para que el producto dé buenos resultados es preciso que su aplicación se haga con cuidado. La superficie a tratar debe ser sana, seca o húmeda, exenta de polvo, aceite o grasa, y debe encontrarse a una temperatura mínima de +5ºC. Eliminar el polvo, la suciedad y otros elementos. Las partes del soporte que hayan estado saturadas de aceite se deben limpiar completamente, hasta llegar al
hormigón sano. En el caso de fisuras horizontales no muy profundas, de por lo menos 0,5 mm. de anchura y de unos 30 cm. de profundidad como máximo, hay que establecer a los dos lados de la fisura una pequeña barrera con masilla. Las fisuras, una vez limpias, se soplarán con aire comprimido.

Para fisuras verticales, o para las que atraviesan un elemento de un lado a otro o que son particularmente profundas, colocar pequeños tubos en la fisura con la ayuda de SIKADUR 31 ADHESIVO. La distancia entre los tubitos debe ser igual a la profundidad de la fisura. Con la ayuda de una espátula, sellar la fisura en toda su longitud sobre las dos caras del elemento portante por medio del SIKADUR 31 ADHESIVO. Es indispensable dejar endurecer el adhesivo antes de comenzar con la inyección. Este tiempo de espera suele ser, según la temperatura ambiente, entre 4 y 12 horas.

Si la fisura no sigue la dirección del agujero perforado, si es muy fina o si puede colmatarse fácilmente por el polvillo de la perforación, es preciso colocar, en lugar del tubito, un racor de brida. Se sujeta fuertemente la brida en la fisura con la ayuda de unos tirañudos soste-
nidos por tacos de plástico. Dejar todo estanco con la ayuda del SIKADUR 31 ADHESIVO.

Para que pueda ejecutarse la inyección sin contrapresión, es preciso soplar todos los tubos, uno tras otro, con aire comprimido, en un orden ascendente.

Se procede de abajo hacia arriba, asegurándose cada vez que el sistema de inyección preparado está abierto.

c) Mezcla:

Es preciso que los componentes se encuentren a una temperatura entre +10°C. y +20°C. en el momento de la mezcla. Se verterá el endurecedor (componente B), todo

entero, en el bote donde se encuentra la resina (compo-
nente A). Seguidamente, se mezclará mecánicamente y a fondo durante un minuto aproximadamente.

Proporciones de la mezcla:

- Componente A: 2 partes en peso.
- Componente B: 1 parte en peso.
d) Aplicación:

Imprimación y fisuras horizontales:
Dar la imprimación con pincel o rodillo durante tanto tiempo como sea preciso hasta llegar a la saturación del soporte. Verterlo en las fisuras, directamente del recipiente donde se efectúa la mezcla.

Inyección de fisuras verticales:
Acoplar al tubo de inyección que está situado más abajo, utilizando para ello un tubo flexible, el recipiente de la mezcla resina-endurecedor. Inyectar lentamente con una presión que se mantendrá constante tanto tiempo como sea preciso para que el líquido inyectado aparezca por el tubito que está por encima. En el caso de un muro, se deberán preparar unos puntos de control en el lado opuesto. Entonces, acoplar el tubo y atarlo con hilo metálico. Proceder seguidamente de igual forma para inyectar por el tubito siguiente.

Para tener la seguridad de que la resina penetra verdaderamente en la fisura y no se va por otro lado, es preciso controlar constantemente la cantidad de mezcla utilizada en el curso del trabajo.

e) Limpieza:
Todas las herramientas e instrumentos se deben limpiar con Sikadur-Limpador, antes de que la resina endurezca. Una vez endurecida, la masa de inyección no se puede
eliminar más que por medios mecánicos. Si se utilizan verdaderos aparatos de inyección, es indispensable limpiarlos de vez en cuando durante el trabajo con SIKADUR-Limiador.

f) Tratamiento posterior:

Una vez que la resina SIKADUR 52 INYECCION ha endurecido, se pueden quitar los tubos con las tijeras o partírlos por medio de una muela de trocear. Para eliminar el SIKADUR 31 ADHESIVO se empleará un disco abrasivo o bien mediante llama directa.

Presentación y almacenamiento

Componente A: resina fluida.
Componente B: endurecedor líquido.
Envases predosificados, listos para su empleo, de ½ y de 2 Kg.

Productos complementarios:

SIKADUR 31 ADHESIVO, tipo rápido.
Adhesivo a base de resinas epoxi, listo para su empleo. Para pegar en obra los tubitos de inyección y para sellar las fisuras.
IGAS-P en bolsas de 1 Kg., para preparar una pequeña barrera alrededor de las fisuras horizontales de grandes dimensiones.

SIKADUR-Limiador. Agente de limpieza para todas las herramientas e instrumentos que se utilizan durante los trabajos. Se suministra en envases de 4 y 20 Kg. Inflamable, peligro de incendio. Contiene disolventes volátiles, por lo que hay que tener en cuenta las prescripciones oficiales existentes a este respecto.

Recomendaciones importantes

El SIKADUR 52 INYECCION es una mezcla cuya reacción es rápida y que no tiene, una vez mezclado, más que una duración de aplicación limitada. En el transcurso de la mezcla de los dos componentes, la reacción produce calor. Si no se elimina este calor, la temperatura de la mezcla se eleva mucho.

El ancho máximo de las fisuras a inyectar será de 5 mm. En tiempo de calor es aconsejable enfriar los componentes antes de su mezcla (por ejemplo, almacenándolos a 10°C en un refrigerador de pic-nic). En el transcurso de este enfriamiento en agua, hay que vigilar que los componentes A y B no se mojen. Es recomendable el hacer un cálculo aproximado del consumo total antes de iniciar los trabajos con el fin de tener material suficiente en el lugar del trabajo.

Cuando se inyecta en fisuras estáticas en hormigón armado, es preciso asegurarse que la carga que ha provocado la fisura no actuará nuevamente, porque lógicamente se produciría otra fisura un poco más lejos.

En ciertos casos, el producto puede ocasionar una irritación en la piel. Se recomienda utilizar guantes o crema para la piel, llevar trajes y gafas de protección. Es preciso igualmente cuidar la limpieza. Si hay un contacto con los ojos, lavar en seguida con mucha agua e inmediatamente consultar con un médico.

Las inyecciones con resinas artificiales exigen la colaboración de especialistas cualificados y de operarios expertos. Para cualquier aclaración, rogamos consulten con nuestro Departamento Técnico.
1.2 Materiales compuestos.
Características mecánicas de los productos fabricados por Bremen S.A.
(Según la documentación técnica del fabricante).

<table>
<thead>
<tr>
<th></th>
<th>AGLomer</th>
<th>TRACCION</th>
<th>FLEXION</th>
<th>COMPRES.</th>
<th>CORTADU.</th>
<th>RESILEN.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VG-77101</td>
<td>VG-77102</td>
<td>KG-77102</td>
<td>DIN50141</td>
<td>ASTM 256</td>
</tr>
<tr>
<td></td>
<td>% VIGOR</td>
<td>Kg/cm2</td>
<td>Kg/cm2</td>
<td>Kg/cm2</td>
<td>Kg/cm2</td>
<td>Kg/cm2</td>
</tr>
<tr>
<td>A= Pultrusión</td>
<td>X</td>
<td>3000</td>
<td>3000</td>
<td>4000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Varilla</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B= Vipol</td>
<td>X</td>
<td>1.600</td>
<td>1.800</td>
<td>5.200</td>
<td>1.400</td>
<td>0.725</td>
</tr>
<tr>
<td></td>
<td>Placa y barra</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C= Vetoxil T-11</td>
<td>X</td>
<td>5.700</td>
<td>5.600</td>
<td>4.000</td>
<td>1.500</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Placa y barra roscada</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D= Roving Arrollem.</td>
<td>X</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tubos</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E= Tejido Arrollem.</td>
<td>X</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tubos</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F= Vetoxil M</td>
<td>X</td>
<td>2.700</td>
<td>4.000</td>
<td>4.200</td>
<td>1.500</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Placa y barra roscada</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BREMEM S.A.
Bº Atela, nº 6 - Aptdo. 71
Munguía (Vizcaya)
Tels. 6 74 03 16 / 12
Características físico mecánicas generales de los materiales compuestos fabricados por pultrusión de Nioco S.A. (Según documentación técnica del fabricante). Uds. en hectobares.

<table>
<thead>
<tr>
<th>CARACTERISTICAS TECNICAS</th>
<th>POLIESTER</th>
<th>EPOXI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO ESPECIFICO</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>PORCENTAJE FIBRA DE VIDRIO-RESINA</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>RESISTENCIA A LA TRACCION</td>
<td>50-70</td>
<td>80-90</td>
</tr>
<tr>
<td>RESISTENCIA A LA FLEXION</td>
<td>40-50</td>
<td>60-65</td>
</tr>
<tr>
<td>RESISTENCIA A LA COMPRESION</td>
<td>25-40</td>
<td>60-65</td>
</tr>
<tr>
<td>MODULO DE ELASTICIDAD</td>
<td>2.500-3.500</td>
<td>4.000-5.000</td>
</tr>
</tbody>
</table>

INDUSTRIAS NIOCO S.A.
Esmeralda, 9. Esplugues de Llobregat (Barcelona)
tno. (93) 3 71 21 94
Características físico mecánicas de las barras roscadas de fibra de vidrio fabricadas por Nioco S.A. (Según la documentación técnica del fabricante.

La fabricación se hace con un procedimiento de pultrusión con fibra de vidrio y resina de vinilester.

<table>
<thead>
<tr>
<th>Ø en pulgadas</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>3/4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø en mm.</td>
<td>9.52</td>
<td>12.7</td>
<td>15.87</td>
<td>19.05</td>
<td>25.40</td>
</tr>
<tr>
<td>Número hilos pulgada</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Paso en mm.</td>
<td>1.588</td>
<td>2.117</td>
<td>2.309</td>
<td>2.54</td>
<td>3.175</td>
</tr>
<tr>
<td>Ø medio en mm.</td>
<td>8.5</td>
<td>11.34</td>
<td>14.38</td>
<td>17.42</td>
<td>23.36</td>
</tr>
<tr>
<td>Ø fondo mm.</td>
<td>7.49</td>
<td>9.99</td>
<td>12.91</td>
<td>15.79</td>
<td>21.33</td>
</tr>
</tbody>
</table>

1 Fuerza longitudinal de compresión. ASTM-D-695-kg/cm²
 3.800 3.800 3.800 3.800 4.500

2 Fuerza de flexión. ASTM-D-790-kg/cm²

3 Módulo de flexión. ASTM-D-790-kg/cm²
 140.000 140.000 140.000 175.000 195.000

4 Resistencia Dieléctrica. ASTM-D-149-Kv/cm.
 30 30 30 30 30

5 Absorción de agua en 24 horas de inmersión. ASTM-D-570 (%)
 0.5 0.5 0.5 0.5 0.5

6 Coeficiente de termomodilatación lineal (in/inºF)
 \(5 \times 10^6\) \(5 \times 10^6\) \(5 \times 10^6\) \(5 \times 10^6\) \(5 \times 10^6\)

7 Color
 Natural Natural Natural Natural Natural

Todos los datos indicados son orientativos. Para cualquier consulta sirvanse llamar a nuestro servicio técnico.

INDUSTRIAS NIOCO S.A.
Esmeralda, 9. Esplugues de Llobregat (Barcelona).
tel. (93) 371 21 94
Características físicas mecánicas de los perfiles de poliéster reforzados con fibra de vidrio. Fabricados por Polymec S.A. (Según documentación técnica del fabricante).

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico</td>
<td>1,65 - 1,8</td>
<td>Kg/dm³</td>
</tr>
<tr>
<td>Contenido porcentual de fibra de vidrio</td>
<td>50 - 70</td>
<td>%</td>
</tr>
<tr>
<td>Resistencia a la tracción</td>
<td>40 - 65</td>
<td>Kg.f/mm²</td>
</tr>
<tr>
<td>Resistencia a la flexión</td>
<td>30 - 45</td>
<td>Kg/mm²</td>
</tr>
<tr>
<td>Módulo de elasticidad</td>
<td>1500 - 3200</td>
<td></td>
</tr>
<tr>
<td>Resistencia a la compresión</td>
<td>25 - 45</td>
<td>Kg/mm²</td>
</tr>
<tr>
<td>Resiliencia</td>
<td>60 - 150</td>
<td>Kg/mm²</td>
</tr>
<tr>
<td>Absorción de agua</td>
<td>0,3 - 0,5</td>
<td>% en peso</td>
</tr>
<tr>
<td>Rigidez dieléctrica a 50 Hz</td>
<td>7 - 15</td>
<td>KV/mm</td>
</tr>
<tr>
<td>Resistencia de aislamiento superficial</td>
<td>10^{10} - 10^{13}</td>
<td>Ohmios</td>
</tr>
<tr>
<td>Constante dieléctrica a 50 Hz</td>
<td>4 - 6</td>
<td></td>
</tr>
<tr>
<td>Factor de pérdida a 50 Hz</td>
<td>0,03 - 0,04</td>
<td>tg.δ</td>
</tr>
<tr>
<td>Coeficiente de transmisión lineal del calor</td>
<td>15 - 17</td>
<td>1/°C × 10⁶</td>
</tr>
<tr>
<td>Conductibilidad térmica</td>
<td>0,2 - 0,3</td>
<td>Kcal/m h °C</td>
</tr>
</tbody>
</table>

POLYMEC S.A.
C/ Camino Hondo s/n. MURCIA 10.
tno. 26 23 02
Características físico mecánicas de los plásticos reforzados en función del refuerzo y matriz utilizados.

Según documentación técnica de Cristalería Española S.A.

<table>
<thead>
<tr>
<th>TIPO DE RESINA</th>
<th>TIPO DE REFORZO</th>
<th>PORCENTAJE REFORZO EN PESO</th>
<th>RESISTENCIA A FLEXIÓN HECTOBARES (1)</th>
<th>RESISTENCIA EN TRACCION HECTOBARES (2)</th>
<th>MODULO DE TRACCION HECTOBARES</th>
<th>RESISTENCIA A COMPRESION HECTOBARES</th>
<th>MODULO DE ELASTICIDAD G Pa (4)</th>
<th>DENSIDAD</th>
<th>DUREZA BARCOL (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLIESTER</td>
<td>Hil. paralelos</td>
<td>70 a 85</td>
<td>110 a 150</td>
<td>110 a 150</td>
<td>3800 a 5300</td>
<td>50 a 80</td>
<td>30 a 45</td>
<td>1,8 a 2,1</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>*Tejido tipo 181 (Silicon)</td>
<td>60 a 65</td>
<td>48 a 54</td>
<td>32 a 35</td>
<td>2000 a 2200</td>
<td>30 a 40</td>
<td>19 a 21</td>
<td>1,6 a 1,8</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>Tejidos Roving</td>
<td>35 a 50</td>
<td>30 a 35</td>
<td>18 a 26</td>
<td>1100 a 1600</td>
<td>20 a 40</td>
<td>11,4 a 15</td>
<td>1,5 a 1,7</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>Preforma</td>
<td>30 a 50</td>
<td>20 a 30</td>
<td>11 a 18</td>
<td>900 a 1400</td>
<td>12 a 18</td>
<td>7,2 a 14,1</td>
<td>1,5 a 1,7</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>Mat</td>
<td>25 a 40</td>
<td>16 a 25</td>
<td>9 a 15</td>
<td>800 a 1100</td>
<td>12 a 18</td>
<td>6,3 a 8,1</td>
<td>1,4 a 1,6</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>Proyección</td>
<td>25 a 40</td>
<td>16 a 25</td>
<td>9 a 15</td>
<td>700 a 1000</td>
<td>12 a 18</td>
<td>7,2 a 9</td>
<td>1,4 a 1,6</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>Mat preimpreg.</td>
<td>25 a 40</td>
<td>16 a 25</td>
<td>9 a 15</td>
<td>800 a 1100</td>
<td>12 a 20</td>
<td>11 a 14</td>
<td>1,4 a 1,6</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>Centrif. (H.C.)</td>
<td>30 a 40</td>
<td>16 a 20</td>
<td>9 a 15</td>
<td>750 a 1000</td>
<td>10 a 18</td>
<td>9 a 10,2</td>
<td>1,4 a 1,6</td>
<td>40 a 80</td>
</tr>
<tr>
<td>EPOXY</td>
<td>Hilos cortados</td>
<td>70 a 85</td>
<td>110 a 150</td>
<td>110 a 150</td>
<td>3800 a 5300</td>
<td>60 a 100</td>
<td>—</td>
<td>1,8 a 2,1</td>
<td>40 a 80</td>
</tr>
<tr>
<td></td>
<td>*Tejido tipo 181 (Silicon)</td>
<td>50 a 65</td>
<td>35 a 60</td>
<td>26 a 40</td>
<td>1600 a 2200</td>
<td>35 a 50</td>
<td>—</td>
<td>1,6 a 1,8</td>
<td>40 a 80</td>
</tr>
</tbody>
</table>

(1) Hectobar = 1.02 kgs/mm²
(2) Las contracciones indicadas se refiere a la sección total del plástico reforzado y no al vidrio.
(3) La dureza depende del grado de polimerización y reticulación de la resina, así como porcentaje de refuerzo.
(4) 1 giga = 1 G = 10¹⁰
1 mega = 1 M = 10⁹
1 N/m² = 1 Newton/m² = 1 N/mm²

PROPIEDADES FISICAS
- densidad 1,5 a 2.
- relación resistencia/peso superior al acero.
- aspecto: brillante o mate, liso o granulado.
- coloración en masa
- translúcido o opaco
- conductividad térmica (calorífica) muy baja
- excelente aislamiento, eléctrico.

CUALIDADES DE USO
- facilidad ejecución
- formas muy variadas
- entretener prácticamente nulo.

PROPIEDADES QUÍMICAS
- resistencia a la corrosión.

* EL TIPO DE TEJIDO 181 ES EL CONSTITUIDO POR UN HILO DE CADENA 7 22 + 3 CON 22 HILOS/CM. Y UN HILO DE TRAMABA VEC 7 22 + 3 CON 21 HILO S/Cm CORRESPONDIENTES AL TIPO SATIN DE 8 CON UN PESO DE 300GRAMOS/METRO CUADRADÓ, DADO UN ESPESOR DE 23/100 DE mm.

CRISTALERIA ESPAÑOLA S.A. Edificio Ederra (Centro Azca). Paseo de la Castellana . Madrid. Tno. 4 56 01 61
Características térmicas y eléctricas de los plásticos reforzados termoendurecibles con resina de poliéster y diferentes formatos de fibra de vidrio. Según documentación técnica de Cristalería Española S.A.

<table>
<thead>
<tr>
<th>NATURALEZA DEL REFORZO</th>
<th>CARACTERÍSTICAS TÉRMICAS</th>
<th>CARACTERÍSTICAS ELÉCTRICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Porcentaje del reforzado</td>
<td>Conductividad térmica W/m.K.</td>
</tr>
<tr>
<td>Mat. hilos cor. Mat. hilos cont. Preformas</td>
<td>20-30</td>
<td>1,0-1,4</td>
</tr>
<tr>
<td>Tejido Silipone (tipo 181)</td>
<td>60-65</td>
<td>0,95-1,1</td>
</tr>
<tr>
<td>Mallas Preimpregnadas</td>
<td>25-40</td>
<td>1,0-1,15</td>
</tr>
<tr>
<td>Premix</td>
<td>15-25</td>
<td>1,0-1,1</td>
</tr>
<tr>
<td>Roving unidireccional</td>
<td>60-75</td>
<td>0,9-1,0</td>
</tr>
</tbody>
</table>

EQUIVALENCIAS: DCA = d₀ = 10
(1) = para un porcentaje en vidrio = 60%.

CRISTALERIA ESPAÑOLA S.A. Edificio Ederra (Centro Azca). Paseo de la Castellana. Madrid. Tno. 4 56 01 61
APÉNDICE N° 2

ENSEÑOS SOBRE LAS CARACTERÍSTICAS MECANICAS DE LA
FORMULACION EPOXI

2.1 Esfuerzo cortante.
2.2 Flexión y compresión.
2.1 Esfuerzo cortante.
ENSAYOS DE RESISTENCIA A ESPUERZO CORTANTE DE LA FORMULACION

FORMULACION: Sikadur 42 Anclajes

DOSIFICACION: A B C
 en peso ...
 en volum...

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>FECHA ELABORAC.</th>
<th>FECHA ENSAYO</th>
<th>EDAD DIAS</th>
<th>AMA - SADA</th>
<th>VEL. Kp/min</th>
<th>CARGA DE ROTURA, Kp</th>
<th>TENSION ROTURA, Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16-11-84</td>
<td>23-11-84</td>
<td>7</td>
<td>1ª</td>
<td>750</td>
<td>2.910</td>
<td>181,8</td>
</tr>
<tr>
<td>2</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.490</td>
<td>155,6</td>
</tr>
<tr>
<td>3</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.490</td>
<td>155,6</td>
</tr>
<tr>
<td>4</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.505</td>
<td>156,5</td>
</tr>
<tr>
<td>5</td>
<td>21-12-84</td>
<td>11-1-85</td>
<td>21</td>
<td>2ª</td>
<td>,</td>
<td>3.380</td>
<td>211,2</td>
</tr>
<tr>
<td>6</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>3ª</td>
<td>,</td>
<td>3.250</td>
<td>203,1</td>
</tr>
<tr>
<td>7</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.890</td>
<td>180,6</td>
</tr>
<tr>
<td>8</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.620</td>
<td>163,7</td>
</tr>
<tr>
<td>9</td>
<td>30-1-85</td>
<td>31-1-85</td>
<td>1</td>
<td>4ª</td>
<td>,</td>
<td>2.070</td>
<td>129,3</td>
</tr>
<tr>
<td>10</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.070</td>
<td>129,3</td>
</tr>
<tr>
<td>11</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.440</td>
<td>152,5</td>
</tr>
<tr>
<td>12</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>2.400</td>
<td>150,0</td>
</tr>
</tbody>
</table>
ENSAYOS DE RESISTENCIA A ESFUERZO CORTANTE DE LA FORMULACION

FORMULACION: Sikadur 31 Adhesivo

DOSIFICACION: A B C

en peso...
en volum...

PROBETA:

cm.

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>FECHA ELABORAC.</th>
<th>FECHA ENSAYO</th>
<th>EDAD DIAS</th>
<th>AMA SADA</th>
<th>VEL. Kp/min</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7-12-84</td>
<td>14-12-84</td>
<td>7</td>
<td>1ª</td>
<td>750</td>
<td>2.970</td>
<td>185.6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.790</td>
<td>174.3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.130</td>
<td>195.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.900</td>
<td>181.2</td>
</tr>
<tr>
<td>5</td>
<td>24-1-85</td>
<td>25-1-85</td>
<td>1</td>
<td>2ª</td>
<td>750</td>
<td>2.440</td>
<td>152.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.605</td>
<td>100.3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.710</td>
<td>106.8</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.390</td>
<td>86.8</td>
</tr>
<tr>
<td>9</td>
<td>11-2-85</td>
<td>4-3-85</td>
<td>21</td>
<td>3ª</td>
<td>750</td>
<td>2.580</td>
<td>161.2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.540</td>
<td>221.2</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.090</td>
<td>193.1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.530</td>
<td>220.6</td>
</tr>
</tbody>
</table>
ENSAYOS DE RESISTENCIA A ESFUERZO CORTANTE DE LA FORMULACIÓN

FORMULACIÓN: Sikadur 52 Inyección

DOSIFICACIÓN: A B C
en peso ...
en volum...

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>FECHA ELABORAC.</th>
<th>FECHA ENSAYO</th>
<th>EDAD DIAS</th>
<th>AMA - SADA</th>
<th>VEL. Kp/min</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21- 2-85</td>
<td>28- 2-85</td>
<td>7</td>
<td>1ª</td>
<td>750</td>
<td>2.550</td>
<td>159,3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.740</td>
<td>171,2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.710</td>
<td>169,3</td>
</tr>
<tr>
<td>4</td>
<td>20- 3-85</td>
<td>10- 4-85</td>
<td>21</td>
<td>2ª</td>
<td>750</td>
<td>3.170</td>
<td>198,1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.040</td>
<td>190,0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.080</td>
<td>192,5</td>
</tr>
<tr>
<td>7</td>
<td>4- 6-85</td>
<td>5- 6-85</td>
<td>1</td>
<td>3ª</td>
<td>750</td>
<td>1.550</td>
<td>96,8</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.570</td>
<td>98,1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.525</td>
<td>95,3</td>
</tr>
</tbody>
</table>
2.2 Flexión y compresión.
ENSAYOS DE RESISTENCIA A FLEXION Y COMPRESION DE LA FORMULACION

FORMULACION: Sikadur 42 anclajes

DOSIFICACION: A B C

en peso:

en volumen:

Fecha: 16-5-85

<table>
<thead>
<tr>
<th>FLEXION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBETA NUMERO</td>
<td>CARGA DE ROTURA Kp</td>
</tr>
<tr>
<td>1</td>
<td>1.400</td>
</tr>
<tr>
<td>2</td>
<td>1.280</td>
</tr>
<tr>
<td>3</td>
<td>1.310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPRESION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBETA NUMERO</td>
<td>CARGA DE ROTURA Kp</td>
</tr>
<tr>
<td>1.1</td>
<td>12.600</td>
</tr>
<tr>
<td>1.2</td>
<td>13.700</td>
</tr>
<tr>
<td>2.1</td>
<td>12.700</td>
</tr>
<tr>
<td>2.2</td>
<td>13.400</td>
</tr>
<tr>
<td>3.1</td>
<td>13.600</td>
</tr>
<tr>
<td>3.2</td>
<td>14.800</td>
</tr>
</tbody>
</table>

Velocidad de carga: Flexión: 1.5 Kp/cm² x seg; Compresión: 12.5 Kp/cm² s.
ENSAYOS DE RESISTENCIA A FLEXION Y COMPRESION DE LA FORMULACION

FORMULACION: Sikadur 31 adhesivo

DOSIFICACION: A B C
 en peso:
 en volumen:

Fecha: 13-6-85

FLEXION

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.560</td>
<td>402</td>
</tr>
<tr>
<td>2</td>
<td>930</td>
<td>239</td>
</tr>
<tr>
<td>3</td>
<td>1.330</td>
<td>342</td>
</tr>
</tbody>
</table>

COMPRESION

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>8.000</td>
<td>500</td>
</tr>
<tr>
<td>1.2</td>
<td>8.700</td>
<td>543</td>
</tr>
<tr>
<td>2.1</td>
<td>7.900</td>
<td>493</td>
</tr>
<tr>
<td>2.2</td>
<td>5.100</td>
<td>318</td>
</tr>
<tr>
<td>3.1</td>
<td>8.100</td>
<td>506</td>
</tr>
<tr>
<td>3.2</td>
<td>7.600</td>
<td>475</td>
</tr>
</tbody>
</table>

Carga flexi. 2.000 Kp
1.500
1.000
0.500
0
1 2 3
E (Kp/cm²): 27.079 13.682 21.663
Deform. mm/100

Velocidad de carga: Flexión: 1.5 Kp/cm² x seg, Compresión: 12.5 Kp/cm² s.
ENSAYOS DE RESISTENCIA A FLEXION Y COMPRESION DE LA FORMULACION

FORMULACION: Sikadur 42 ancl.

DOSIFICACION: A B C
en peso: 7 4 40
en volum.: 40 40 40

Fecha: 5-2-86

FLEXION

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69</td>
<td>310</td>
</tr>
<tr>
<td>2</td>
<td>61,5</td>
<td>276</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>292</td>
</tr>
</tbody>
</table>

COMPRESION

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,980</td>
<td>745</td>
</tr>
<tr>
<td>2</td>
<td>2,840</td>
<td>710</td>
</tr>
<tr>
<td>3</td>
<td>2,710</td>
<td>677</td>
</tr>
<tr>
<td>4</td>
<td>2,760</td>
<td>690</td>
</tr>
</tbody>
</table>

Carga flexi. 100

Kp | 75 | 50 | 25 | 0 |

E (Kp/cm²): 45.439 43.697 53.181

Velocidad de carga: Flexión: 40 Kp/mn Compresión: 1.000 Kp/mn
ENSAYOS DE RESISTENCIA A FLEXIÓN Y COMPRESIÓN DE LA FORMULACIÓN

FORMULACIÓN: Sikadur 31 adh.
DOSIFICACIÓN: A B C
 en peso:
 en volum.:
Fecha: 5-2-86

FLEXIÓN

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65,5</td>
<td>294</td>
</tr>
<tr>
<td>2</td>
<td>76</td>
<td>342</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>333</td>
</tr>
</tbody>
</table>

COMPRESIÓN

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,510</td>
<td>827</td>
</tr>
<tr>
<td>2</td>
<td>2,030</td>
<td>507</td>
</tr>
<tr>
<td>3</td>
<td>2,440</td>
<td>610</td>
</tr>
<tr>
<td>4</td>
<td>2,430</td>
<td>607</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carga flexi. 100 Kp

E (Kp/cm²): 36.843 44.608 31.714

Velocidad de carga: Flexión: 40 Kp/mn, Compresión: 1,000 Kp/mn
ENSAYOS DE RESISTENCIA A FLEXION Y COMPRESION DE LA FORMULACION

FORMULACION: Sikadur 52 inyec.
DOSIFICACION: A B C
 en peso:
 en volum.:
Fecha: 5-2-86

FLEXION

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>360</td>
</tr>
<tr>
<td>2</td>
<td>88,5</td>
<td>398</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>418</td>
</tr>
</tbody>
</table>

COMPRESION

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.560</td>
<td>640</td>
</tr>
<tr>
<td>2</td>
<td>2.400</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>1.300</td>
<td>325</td>
</tr>
<tr>
<td>4</td>
<td>1.780</td>
<td>446</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carga flexi. Kp

E (Kp/cm²): 5.023 5.556 5.978

Velocidad de carga: Flexión: 40 Kp/mn, Compresión: 1.000 Kp/mn
ENSAYOS DE FLEXIÓN:

<table>
<thead>
<tr>
<th>PROBETA N°</th>
<th>LÍMITE ELÁSTICO Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>195</td>
</tr>
<tr>
<td>2</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>249</td>
</tr>
</tbody>
</table>

Tensión de rotura media: 392 Kp/cm²
Límite elástico medio: 228 ,

ENSAYOS DE COMPRESIÓN:

<table>
<thead>
<tr>
<th>PROBETA N°</th>
<th>LÍMITE ELÁSTICO Kp/cm²</th>
<th>MOD. ELASTICIDAD Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>261</td>
<td>9.473</td>
</tr>
<tr>
<td>3</td>
<td>199</td>
<td>6.500</td>
</tr>
<tr>
<td>4</td>
<td>241</td>
<td>7.645</td>
</tr>
</tbody>
</table>

GRAFICAS DE LOS ENSAYOS DE COMPRESIÓN
APENDICE NO 3

ENSAYOS SOBRE LAS CARACTERISTICAS MECANICAS DE LOS MATERIALES COMPUESTOS.

3.1 Flexión de barras.
3.2 Flexión de placas.
3.3 Esfuerzo cortante en placas.
3.1 Flexión de barras.
ENSAYOS DE FLEXION DE VARILLAS DE FIBRA DE VIDRIO

FABRICANTE: Bremen S.A.

PRODUCTO: Barras de resina de poliéster y f. vidrio (Hoying 60%). Sección circular maciza.

Fecha: 30-5-85

PROBETA:

PROBETA	Ø	L	L₀	CARGA DE ROTURA	TENSION DE ROTURA	FLECHA ELAST. ROT.	MÓDULO ELASTICIDAD
1 | 16 | 22 | 25 | 404 | 5.525 | 9 | 309.539
2 | 16 | 22 | 25 | 420 | 5.744 | 9 | 321.798
3 | 16 | 22 | 25 | 474 | 6.483 | 10,5 | 311.290
4 | 16 | 22 | 25 | 461 | 6.305 | 10,2 | 311.657
5 | 10 | 17 | 21 | 162 | 7.013 | 11 | 307.084
6 | 10 | 17 | 21 | 143 | 6.190 | 10 | 298.175
7 | 10 | 17 | 21 | 152 | 6.580 | 10 | 316.941
8 | 10 | 17 | 21 | 156 | 6.753 | 10,8 | 301.187

Velocidad de carga:
1,5 Kp/seg. cm²

Vel. de carga Ø = 16 Kp/min

Vel. de carga Ø = 10 Kp/min
ENSAYOS DE FLEXION DE VARILLAS DE FIBRA DE VIDRIO

FABRICANTE: Nioco S.A.

PRODUCTO: Barras de r. de poliester y f. de vidrio (Roving, 60%). Sección maciza circular.

Fecha: 30-5-85

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>(\varnothing) mm</th>
<th>L cm</th>
<th>L₀ cm</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>FLECHA ELAS. ROTUR. mm</th>
<th>MODULO ELASTICIDAD Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>27</td>
<td>32</td>
<td>490</td>
<td>4.211</td>
<td>7.5</td>
<td>341.110</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>27</td>
<td>32</td>
<td>578</td>
<td>4.967</td>
<td>8.5</td>
<td>355.033</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>27</td>
<td>32</td>
<td>584</td>
<td>5.019</td>
<td>9.5</td>
<td>320.958</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>27</td>
<td>32</td>
<td>564</td>
<td>4.847</td>
<td>8.5</td>
<td>346.433</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>152</td>
<td>6.580</td>
<td>10</td>
<td>316.941</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>153</td>
<td>6.623</td>
<td>10</td>
<td>319.026</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>153</td>
<td>6.623</td>
<td>10.5</td>
<td>303.834</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>130</td>
<td>5.627</td>
<td>9.5</td>
<td>285.335</td>
</tr>
</tbody>
</table>

Velocidad de carga:
- \(1.5 \) Kp/seg. cm²
- Vel. de carga \(\varnothing = 20 \) Kp/min.
- Vel. de carga \(\varnothing = 10 \) Kp/min.
GRAFICAS DE CARGA - DEFORMACION DE ENSAYOS DE FLEXION DE VARILLAS DE FIBRA DE VIDRIO. (FABRICANTE: NIODO S.A.)
ENSAJOS DE FLEXIÓN DE VARILLAS DE FIBRA DE VIDRIO

FABRICANTE: Polymec S.A.

PRODUCTO: Barras de r. poliesterr y fibra vidrio (50-70 %) de sección circular maciza

Fecha: Noviembre 1.984

TABLA:

<table>
<thead>
<tr>
<th>PROBETA NÚMERO</th>
<th>(\phi)</th>
<th>L</th>
<th>L₀</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>FLECHA DE ROT.</th>
<th>MODULO ELASTICIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>544</td>
<td>5.938</td>
<td>12.5</td>
<td>274.920</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>612</td>
<td>6.680</td>
<td>13.5</td>
<td>280.375</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>508</td>
<td>5.545</td>
<td>11.5</td>
<td>279.051</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>560</td>
<td>6.112</td>
<td>12.0</td>
<td>294.798</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>564</td>
<td>6.156</td>
<td>12.5</td>
<td>285.027</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>550</td>
<td>6.003</td>
<td>12.0</td>
<td>289.533</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>204</td>
<td>8.831</td>
<td>11.5</td>
<td>369.885</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>191</td>
<td>8.268</td>
<td>11.0</td>
<td>362.056</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>211</td>
<td>9.134</td>
<td>12.5</td>
<td>351.971</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>209</td>
<td>9.047</td>
<td>12.0</td>
<td>363.161</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>197</td>
<td>8.528</td>
<td>11.5</td>
<td>357.193</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>203</td>
<td>8.787</td>
<td>12.0</td>
<td>352.736</td>
</tr>
</tbody>
</table>

Velocidad de carga:
- \(1.5 \text{ Kp/seg. cm}^2 \)
- Vel. de carga \(\phi = 18 \text{ cm} \) 230 Kp/min
- Vel. de carga \(\phi = 10 \text{ cm} \) 70 Kp/min
3.2 Flexión de placas.
ENSAYOS DE FLEXION DE PLACAS DE FIBRA DE VIDRIO . (MAT)

FABRICANTE : Bremen S.A.
PRODUCTO : Placa de r. de poliester y f. de vidrio en mat. (Vipol).
Fecha : 30- 5-95

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>b x d mm x mm</th>
<th>L L_0 cm</th>
<th>VEL. Kp/min</th>
<th>TIPO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION ROTURA Kp/cm²</th>
<th>FLECHA 1/3 C.R. mm</th>
<th>MODULO ELASTICIDAD Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20,5 x 20</td>
<td>27 32</td>
<td>200</td>
<td>A</td>
<td>550</td>
<td>2.716</td>
<td>3,8</td>
<td>144.758</td>
</tr>
<tr>
<td>2</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>454</td>
<td>2.242</td>
<td>3</td>
<td>151.356</td>
</tr>
<tr>
<td>3</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>496</td>
<td>2.449</td>
<td>3,5</td>
<td>141.735</td>
</tr>
<tr>
<td>4</td>
<td>20,5 x 20</td>
<td>27 32</td>
<td>,</td>
<td>A</td>
<td>504</td>
<td>2.489</td>
<td>3,3</td>
<td>152.750</td>
</tr>
<tr>
<td>5</td>
<td>20 x 20,5</td>
<td>27 32</td>
<td>,</td>
<td>B</td>
<td>538</td>
<td>2.592</td>
<td>2,7</td>
<td>194.428</td>
</tr>
<tr>
<td>6</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>590</td>
<td>2.842</td>
<td>3</td>
<td>191.899</td>
</tr>
<tr>
<td>7</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>510</td>
<td>2.457</td>
<td>3,5</td>
<td>142.181</td>
</tr>
<tr>
<td>8</td>
<td>20 x 20,5</td>
<td>27 32</td>
<td>200</td>
<td>B</td>
<td>542</td>
<td>2.611</td>
<td>3,5</td>
<td>151.103</td>
</tr>
</tbody>
</table>
GRAFICAS DE CARGA - DEFORMACION DE ENSAYOS DE FLEXION DE PLACAS DE FIBRA DE VIDRIO (MAT). (FABRICANTE : DREHEN S.A.)
ENSAYOS DE FLEXIÓN DE PLACAS DE FIBRA DE VIDRIO (MAT)

FABRICANTE: Bremen S.A.

PRODUCTO: Placa de r. de poliéster y f. de vidrio en Mat. (Vipol e= 20)

Fecha: 10-7-85

TIPO:

![Diagrama de ensayo de flexión](image)

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>b x d (mm x mm)</th>
<th>L (cm)</th>
<th>L₀ (cm)</th>
<th>VEL. (Kp/min)</th>
<th>TIPO</th>
<th>CARGA DE ROTURA (Kp)</th>
<th>TENSION (Kp/cm²)</th>
<th>FLECHA (1/2 C.R. mm)</th>
<th>MODULO ELASTICIDAD (Kp/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 x 21</td>
<td></td>
<td>27</td>
<td>32</td>
<td></td>
<td>200</td>
<td>570</td>
<td>2.617</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>574</td>
<td>2.635</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>20 x 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>520</td>
<td>2.387</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>20 x 21</td>
<td></td>
<td>27</td>
<td>32</td>
<td></td>
<td>200</td>
<td>528</td>
<td>2.424</td>
<td>5</td>
</tr>
</tbody>
</table>
GRAFICAS DE CARGA - DEFORMACION DE ENSAYOS DE FLEXION DE PLACAS DE FIBRA DE VIDRIO (MAT). (FAHRICANTE : BREMEN S.A.)
ENSAYOS DE FLEXION DE PLACAS DE FIBRA DE VIDRIO . (MAT)

FABRICANTE : Bremen S.A.
PRODUCTO : Placa de r. de poliéster y f. de vidrio en Mat. (Vipol e = 15).
Fecha : 10- 7-85

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>b x d mm x mm</th>
<th>L cm</th>
<th>L₀ cm</th>
<th>VEL. Kp/min</th>
<th>TIPO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION ROTURA Kp/cm²</th>
<th>FLECHA 1/2 C.R. mm</th>
<th>MODULO ELASTICID. Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 x 20</td>
<td>24</td>
<td>28</td>
<td>180</td>
<td>B</td>
<td>450</td>
<td>2.700</td>
<td>4</td>
<td>162.000</td>
</tr>
<tr>
<td>2</td>
<td>16 x 20</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td></td>
<td>510</td>
<td>2.868</td>
<td>4,7</td>
<td>146.489</td>
</tr>
<tr>
<td>3</td>
<td>15 x 20</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td></td>
<td>482</td>
<td>2.892</td>
<td>4,5</td>
<td>154.240</td>
</tr>
<tr>
<td>4</td>
<td>15,5x20</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td></td>
<td>545</td>
<td>3.164</td>
<td>5,4</td>
<td>140.645</td>
</tr>
<tr>
<td>5</td>
<td>15 x 20</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td></td>
<td>458</td>
<td>2.748</td>
<td>4,3</td>
<td>153.376</td>
</tr>
<tr>
<td>6</td>
<td>15 x 20</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td></td>
<td>434</td>
<td>2.604</td>
<td>3,5</td>
<td>178.560</td>
</tr>
<tr>
<td>7</td>
<td>14,4x20</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td></td>
<td>380</td>
<td>2.375</td>
<td>3,6</td>
<td>158.333</td>
</tr>
<tr>
<td>8</td>
<td>14,4x20</td>
<td>24</td>
<td>28</td>
<td>180</td>
<td>B</td>
<td>390</td>
<td>2.437</td>
<td>3,8</td>
<td>153.947</td>
</tr>
</tbody>
</table>
GRAFICAS DE CARGA - DEFORMACION DE ENSAYOS DE FLEXION DE PLACAS DE FIBRA DE VIDRIO (MAT). FABRICANTE : BRENEN S.A.
ENSAYOS DE FLEXION DE PLACAS DE FIBRA DE VIDRIO (MAT)

FABRICANTE: Bremen S.A.

PRODUCTO: Placa de r. de poliéster y f. de vidrio en Mat. (Vipol e = 13).

Fecha: 10-7-85

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>b x d mm x mm</th>
<th>L cm</th>
<th>L_o cm</th>
<th>VEL. Kp/min</th>
<th>TIPO</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION ROTURA Kp/cm²</th>
<th>FLECHA 1/2 C.R. mm</th>
<th>MODULO ELASTICIDAD Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13 x 20</td>
<td>24</td>
<td>28</td>
<td>150</td>
<td>B</td>
<td>284</td>
<td>1.966</td>
<td>4</td>
<td>117.969</td>
</tr>
<tr>
<td>2</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>349</td>
<td>2.416</td>
<td>4,8</td>
<td>120.807</td>
</tr>
<tr>
<td>3</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>379</td>
<td>2.623</td>
<td>4,5</td>
<td>139.938</td>
</tr>
<tr>
<td>4</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>408</td>
<td>2.824</td>
<td>5</td>
<td>135.581</td>
</tr>
<tr>
<td>5</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>405</td>
<td>2.803</td>
<td>5</td>
<td>134.584</td>
</tr>
<tr>
<td>6</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>414</td>
<td>2.866</td>
<td>4,6</td>
<td>149.538</td>
</tr>
<tr>
<td>7</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>385</td>
<td>2.665</td>
<td>4,5</td>
<td>142.153</td>
</tr>
<tr>
<td>8</td>
<td>13 x 20</td>
<td>24</td>
<td>28</td>
<td>150</td>
<td>B</td>
<td>292</td>
<td>2.021</td>
<td>3,5</td>
<td>138.619</td>
</tr>
</tbody>
</table>
GRAFICAS DE CARGA - DEFORMACION DE ENSAYOS DE FLEXION DE PLACAS DE FIBRA DE VIDRIO (MAT). (FABRICANTE : BREMEN S.A.)
ENSAYOS DE FLEXIÓN DE PLACAS DE FIBRA DE VIDRIO (HILOS PARALELOS)

FABRICANTE: Nioco S.A.

PRODUCTO: Placas de r. de poliéster y f. de vidrio en hilos paralelos.

Fecha: 31-5-85

PROBETA

![Diagrama de probeta de flexión de placas de fibra de vidrio](attachment:diagram.png)

PROBETA NUMERO | b x d | L | VEL. | CARGA DE ROTURA | TENSION DE ROTURA | FLECHA | MODULO ELASTICIDAD
<table>
<thead>
<tr>
<th>mm x mm</th>
<th>cm</th>
<th>Kp/min</th>
<th>Kp</th>
<th>Kp/cm²</th>
<th>1/2 C.R. mm</th>
<th>Kp/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70 x 4,75</td>
<td>17</td>
<td>170</td>
<td>518</td>
<td>8.363</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>70 x 4,75</td>
<td>17</td>
<td>, ,</td>
<td>555</td>
<td>8.960</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>70 x 4,75</td>
<td>17</td>
<td>, ,</td>
<td>568</td>
<td>9.170</td>
<td>13,5</td>
</tr>
<tr>
<td>4</td>
<td>70 x 4,75</td>
<td>17</td>
<td>, ,</td>
<td>560</td>
<td>9.041</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>24 x 8</td>
<td>17</td>
<td>150</td>
<td>292</td>
<td>4.847</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>24 x 8</td>
<td>17</td>
<td>, ,</td>
<td>292</td>
<td>4.847</td>
<td>5,7</td>
</tr>
<tr>
<td>7</td>
<td>24 x 8</td>
<td>17</td>
<td>, ,</td>
<td>300</td>
<td>4.980</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>24 x 8</td>
<td>17</td>
<td>, ,</td>
<td>320</td>
<td>5.312</td>
<td>6,5</td>
</tr>
</tbody>
</table>
3.3 Esfuerzo cortante en placas.
ENSAYOS DE ESFUERZO CORTANTE EN PLACAS DE FIBRA DE VIDRIO. (MAT).

FABRICANTE : Bremen S.A.

PRODUCTO : Placa de resina poliéster y fibra de vidrio tipo Mat. (Vipol)

Fecha : 27-5-85

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>a - b</th>
<th>d x e</th>
<th>VEL.</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18 - 18</td>
<td>15 x 15</td>
<td>750</td>
<td>2.020</td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>14 x 15</td>
<td></td>
<td>2.050</td>
<td>976</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>15 x 15</td>
<td></td>
<td>2.430</td>
<td>1.080</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>14 x 15</td>
<td></td>
<td>1.980</td>
<td>942</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>15 x 15</td>
<td></td>
<td>1.860</td>
<td>826</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18 - 18</td>
<td>15 x 15</td>
<td>750</td>
<td>2.000</td>
<td>888</td>
<td></td>
</tr>
</tbody>
</table>
ENSAYOS DE ESFUERZO CORTANTE EN PLACAS DE FIBRA DE VIDRIO. (HILOS PARALELOS)

FABRICANTE: Nioco S.A.
PRODUCTO: Placa de fibra de vidrio en roving, y resina de poliéster.
Fecha: 27-5-85

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>a - b</th>
<th>d x e</th>
<th>TIPO</th>
<th>VEL.</th>
<th>CARGA DE ROTURA</th>
<th>TENSION ROTURA</th>
<th>OBSERVACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19 - 25</td>
<td>19 x 8</td>
<td>A</td>
<td>300</td>
<td>684</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>, ,</td>
<td>18 x 8</td>
<td>A</td>
<td>, ,</td>
<td>652</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>, ,</td>
<td>18 x 8</td>
<td>A</td>
<td>, ,</td>
<td>639</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>, ,</td>
<td>19 x 8</td>
<td>A</td>
<td>, ,</td>
<td>630</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>, ,</td>
<td>19 x 8</td>
<td>A</td>
<td>, ,</td>
<td>630</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19 - 25</td>
<td>19 x 8</td>
<td>A</td>
<td>300</td>
<td>657</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12 - 12</td>
<td>19 x 8</td>
<td>B</td>
<td>140</td>
<td>258</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>, ,</td>
<td>19 x 8</td>
<td>B</td>
<td>, ,</td>
<td>304</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>, ,</td>
<td>19 x 8</td>
<td>B</td>
<td>, ,</td>
<td>324</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>, ,</td>
<td>19 x 8</td>
<td>B</td>
<td>, ,</td>
<td>348</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>, ,</td>
<td>19 x 8</td>
<td>B</td>
<td>, ,</td>
<td>400</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12 - 12</td>
<td>19 x 8</td>
<td>B</td>
<td>140</td>
<td>310</td>
<td>203</td>
<td></td>
</tr>
</tbody>
</table>
APÉNDICE Nº 4

ENSAYO A FLEXIÓN DE PIEZAS DE MADERA DE PINO INsigne.
ENSAYO DE FLEXION A ROTURA DE VIGAS SIN DISCONTINUIDADES ("SANAS")

MADERA : Pino insignis
HUMEDAD : 12 %

![Diagrama de ensayo de flexión y rotura de vigas]

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>SECCI. b</th>
<th>SECCI. d</th>
<th>SECCI. L</th>
<th>SECCI. L₀</th>
<th>CLASIF.</th>
<th>CARGA ADMISIBLE Pa</th>
<th>CARGA DE ROTURA P</th>
<th>COEF. P/Pa</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>106</td>
<td>900</td>
<td>1050</td>
<td>0,75</td>
<td>1.773</td>
<td>> 3.900</td>
<td>> 2,20</td>
<td>No rompió</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>104</td>
<td>900</td>
<td>1050</td>
<td>0,50</td>
<td>1.155</td>
<td>> 3.900</td>
<td>> 3,37</td>
<td>No rompió</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>92</td>
<td>930</td>
<td>1050</td>
<td>0,65</td>
<td>1.154</td>
<td>2.590</td>
<td>2,24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>92</td>
<td>930</td>
<td>1050</td>
<td>0,65</td>
<td>1.137</td>
<td>1.950</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>105</td>
<td>930</td>
<td>1050</td>
<td>0,50</td>
<td>1.105</td>
<td>2.750</td>
<td>2,48</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>66</td>
<td>95</td>
<td>930</td>
<td>1050</td>
<td>0,65</td>
<td>1.194</td>
<td>3.230</td>
<td>2,70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>97</td>
<td>930</td>
<td>1050</td>
<td>< 0,40</td>
<td>< 778</td>
<td>1.700</td>
<td>> 2,18</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>66</td>
<td>105</td>
<td>930</td>
<td>1050</td>
<td>0,40</td>
<td>898</td>
<td>3.400</td>
<td>3,78</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>68</td>
<td>105</td>
<td>930</td>
<td>1050</td>
<td>< 0,40</td>
<td>< 925</td>
<td>1.820</td>
<td>> 1,96</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>67</td>
<td>96</td>
<td>930</td>
<td>1050</td>
<td>0,40</td>
<td>762</td>
<td>2.000</td>
<td>2,62</td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de carga : 400 Kp/ min.
Fecha : 20 - 6 - 86
GRAFICAS DE DEFORMACION, ENSAYO DE FLEXION DE VIGAS SIN DISCONTINUIDADES ("SANAS").

![Diagram](image-url)
GRAFICAS DE DEFORMACION, ENSAYO DE FLEXION DE VIGAS "SANAS". LECTURAS MEDIANTE MICROMETRO (MM/100)

- DEF. EN "A" & "B", mm/100 -

P/2 P/2
A
L/2
B L/3

0 10 50 100 150
0 400 800 1,200 1,600 2,000 2,400
P Kp.
Graficas de deformación. Ensayo de flexión de vigas "Sanas". Lecturas mediante micrómetro (mm/100)

- Def. en "A" y "B", mm/100 -

\[\frac{P}{2} \]

\[\frac{P}{2} \]

\[\frac{L}{2} \]

\[\frac{L}{3} \]

\[P \]

\[Kp. \]
<table>
<thead>
<tr>
<th>Nº</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>No rompió por rebasar carga máxima de la máquina.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APÉNDICE N° 5

ENSAYOS DE ADHERENCIA TANGENCIAL ENTRE MADERA Y FORMULACIÓN.
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 42 Anclajes

MADERA: Pino Insignis
Humedad: 10,3
Anillos/cm: 1,5 - 2,5
Edad: menor a 1 año

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>A * H cm * cm</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
<td>Kp/cm²</td>
<td>% de madera arrancada</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4,9 x 4,0</td>
<td>Lisa</td>
<td>7</td>
<td>2.100</td>
<td>107,1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>4,9 x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.170</td>
<td>108,0</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.020</td>
<td>52,0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1,5</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.200</td>
<td>61,2</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.790</td>
<td>91,3</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>1,5</td>
<td>4,9 x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>940</td>
<td>49,1</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>1,5</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.590</td>
<td>132,1</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.520</td>
<td>128,5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1,5</td>
<td>4,9 x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.870</td>
<td>97,8</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>4,9 x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>2.600</td>
<td>139,6</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>1,5</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.260</td>
<td>64,2</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>4,9 x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>1.120</td>
<td>60,1</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>1,5</td>
<td>4,9 x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>2.050</td>
<td>110,0</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.860</td>
<td>94,8</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>4,9 x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.980</td>
<td>152,0</td>
<td>75</td>
</tr>
<tr>
<td>16</td>
<td>1,5</td>
<td>4,9 x 4,0</td>
<td>Lisa</td>
<td>7</td>
<td>2.220</td>
<td>113,2</td>
<td>50</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 30 - 4 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 42 anclajes

MADERA: Pino Insignis
Humedad: 10,6%
Anillos/cm: 1,4 - 2,5
Edad: menor a 1 año

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NÚMERO</td>
<td>mm</td>
<td>cm x cm</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
<td>Kp/cm²</td>
<td>% de madera arrancada</td>
</tr>
<tr>
<td>1</td>
<td>2,5</td>
<td>4,9 x 4,1</td>
<td>Rugosa</td>
<td>7</td>
<td>2.570</td>
<td>127,9</td>
<td>50 r</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.640</td>
<td>83,6</td>
<td>32 rt</td>
</tr>
<tr>
<td>3</td>
<td>2,5</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>2.050</td>
<td>107,2</td>
<td>35 rt</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.500</td>
<td>127,5</td>
<td>30 t</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.860</td>
<td>97,3</td>
<td>50 rt</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.730</td>
<td>88,2</td>
<td>22 rt</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.830</td>
<td>91,0</td>
<td>36 rt</td>
</tr>
<tr>
<td>8</td>
<td>2,5</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.910</td>
<td>97,4</td>
<td>40 t</td>
</tr>
<tr>
<td>9</td>
<td>2,5</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.670</td>
<td>85,2</td>
<td>45 rt</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.840</td>
<td>93,8</td>
<td>25 rt</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>, , x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>1.920</td>
<td>103,1</td>
<td>45 t</td>
</tr>
<tr>
<td>12</td>
<td>2,5</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.470</td>
<td>76,9</td>
<td>57 t</td>
</tr>
<tr>
<td>13</td>
<td>2,5</td>
<td>, , x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.070</td>
<td>103,0</td>
<td>19 t</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.530</td>
<td>78,0</td>
<td>23 rt</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>, , x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.110</td>
<td>105,0</td>
<td>37 t</td>
</tr>
<tr>
<td>16</td>
<td>2,5</td>
<td>4,9 x 3,9</td>
<td>Rugosa</td>
<td>7</td>
<td>1.580</td>
<td>82,6</td>
<td>50 t</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 6 - 2 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 42 anclajes

MADERA: Pino Insignis

Humedad : 11,5 %

Anillos/cm: 1 – 2

Edad : menor a 1 año

PROBETA:
![Diagrama de probeta](image)

cotas mm

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E mm</th>
<th>SUP. ROTU. cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,6</td>
<td>4,8 x 4,15</td>
<td>Rugosa</td>
<td>21</td>
<td>2.570</td>
<td>129,0</td>
<td>63 r</td>
</tr>
<tr>
<td>2</td>
<td>1,6</td>
<td>4,8 x 4,15</td>
<td>,…, ,…</td>
<td>…</td>
<td>3.160</td>
<td>158,6</td>
<td>52 r</td>
</tr>
<tr>
<td>3</td>
<td>2,1</td>
<td>,…, x 4,10</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.890</td>
<td>146,8</td>
<td>60 t</td>
</tr>
<tr>
<td>4</td>
<td>2,1</td>
<td>,…, x 4,25</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.360</td>
<td>115,6</td>
<td>92 t</td>
</tr>
<tr>
<td>5</td>
<td>2,1</td>
<td>,…, x 4,2</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.910</td>
<td>144,3</td>
<td>79 r</td>
</tr>
<tr>
<td>6</td>
<td>1,6</td>
<td>,…, x 4,25</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.590</td>
<td>126,9</td>
<td>70 rt</td>
</tr>
<tr>
<td>7</td>
<td>2,6</td>
<td>,…, x 4,20</td>
<td>,…, ,…</td>
<td>…</td>
<td>3.200</td>
<td>158,7</td>
<td>75 rt</td>
</tr>
<tr>
<td>8</td>
<td>2,2</td>
<td>,…, x 4,25</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.670</td>
<td>130,8</td>
<td>85 t</td>
</tr>
<tr>
<td>9</td>
<td>2,5</td>
<td>,…, x 4,10</td>
<td>Lisa</td>
<td>1.850</td>
<td>94,0</td>
<td>12 t</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2,2</td>
<td>,…, x 4,10</td>
<td>,…, ,…</td>
<td>…</td>
<td>3.100</td>
<td>157,5</td>
<td>60 rt</td>
</tr>
<tr>
<td>11</td>
<td>2,1</td>
<td>,…, x 4,10</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.220</td>
<td>112,8</td>
<td>33 t</td>
</tr>
<tr>
<td>12</td>
<td>2,2</td>
<td>,…, x 4,10</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.600</td>
<td>132,1</td>
<td>70 r</td>
</tr>
<tr>
<td>13</td>
<td>1,3</td>
<td>,…, x 4,10</td>
<td>,…, ,…</td>
<td>…</td>
<td>3.210</td>
<td>163,1</td>
<td>60 rt</td>
</tr>
<tr>
<td>14</td>
<td>2,5</td>
<td>,…, x 4,10</td>
<td>,…, ,…</td>
<td>…</td>
<td>1.880</td>
<td>95,5</td>
<td>55 t</td>
</tr>
<tr>
<td>15</td>
<td>2,6</td>
<td>,…, x 4,10</td>
<td>,…, ,…</td>
<td>…</td>
<td>1.630</td>
<td>82,8</td>
<td>15 t</td>
</tr>
<tr>
<td>16</td>
<td>1,6</td>
<td>,…, x 4,00</td>
<td>,…, ,…</td>
<td>…</td>
<td>2.100</td>
<td>109,3</td>
<td>70 t</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha : 10 – 1 – 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 42 anclajes

MADERA: Pino Laricio

Humedad: 9,02%

Anillos/cm: 4

Edad: superior a 30 años

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5 x 3,9</td>
<td>Rugosa</td>
<td>7</td>
<td>1.570</td>
<td>80,5</td>
<td>100 r</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>3,9 x</td>
<td></td>
<td></td>
<td>1.720</td>
<td>88,2</td>
<td>100 r</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4,0 x</td>
<td></td>
<td></td>
<td>1.830</td>
<td>91,5</td>
<td>88 r</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3,9 x</td>
<td></td>
<td></td>
<td>1.850</td>
<td>94,8</td>
<td>70 r</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3,9 x</td>
<td></td>
<td></td>
<td>1.590</td>
<td>81,5</td>
<td>100 r</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3,8 x</td>
<td></td>
<td></td>
<td>1.650</td>
<td>86,8</td>
<td>82 r</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3,9 x</td>
<td></td>
<td></td>
<td>810</td>
<td>41,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5 x 3,9 Rugosa</td>
<td></td>
<td>7</td>
<td>1.820</td>
<td>93,3</td>
<td>95 r</td>
</tr>
<tr>
<td>9</td>
<td>2,5</td>
<td>4,1 x</td>
<td>Lisa</td>
<td>7</td>
<td>1.670</td>
<td>81,4</td>
<td>95 r</td>
</tr>
<tr>
<td>10</td>
<td>3,5</td>
<td>4,1 x</td>
<td></td>
<td></td>
<td>1.680</td>
<td>81,9</td>
<td>95 r</td>
</tr>
<tr>
<td>11</td>
<td>1,5</td>
<td>3,9 x</td>
<td></td>
<td></td>
<td>1.650</td>
<td>84,6</td>
<td>65 r</td>
</tr>
<tr>
<td>12</td>
<td>1,5</td>
<td>3,9 x</td>
<td></td>
<td></td>
<td>1.760</td>
<td>90,2</td>
<td>53 rt</td>
</tr>
<tr>
<td>13</td>
<td>2,3</td>
<td>4,0 x</td>
<td></td>
<td></td>
<td>1.660</td>
<td>83,0</td>
<td>93 r</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3,7 x</td>
<td></td>
<td></td>
<td>1.530</td>
<td>82,7</td>
<td>95 t</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>4,0 x</td>
<td></td>
<td></td>
<td>1.290</td>
<td>64,5</td>
<td>100 r</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>4,0 x</td>
<td>Lisa</td>
<td>7</td>
<td>1.180</td>
<td>59,0</td>
<td>100 r</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 6 - 2 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 42 Anclajes

MADERA: Pino Laricio
Humedad: 8,7%
Anillos/cm: 4
Edad: Superior a 30 años

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E (mm)</th>
<th>SUP. ROTU. A * H (cm * cm)</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD (Dias)</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5 x 3,8</td>
<td>Lisa</td>
<td>7</td>
<td>1.840</td>
<td>96,8</td>
<td>90 rt</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5 x 3,8</td>
<td></td>
<td></td>
<td>1.070</td>
<td>56,3</td>
<td>100 r</td>
</tr>
<tr>
<td>3</td>
<td>2,5</td>
<td>5 x 4,0</td>
<td></td>
<td></td>
<td>1.180</td>
<td>59,0</td>
<td>90 r</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5 x 3,9</td>
<td></td>
<td></td>
<td>1.770</td>
<td>90,7</td>
<td>100 rt</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5 x 4,0</td>
<td></td>
<td></td>
<td>1.790</td>
<td>89,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5 x 4,0</td>
<td></td>
<td></td>
<td>1.520</td>
<td>76,0</td>
<td>100 r</td>
</tr>
<tr>
<td>7</td>
<td>2,5</td>
<td>5 x 3,9</td>
<td></td>
<td></td>
<td>1.680</td>
<td>86,1</td>
<td>95 rt</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5 x 4,0</td>
<td></td>
<td></td>
<td>1.825</td>
<td>91,2</td>
<td>93 rt</td>
</tr>
<tr>
<td>9</td>
<td>2,5</td>
<td>5 x 3,9</td>
<td>Rugosa</td>
<td>7</td>
<td>1.830</td>
<td>93,8</td>
<td>50 rt</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5 x 3,8</td>
<td></td>
<td></td>
<td>1.870</td>
<td>98,4</td>
<td>30 rt</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>5 x 4,0</td>
<td></td>
<td></td>
<td>1.770</td>
<td>88,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>5 x 4,0</td>
<td></td>
<td></td>
<td>2.040</td>
<td>102,0</td>
<td>100 r</td>
</tr>
<tr>
<td>13</td>
<td>2,5</td>
<td>5 x 3,9</td>
<td></td>
<td></td>
<td>1.420</td>
<td>72,8</td>
<td>100 r</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>5 x 3,8</td>
<td></td>
<td></td>
<td>1.660</td>
<td>87,3</td>
<td>100 r</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>5 x 4,0</td>
<td></td>
<td></td>
<td>1.660</td>
<td>83,0</td>
<td>95 rt</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>5 x 3,9</td>
<td></td>
<td></td>
<td>1.240</td>
<td>63,5</td>
<td>100 r</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 30 - 4 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 42 anclajes

MADERA: Quercus robur

Humedad: 7%
Anillos/cm: 1,2 - 1,8
Edad: 3 meses

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E mm</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>4,8 x 4,0</td>
<td>Rugosa</td>
<td>7</td>
<td>3.040</td>
<td>158,3</td>
<td>65 t</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4,9 x 4,0</td>
<td>,</td>
<td>,</td>
<td>2.720</td>
<td>138,7</td>
<td>95 r</td>
</tr>
<tr>
<td>3</td>
<td>1,8</td>
<td>5,0 x 4,1</td>
<td>,</td>
<td>,</td>
<td>2.890</td>
<td>140,9</td>
<td>100 r</td>
</tr>
<tr>
<td>4</td>
<td>1,2</td>
<td>5,0 x 4,1</td>
<td>,</td>
<td>,</td>
<td>3.280</td>
<td>160</td>
<td>60 rt</td>
</tr>
<tr>
<td>5</td>
<td>1,5</td>
<td>4,9 x 4,2</td>
<td>,</td>
<td>,</td>
<td>3.500</td>
<td>170</td>
<td>90 r</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4,8 x 4,1</td>
<td>,</td>
<td>,</td>
<td>3.140</td>
<td>159,5</td>
<td>70 t</td>
</tr>
<tr>
<td>7</td>
<td>1,8</td>
<td>5,1 x 4,0</td>
<td>,</td>
<td>,</td>
<td>3.130</td>
<td>153,4</td>
<td>73 t</td>
</tr>
<tr>
<td>8</td>
<td>1,5</td>
<td>5,0 x 4,2</td>
<td>Lisa</td>
<td>7</td>
<td>2.950</td>
<td>140,4</td>
<td>95 r</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>4,9 x 4,1</td>
<td>,</td>
<td>,</td>
<td>2.790</td>
<td>138,8</td>
<td>56 r</td>
</tr>
<tr>
<td>10</td>
<td>1,5</td>
<td>5,0 x 4,0</td>
<td>,</td>
<td>,</td>
<td>2.010</td>
<td>100,5</td>
<td>70 r</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>5,0 x 4,0</td>
<td>,</td>
<td>,</td>
<td>3.020</td>
<td>151</td>
<td>15 r</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>5,0 x 3,9</td>
<td>,</td>
<td>,</td>
<td>2.030</td>
<td>104,1</td>
<td>55 r</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>5,0 x 4,0</td>
<td>,</td>
<td>,</td>
<td>1.730</td>
<td>86,5</td>
<td>40 rt</td>
</tr>
<tr>
<td>14</td>
<td>1,3</td>
<td>5,1 x 4,0</td>
<td>,</td>
<td>,</td>
<td>1.700</td>
<td>83,3</td>
<td>60 r</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 29 - 7 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 31 adhesivo

MADERA: Pino Insignis

Humedad: 13,7 %

Anillos/cm: 1-2

Edad: menor a 1 año

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E</th>
<th>SUP. ROTURA A * H cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4,75 x 4,10</td>
<td>lisa</td>
<td>7</td>
<td>2.050</td>
<td>105,2</td>
<td>45 t</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.840</td>
<td>99,3</td>
<td>50 t</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.960</td>
<td>105,8</td>
<td>50 rt</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.920</td>
<td>103,6</td>
<td>62 t</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.780</td>
<td>96,0</td>
<td>45 t</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>, , x 4,0</td>
<td>, ,</td>
<td></td>
<td>1.920</td>
<td>101,0</td>
<td>85 t</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.730</td>
<td>93,3</td>
<td>55 t</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>, , x 3,8</td>
<td>, ,</td>
<td></td>
<td>2.450</td>
<td>135,7</td>
<td>90 t</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>, , x 3,8</td>
<td>, ,</td>
<td></td>
<td>2.000</td>
<td>110,8</td>
<td>30 t</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>, , x 3,8</td>
<td>, ,</td>
<td></td>
<td>1.900</td>
<td>105,2</td>
<td>50 t</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.990</td>
<td>107,4</td>
<td>80 t</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>, , x 4,0</td>
<td>, ,</td>
<td></td>
<td>1.740</td>
<td>91,5</td>
<td>50 t</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.920</td>
<td>103,6</td>
<td>75 t</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>, , x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.790</td>
<td>96,6</td>
<td>75 t</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>4,75 x 3,9</td>
<td>lisa</td>
<td>7</td>
<td>1.850</td>
<td>99,8</td>
<td>65 t</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 14 - 12 - 84
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 31 adhesivo

MADERA: Pino Insignis

Humedad: 9,9 %

Anillos/cm: 1,4

Edad: menor a 1 año

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E mm</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4,8 x 4,0</td>
<td>Rugosa</td>
<td>7</td>
<td>2.390</td>
<td>124,4</td>
<td>80 t</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4,7 x 4,0</td>
<td>"</td>
<td>"</td>
<td>2.290</td>
<td>121,8</td>
<td>75 t</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4,7 x 3,8</td>
<td>"</td>
<td>"</td>
<td>2.370</td>
<td>132,6</td>
<td>70 t</td>
</tr>
<tr>
<td>4</td>
<td>0,7</td>
<td>4,7 x 4,0</td>
<td>"</td>
<td>"</td>
<td>2.480</td>
<td>131,9</td>
<td>60 t</td>
</tr>
<tr>
<td>5</td>
<td>0,5</td>
<td>4,6 x 3,9</td>
<td>"</td>
<td>"</td>
<td>1.820</td>
<td>101,4</td>
<td>65 t</td>
</tr>
<tr>
<td>6</td>
<td>0,5</td>
<td>4,7 x 4,1</td>
<td>"</td>
<td>"</td>
<td>2.620</td>
<td>135,9</td>
<td>95 t</td>
</tr>
<tr>
<td>7</td>
<td>0,5</td>
<td>4,8 x 4,1</td>
<td>"</td>
<td>"</td>
<td>2.060</td>
<td>104,6</td>
<td>62 rt</td>
</tr>
<tr>
<td>8</td>
<td>0,5</td>
<td>4,8 x 4,1</td>
<td>"</td>
<td>"</td>
<td>2.500</td>
<td>127,0</td>
<td>40 rt</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4,8 x 4,0</td>
<td>"</td>
<td>"</td>
<td>2.340</td>
<td>121,8</td>
<td>60 t</td>
</tr>
<tr>
<td>10</td>
<td>0,8</td>
<td>4,7 x 3,9</td>
<td>"</td>
<td>"</td>
<td>1.580</td>
<td>86,1</td>
<td>63 t</td>
</tr>
<tr>
<td>11</td>
<td>0,4</td>
<td>4,8 x 4,1</td>
<td>"</td>
<td>"</td>
<td>2.340</td>
<td>118,9</td>
<td>65 r</td>
</tr>
<tr>
<td>12</td>
<td>0,5</td>
<td>4,8 x 4,0</td>
<td>"</td>
<td>"</td>
<td>2.040</td>
<td>106,2</td>
<td>35 r</td>
</tr>
<tr>
<td>13</td>
<td>0,5</td>
<td>4,8 x 4,1</td>
<td>"</td>
<td>"</td>
<td>2.210</td>
<td>112,2</td>
<td>50 r</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>4,8 x 4,0</td>
<td>"</td>
<td>"</td>
<td>2.190</td>
<td>114,0</td>
<td>5 t</td>
</tr>
<tr>
<td>15</td>
<td>0,5</td>
<td>4,8 x 4,0</td>
<td>"</td>
<td>"</td>
<td>2.480</td>
<td>129,1</td>
<td>26 t</td>
</tr>
<tr>
<td>16</td>
<td>0,4</td>
<td>4,8 x 4,0</td>
<td>Rugosa</td>
<td>7</td>
<td>1.970</td>
<td>102,6</td>
<td>8 t</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 1 - 2 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 31 adhesivo

MADERA: Pino Insignis
Humedad: 11,3 %
Anillos/cm: 1,5 - 2,5
Edad: menor a 1 año

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>mm</td>
<td>A * H</td>
<td>cm * cm</td>
<td>SUPERF.</td>
<td>CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
</tr>
<tr>
<td>1</td>
<td>0,4-1</td>
<td>4,9 x 4,0</td>
<td>Rugosa</td>
<td>21</td>
<td>2.810</td>
<td>143,3</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>, ,</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.930</td>
<td>149,4</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>, ,</td>
<td>, , x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>2.590</td>
<td>139,0</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>, ,</td>
<td>, , x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>2.650</td>
<td>142,3</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>, ,</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>2.030</td>
<td>106,2</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>, ,</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.670</td>
<td>136,2</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>, ,</td>
<td>, , x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.730</td>
<td>139,2</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>, ,</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>2.500</td>
<td>130,8</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>, ,</td>
<td>, , x 3,9</td>
<td>Lisa</td>
<td>21</td>
<td>2.550</td>
<td>133,4</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>, ,</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.970</td>
<td>103,0</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>, ,</td>
<td>, , x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>2.250</td>
<td>120,8</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>, ,</td>
<td>, , x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>1.920</td>
<td>103,1</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>, ,</td>
<td>, , x 3,8</td>
<td>, ,</td>
<td>, ,</td>
<td>2.290</td>
<td>122,9</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>, ,</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.820</td>
<td>95,2</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>, ,</td>
<td>, , x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>2.370</td>
<td>124,0</td>
<td>55</td>
</tr>
<tr>
<td>16</td>
<td>0,4-1</td>
<td>4,9 x 3,9</td>
<td>Lisa</td>
<td>21</td>
<td>2.600</td>
<td>136,0</td>
<td>65</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min. Fecha: 4 - 3 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 31 adhesivo

MADERA: Pino Laricio
Humedad: 8,85%
Anillos/cm: 4
Edad: superior a 30 años

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>mm</td>
<td>A * H cm * cm</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,5-1</td>
<td>5,0 x 3,9</td>
<td>Rugosa</td>
<td>7</td>
<td>1.600</td>
<td>82,0</td>
<td>100 r</td>
</tr>
<tr>
<td>2</td>
<td>, , ,</td>
<td>, x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.150</td>
<td>104,8</td>
<td>100 rt</td>
</tr>
<tr>
<td>3</td>
<td>, , ,</td>
<td>, x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.700</td>
<td>85,0</td>
<td>100 t</td>
</tr>
<tr>
<td>4</td>
<td>, , ,</td>
<td>, x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.910</td>
<td>95,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>5</td>
<td>, , ,</td>
<td>, x 4,2</td>
<td>, ,</td>
<td>, ,</td>
<td>1.070</td>
<td>50,9</td>
<td>100 r</td>
</tr>
<tr>
<td>6</td>
<td>, , ,</td>
<td>, x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.130</td>
<td>103,9</td>
<td>100 t</td>
</tr>
<tr>
<td>7</td>
<td>, , ,</td>
<td>, x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.080</td>
<td>101,4</td>
<td>100 r</td>
</tr>
<tr>
<td>8</td>
<td>, , ,</td>
<td>, x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.740</td>
<td>89,2</td>
<td>100 t</td>
</tr>
<tr>
<td>9</td>
<td>, , ,</td>
<td>, x 4,1</td>
<td>Lisa</td>
<td>, ,</td>
<td>1.700</td>
<td>82,9</td>
<td>100 r</td>
</tr>
<tr>
<td>10</td>
<td>, , ,</td>
<td>, x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.760</td>
<td>90,2</td>
<td>100 rt</td>
</tr>
<tr>
<td>11</td>
<td>, , ,</td>
<td>, x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.000</td>
<td>100,0</td>
<td>97 r</td>
</tr>
<tr>
<td>12</td>
<td>, , ,</td>
<td>, x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.980</td>
<td>101,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>13</td>
<td>, , ,</td>
<td>, x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>1.990</td>
<td>97,0</td>
<td>100 r</td>
</tr>
<tr>
<td>14</td>
<td>, , ,</td>
<td>, x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.450</td>
<td>119,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>15</td>
<td>, , ,</td>
<td>, x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>1.960</td>
<td>95,6</td>
<td>100 t</td>
</tr>
<tr>
<td>16</td>
<td>0,5-1</td>
<td>5,0 x 4,1</td>
<td>Lisa</td>
<td>7</td>
<td>2.220</td>
<td>108,2</td>
<td>90 rt</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 1-2-85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 31 adhesivo

MADERA: Pino Laricio
Humedad: 8,68 %
Anillos/cm: 4
Edad: superior a 30 años

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>mm</td>
<td>A * H cm * cm</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
<td>Kp/cm²</td>
<td>% de madera arrancada</td>
</tr>
<tr>
<td>1</td>
<td>0,5-1</td>
<td>5,0 x 4,0</td>
<td>Rugosa</td>
<td>7</td>
<td>2.060</td>
<td>103,0</td>
<td>100 r</td>
</tr>
<tr>
<td>2</td>
<td>, ,</td>
<td>x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.840</td>
<td>94,3</td>
<td>100 r</td>
</tr>
<tr>
<td>3</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.870</td>
<td>93,5</td>
<td>100 t</td>
</tr>
<tr>
<td>4</td>
<td>, ,</td>
<td>x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.800</td>
<td>92,3</td>
<td>100 rt</td>
</tr>
<tr>
<td>5</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.830</td>
<td>91,5</td>
<td>100 t</td>
</tr>
<tr>
<td>6</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.320</td>
<td>66,0</td>
<td>100 r</td>
</tr>
<tr>
<td>7</td>
<td>, ,</td>
<td>x 4,1</td>
<td>, ,</td>
<td>, ,</td>
<td>2.020</td>
<td>98,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>8</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.720</td>
<td>86,0</td>
<td>100 t</td>
</tr>
<tr>
<td>9</td>
<td>, ,</td>
<td>x 4,0</td>
<td>Lisa</td>
<td>, ,</td>
<td>2.070</td>
<td>103,5</td>
<td>95 rt</td>
</tr>
<tr>
<td>10</td>
<td>, ,</td>
<td>x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.850</td>
<td>94,8</td>
<td>92 t</td>
</tr>
<tr>
<td>11</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>2.030</td>
<td>101,5</td>
<td>100 t</td>
</tr>
<tr>
<td>12</td>
<td>, ,</td>
<td>x 3,9</td>
<td>, ,</td>
<td>, ,</td>
<td>1.740</td>
<td>89,2</td>
<td>95 rt</td>
</tr>
<tr>
<td>13</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.600</td>
<td>80,0</td>
<td>100 r</td>
</tr>
<tr>
<td>14</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.800</td>
<td>90,0</td>
<td>95 t</td>
</tr>
<tr>
<td>15</td>
<td>, ,</td>
<td>x 4,0</td>
<td>, ,</td>
<td>, ,</td>
<td>1.970</td>
<td>98,5</td>
<td>100 t</td>
</tr>
<tr>
<td>16</td>
<td>0,5-1</td>
<td>5,0 x 4,0</td>
<td>Lisa</td>
<td>7</td>
<td>1.730</td>
<td>86,5</td>
<td>100 rt</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 1 - 2 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACION

FORMULACION: Sikadur 31 adhesivo

MADERA: Quercus robur

Humedad: 7,3 %

Anillos/cm: 1 - 2

Edad: 3 meses

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E mm</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-2</td>
<td>4,8 x 4,1</td>
<td>Rugosa</td>
<td>7</td>
<td>3.250</td>
<td>165,1</td>
<td>90 r</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5,0 x 4,1</td>
<td></td>
<td></td>
<td>2.490</td>
<td>121,4</td>
<td>100 r</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.830</td>
<td>141,5</td>
<td>86 r</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4,8 x 4,1</td>
<td></td>
<td></td>
<td>3.150</td>
<td>160,0</td>
<td>55 rt</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.840</td>
<td>142,0</td>
<td>96 r</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.500</td>
<td>125,0</td>
<td>95 r</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4,8 x 4,0</td>
<td></td>
<td></td>
<td>2.510</td>
<td>130,7</td>
<td>90 r</td>
</tr>
<tr>
<td>8</td>
<td>1-2</td>
<td>5,0 x 4,1</td>
<td>Lisa</td>
<td>7</td>
<td>2.060</td>
<td>100,4</td>
<td>35 rt</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>4,9 x 4,1</td>
<td></td>
<td></td>
<td>2.930</td>
<td>145,8</td>
<td>15 rt</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.650</td>
<td>132,5</td>
<td>65 r</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.610</td>
<td>130,5</td>
<td>15 r</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.850</td>
<td>142,5</td>
<td>65 r</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5,0 x 4,1</td>
<td></td>
<td></td>
<td>2.960</td>
<td>144,3</td>
<td>25 r</td>
</tr>
<tr>
<td>14</td>
<td>1-2</td>
<td>5,0 x 4,0</td>
<td>Lisa</td>
<td>7</td>
<td>2.800</td>
<td>140</td>
<td>58 r</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 24 - 9 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACIÓN

FORMULACIÓN: Sikadur 52 Inyección
MADERA: Pino Insignis
Humedad: 10,8 %
Anillos/cm: 1,4 - 2,5
Edad: menor a 1 año

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>mm</td>
<td>A * H cm * cm</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
<td>Kp/cm²</td>
<td>% de madera arrancada.</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>0,8</td>
<td>4,6 x 3,7</td>
<td>Rugosa</td>
<td>7</td>
<td>2.280</td>
<td>133,9</td>
<td>100 t</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4,5 x 3,6</td>
<td>,</td>
<td>,</td>
<td>1.960</td>
<td>120,9</td>
<td>80 t</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4,7 x 3,6</td>
<td>,</td>
<td>,</td>
<td>1.830</td>
<td>108,1</td>
<td>100 t</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4,7 x 3,8</td>
<td>,</td>
<td>,</td>
<td>2.430</td>
<td>136,0</td>
<td>30 t</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4,6 x 3,7</td>
<td>,</td>
<td>,</td>
<td>2.350</td>
<td>138,0</td>
<td>100 t</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4,6 x 3,6</td>
<td>,</td>
<td>,</td>
<td>1.780</td>
<td>107,4</td>
<td>95 t</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4,7 x 2,9</td>
<td>,</td>
<td>,</td>
<td>1.660</td>
<td>121,7</td>
<td>100 t</td>
</tr>
<tr>
<td>8</td>
<td>0,8</td>
<td>4,9 x 3,0</td>
<td>Rugosa</td>
<td>7</td>
<td>1.600</td>
<td>108,8</td>
<td>90 t</td>
</tr>
<tr>
<td>9</td>
<td>0,8</td>
<td>4,7 x 3,8</td>
<td>Lisa</td>
<td>7</td>
<td>1.840</td>
<td>103,0</td>
<td>40 t</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4,8 x 4,0</td>
<td>,</td>
<td>,</td>
<td>1.620</td>
<td>84,3</td>
<td>100 t</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4,8 x 3,8</td>
<td>,</td>
<td>,</td>
<td>1.590</td>
<td>87,1</td>
<td>40 t</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>4,9 x 3,7</td>
<td>,</td>
<td>,</td>
<td>1.600</td>
<td>88,2</td>
<td>70 t</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>4,9 x 3,8</td>
<td>,</td>
<td>,</td>
<td>1.730</td>
<td>92,9</td>
<td>50 t</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>4,8 x 3,9</td>
<td>,</td>
<td>,</td>
<td>2.320</td>
<td>123,9</td>
<td>75 t</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>4,8 x 3,8</td>
<td>,</td>
<td>,</td>
<td>1.750</td>
<td>95,9</td>
<td>45 t</td>
</tr>
<tr>
<td>16</td>
<td>0,8</td>
<td>4,8 x 3,7</td>
<td>Lisa</td>
<td>7</td>
<td>1.790</td>
<td>100,7</td>
<td>25 t</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 1 - 3 - 85
ENSAYOS DE ADHERENCIA ENTRE MADERA Y FORMULACIÓN

FORMULACIÓN: Sikadur 52 Inyección

MADERA: Pino Laricio
Humedad: 9,3 %
Anillos/cm: 4
Edad: superior a 30 años

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA (Kp)</th>
<th>TENSION DE ROTURA (Kp/cm²)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>mm</td>
<td>A x H cm x cm</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,8</td>
<td>5,0 x 3,9</td>
<td>Rugosa</td>
<td>7</td>
<td>2.000</td>
<td>102,5</td>
<td>100 r</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5,0 x 4,0</td>
<td>, ,</td>
<td></td>
<td>1.470</td>
<td>73,5</td>
<td>100 r</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5,0 x 3,8</td>
<td>, ,</td>
<td></td>
<td>2.170</td>
<td>114,2</td>
<td>90 rt</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5,0 x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.640</td>
<td>84,1</td>
<td>100 r</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5,0 x 3,8</td>
<td>, ,</td>
<td></td>
<td>1.780</td>
<td>93,6</td>
<td>100 r</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5,0 x 4,0</td>
<td>, ,</td>
<td></td>
<td>1.880</td>
<td>94,0</td>
<td>100 r</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5,0 x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.790</td>
<td>91,7</td>
<td>100 rt</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5,0 x 4,0</td>
<td>Rugosa</td>
<td>7</td>
<td>1.420</td>
<td>71,0</td>
<td>100 r</td>
</tr>
<tr>
<td>9</td>
<td>0,8</td>
<td>5,0 x 3,8</td>
<td>Lisa</td>
<td>7</td>
<td>1.560</td>
<td>82,1</td>
<td>61 r</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5,0 x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.720</td>
<td>88,2</td>
<td>70 r</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>5,0 x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.720</td>
<td>88,2</td>
<td>70 rt</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>5,0 x 3,7</td>
<td>, ,</td>
<td></td>
<td>1.715</td>
<td>92,7</td>
<td>100 r</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5,0 x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.450</td>
<td>74,3</td>
<td>70 r</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>5,0 x 3,9</td>
<td>, ,</td>
<td></td>
<td>1.600</td>
<td>82,0</td>
<td>15 rt</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>5,0 x 3,8</td>
<td>, ,</td>
<td></td>
<td>1.460</td>
<td>76,8</td>
<td>100 rt</td>
</tr>
<tr>
<td>16</td>
<td>0,8</td>
<td>5,0 x 3,9</td>
<td>Rugosa</td>
<td>7</td>
<td>1.460</td>
<td>74,8</td>
<td>85 r</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 28 - 3 - 85
APÉNDICE Nº 6

ENSAYOS DE ADHERENCIA TANGENCIAL ENTRE FORMULACIÓN Y MATERIALES COMPUESTOS.

6.1 Placas.
6.2 Barras de sección circular.
6.1 Adherencia tangencial entre formulación y placas.
ENSAYOS DE ADHERENCIA ENTRE PLACA DE FIBRA DE VIDRIO Y FORMULACION

FORMULACION: Sikadur 42 Anclajes

FIBRA DE VIDRIO:
Fabricante: Bremen S.A.
Producto: Placa Vipol. Resina de poliéster y fibra de vidrio tipo mat.

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TRATAMIE. SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de fibras arrancadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4 x 3,2</td>
<td>limpieza disolven.</td>
<td>7</td>
<td>1.610</td>
<td>125,7</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4 x 3,0</td>
<td>,</td>
<td></td>
<td>1.750</td>
<td>145,8</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
<td>4 x 3,0</td>
<td>,</td>
<td></td>
<td>1.440</td>
<td>120,0</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>1,5</td>
<td>4 x 3,1</td>
<td>,</td>
<td></td>
<td>1.540</td>
<td>124,1</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4 x 3,1</td>
<td>lijado y disolven.</td>
<td></td>
<td>1.740</td>
<td>140,3</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>1,5</td>
<td>4 x 3,0</td>
<td>,</td>
<td></td>
<td>1.000</td>
<td>83,3</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4 x 3,1</td>
<td>,</td>
<td></td>
<td>1.535</td>
<td>123,7</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4 x 3,1</td>
<td>,</td>
<td></td>
<td>1.360</td>
<td>109,6</td>
<td>100</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 30 - 4 - 85
ENSAYOS DE ADHERENCIA ENTRE PLACA DE FIBRA DE VIDRIO Y FORMULACION

FORMULACION: Sikadur 31 adhesivo

FIBRA DE VIDRIO:
- **Fabricante:** Bremen S.A.
- ** Producto:** Placa de r. de poliester y f. vidrio en mat.(Vipol)

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E</th>
<th>SUP. ROTU. A * H</th>
<th>TRATAMIE. CONTACTO</th>
<th>EDAD Días</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % FIBRAS ARRANCADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-2</td>
<td>4 x 3,1</td>
<td>Disolven</td>
<td>7</td>
<td>1.820</td>
<td>146.7</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>,</td>
<td>4 x 3,3</td>
<td>,</td>
<td>,</td>
<td>1.365</td>
<td>103.4</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>,</td>
<td>4 x 3,3</td>
<td>,</td>
<td>,</td>
<td>1.430</td>
<td>108.3</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>,</td>
<td>4 x 3,2</td>
<td>Disolven</td>
<td>,</td>
<td>1.560</td>
<td>121.8</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>,</td>
<td>4 x 3,2</td>
<td>lijado y disolven</td>
<td>,</td>
<td>880</td>
<td>68.7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>,</td>
<td>4 x 3,2</td>
<td>,</td>
<td>,</td>
<td>1.915</td>
<td>149.6</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>,</td>
<td>4 x 3,2</td>
<td>,</td>
<td>,</td>
<td>1.495</td>
<td>116.7</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>1-2</td>
<td>4 x 3,1</td>
<td>lijado y disolven</td>
<td>7</td>
<td>1.500</td>
<td>120.9</td>
<td>0</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 13-6-85
ENSAYOS DE ADHERENCIA ENTRE PLACA DE FIBRA DE VIDRIO Y FORMULACION

FORMULACION: Sikadur 52 inyección

FIBRA DE VIDRIO:
Fabricante: Bremen S.A.
Producto: Placa de fibra de vidrio y re. de poliéster. Vipol.

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>NUMERO</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TRATAMIENTO</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>A * H cm * cm</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
<td>Kp/cm²</td>
<td>% FIBRA ARRAN.</td>
</tr>
<tr>
<td>1</td>
<td>0,8</td>
<td>4 x 3,4</td>
<td>Disolver</td>
<td>7</td>
<td>1.050</td>
<td>77,2</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>, ,</td>
<td>4 x 3,4</td>
<td>, ,</td>
<td>, ,</td>
<td>1.020</td>
<td>75</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>, ,</td>
<td>4 x 3,5</td>
<td>, ,</td>
<td>,</td>
<td>1.010</td>
<td>72,1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>, ,</td>
<td>4 x 3,4</td>
<td>Disolver</td>
<td>,</td>
<td>1.185</td>
<td>87,1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>, ,</td>
<td>4 x 3,5</td>
<td>lijado y</td>
<td>,</td>
<td>1.480</td>
<td>105,7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 x 3,4</td>
<td>disolver</td>
<td>,</td>
<td>860</td>
<td>63,2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>, ,</td>
<td>4 x 3,5</td>
<td>, ,</td>
<td>,</td>
<td>1.335</td>
<td>95,3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,8</td>
<td>4 x 3,4</td>
<td>lijado y</td>
<td>7</td>
<td>1.500</td>
<td>110,2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>disolver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 13-6-85
6.2 Adherencia tangencial entre formulación y barras de sección circular.
ENSAYOS DE ADHERENCIA ENTRE FORMULACION Y VARILLAS DE FIBRA DE VIDRIO

FORMULACIÓN : Sikadur 42 Anclajes

VARILLAS DE FIBRA DE VIDRIO :

FABRICANTE : Bremen S.A.

PRODUCTO : Barra $\phi = 10 \text{ mm}$, de r. de poliester y f. vidrio 70 %.

Fecha : 6-5-85

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>L cm</th>
<th>EDAD Dias</th>
<th>TRATAM. SUP. LIJADO y DI-SOLVENTE.</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>SI</td>
<td>1.325</td>
<td>210.8</td>
<td>Deslizó totalm. rompió la form.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>7</td>
<td>SI</td>
<td>1.330</td>
<td>211.6</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
<td>SI</td>
<td>1.370</td>
<td>218.0</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>Solo disolven.</td>
<td>1.210</td>
<td>192.5</td>
<td>Deslizó totalm.</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>"</td>
<td>1.115</td>
<td>177.4</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>"</td>
<td>1.120</td>
<td>178.2</td>
<td>"</td>
</tr>
</tbody>
</table>

Velocidad de carga = 500 Kp/min
ENSAYOS DE ADHERENCIA ENTRE FORMULACION Y VARILLAS DE FIBRA DE VIDRIO

FORMULACION: Sikadur 42 Anclajes
VARILLAS DE FIBRA DE VIDRIO:
FABRICANTE: Nioco S.A.
PRODUCTO: Barra de r. de poliéster y f. vidrio (Roving), 60-70 %.
Fecha: 16-5-85

<table>
<thead>
<tr>
<th>PROBETA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>φ 10</td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>L cm</th>
<th>EDAD Dias</th>
<th>TRATAM. SUP. LIJADO Y DI- DILVENTE.</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>lijado y disolvente</td>
<td>1.175</td>
<td>187</td>
<td>Desliza totalm.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>7</td>
<td>"</td>
<td>1.180</td>
<td>187.8</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
<td>"</td>
<td>1.070</td>
<td>170.2</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>disolvente</td>
<td>1.280</td>
<td>203.7</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>"</td>
<td>1.040</td>
<td>165.5</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>"</td>
<td>1.060</td>
<td>168.7</td>
<td>"</td>
</tr>
</tbody>
</table>

Velocidad de carga = 500 Kp/min
ENSAYOS DE ADHERENCIA ENTRE FORMULACION Y VARILLAS DE FIBRA DE VIDRIO

FORMULACION : Sikadur 42 Anclajes
VARILLAS DE FIBRA DE VIDRIO :
FABRICANTE : Polymec S.A.
PRODUCTO : Barra de r. polieste- ter y f. vidrio (50-70 %)
Fecha : 1 - 3 - 85

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>L</th>
<th>EDAD</th>
<th>TRATAM. SUP.</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUERO</td>
<td>cm</td>
<td>Dias</td>
<td>LIJADO y DI-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOLVENTE.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>NO</td>
<td>880</td>
<td>140,0</td>
<td>deslizó totalm.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>NO</td>
<td>1,020</td>
<td>162,3</td>
<td>,</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>NO</td>
<td>1,080</td>
<td>171,8</td>
<td>,</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>SI</td>
<td>1,100</td>
<td>175,0</td>
<td>rotura formul. y desliz. f.v.</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>SI</td>
<td>1,020</td>
<td>162,3</td>
<td>,</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
<td>SI</td>
<td>1,130</td>
<td>179,8</td>
<td>,</td>
</tr>
</tbody>
</table>

Velocidad de carga = 500 Kp/min
ENSAYOS DE ADHERENCIA ENTRE FORMULACION Y VARILLAS DE FIBRA DE VIDRIO

FORMULACION : Sikadur 42 Anclajes
VARILLAS DE FIBRA DE VIDRIO :
FABRICANTE : Polymec S.A.
PRODUCTO : Barra de r. de poliéster y f. de vidrio (50-70 %)
Fecha : 17-1-85

PROBETA

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>L (cm)</th>
<th>EDAD (Dias)</th>
<th>TRATAM. SUP. LIJADO Y DI-SOLVENTE.</th>
<th>CARGA DE ROTURA (Kp)</th>
<th>TENSION DE ROTURA (Kp/cm²)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>27</td>
<td>NO</td>
<td>555</td>
<td>117,7</td>
<td>no deslizó tot.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>520</td>
<td>110,3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>695</td>
<td>147,4</td>
<td>deslizó totalm.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>SI</td>
<td>-</td>
<td>-</td>
<td>anulada</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>755</td>
<td>160,2</td>
<td>no deslizó tot.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>770</td>
<td>163,3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2,5</td>
<td></td>
<td>NO</td>
<td>1.365</td>
<td>173,7</td>
<td>deslizó totalm.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>1.540</td>
<td>196,0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>1.620</td>
<td>206,2</td>
<td>no deslizó tot.</td>
</tr>
<tr>
<td>10</td>
<td>2,5</td>
<td></td>
<td>SI</td>
<td>1.540</td>
<td>196,0</td>
<td>Rotura f. vidr.</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>1.445</td>
<td>183,9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>1.460</td>
<td>185,8</td>
<td>deslizó totalm.</td>
</tr>
<tr>
<td>13</td>
<td>3,5</td>
<td>27</td>
<td>NO</td>
<td>2.040</td>
<td>185,5</td>
<td>rotura f. vidr.</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>2.530</td>
<td>230,0</td>
<td>deslizó totalm.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>2.060</td>
<td>187,3</td>
<td>rotura f. vidr.</td>
</tr>
<tr>
<td>16</td>
<td>3,5</td>
<td>27</td>
<td>SI</td>
<td>2.140</td>
<td>194,6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>2.030</td>
<td>184,6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>2.240</td>
<td>203,7</td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de carga = 500 Kp/min
ENSAYOS DE ADHERENCIA ENTRE FORMULACIÓN Y VARILLAS DE FIBRA DE VIDRIO

FORMULACIÓN: Sikadur 31 adhesivo
VARILLAS DE FIBRA DE VIDRIO:
FABRICANTE: Polymec S.A.
PRODUCTO: Barra de poliester y f. de vidrio (50-70 %)
Fecha: 17 - 12 - 84

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>L (cm)</th>
<th>EDAD (Dias)</th>
<th>TRATAM. SUP. LIJADO y DI-SOLVENTE</th>
<th>CARGA DE ROTURA (Kp)</th>
<th>TENSION DE ROTURA (Kp/cm²)</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>10</td>
<td>NO</td>
<td>1.025</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>10</td>
<td>NO</td>
<td>1.130</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
<td>10</td>
<td>NO</td>
<td>800</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,5</td>
<td>10</td>
<td>SI</td>
<td>960</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,5</td>
<td>10</td>
<td>SI</td>
<td>1.030</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,5</td>
<td>10</td>
<td>SI</td>
<td>940</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2,5</td>
<td>10</td>
<td>NO</td>
<td>1.515</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2,5</td>
<td>10</td>
<td>NO</td>
<td>1.360</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2,5</td>
<td>10</td>
<td>NO</td>
<td>1.335</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2,5</td>
<td>10</td>
<td>SI</td>
<td>1.610</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2,5</td>
<td>10</td>
<td>SI</td>
<td>-</td>
<td>-</td>
<td>Anulada</td>
</tr>
<tr>
<td>12</td>
<td>2,5</td>
<td>10</td>
<td>SI</td>
<td>950</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de carga = 500 Kp/min
APENDICE Nº 7

ENSAYO DE VIGAS CONSOLIDADAS A PEQUEÑA ESCALA.

7.1 Vigas unidas en el centro de la luz, con placas internas.
7.2 Vigas unidas en el centro de la luz, con placas externas.
7.3 Vigas de pequeña luz, con placas de refuerzo en un apoyo.
7.4 Vigas unidas en el centro de la luz, con perfiles de pequeña sección.
7.1 Vigas unidas en el centro de la luz, con placas internas.
ENSAYOS DE FLEXIÓN. INFLUENCIA EN LA RESISTENCIA DE LA LONGITUD DE LA PLACA.

MADERA: Pino Insignis
Humedad:

PLACA REFUERZO: Placa r.poliester y f. vidrio, mat.(Vipol, de Bremen S.A. e =13)
FORMULACION: Sikadur 42 anclajes

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>VIGA</th>
<th>PLACA</th>
<th>CAJEADO</th>
<th>VEL.</th>
<th>CARGA P DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b - d</td>
<td>L</td>
<td>t - h</td>
<td>e - d</td>
<td>Kp/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L₀</td>
<td>L_p</td>
<td>L_c</td>
<td></td>
<td>Kp</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>74 - 71</td>
<td>900</td>
<td>13 - 55</td>
<td>16 - 10</td>
<td>100</td>
<td>702</td>
</tr>
<tr>
<td>2</td>
<td>74 - 74</td>
<td>900</td>
<td>13 - 55</td>
<td>16 - 10</td>
<td>100</td>
<td>1.062</td>
</tr>
<tr>
<td>3</td>
<td>74 - 74</td>
<td>900</td>
<td>13 - 55</td>
<td>16 - 10</td>
<td>100</td>
<td>963</td>
</tr>
</tbody>
</table>

Fecha: 1 - 7 - 85
GRAFICAS DE DEFORMACIÓN. INFLUENCIA EN LA RESISTENCIA DE LA LONGITUD DE LA PLACA. FLEXIÓN.
<table>
<thead>
<tr>
<th>Nº</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENSAYOS DE FLEXION. INFLUENCIA EN LA RESISTENCIA DE LA LONGITUD DE LA PLACA.

MADERA: Pino Insignis
Humedad: 8 - 9%

PLACA REFORZADO: Placa "Vipol", de polies y f.v. mat de Bremen S.A.

FORMULACIÓN: Sikadur 42 anclajes

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>VIGA</th>
<th>PLACA</th>
<th>CAJEADO</th>
<th>VEL.</th>
<th>CARGA P DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b - d</td>
<td>L</td>
<td>t - h</td>
<td>e - d1</td>
<td>Kp/min</td>
<td>Kp</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>67 - 100</td>
<td>900</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>200</td>
<td>1.740</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1050</td>
<td>100</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65 - 100</td>
<td>,,</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>300</td>
<td>2.680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>67 - 100</td>
<td>,,</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>,,</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68 - 100</td>
<td>,,</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>,,</td>
<td>2.240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220</td>
<td>250</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>67 - 100</td>
<td>,,</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>,,</td>
<td>2.690</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220</td>
<td>250</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67 - 100</td>
<td>,,</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>,,</td>
<td>2.690</td>
</tr>
<tr>
<td></td>
<td></td>
<td>280</td>
<td>310</td>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>66 - 100</td>
<td>,,</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>,,</td>
<td>2.730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>280</td>
<td>310</td>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>67 - 100</td>
<td>,,</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>,,</td>
<td>3.230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>340</td>
<td>370</td>
<td>370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>65 - 100</td>
<td>900</td>
<td>15 - 80</td>
<td>21 - 10</td>
<td>300</td>
<td>3.360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1050</td>
<td>340</td>
<td>370</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edad de la formulación: 7 días
Fecha: 29 - 7 - 85
GRAFICAS DE DEFORMACION. INFLUENCIA DE LA LONGITUD DE LA PLACA EN LA RESISTENCIA. ENSAYO DE FLEXION.

$0 \quad 10 \quad 50 \quad 100 \quad 150 \quad 200$ -DEF. EN "A", mm.-

$0 \quad 200 \quad 1.000 \quad 2.000 \quad 3.000$
<table>
<thead>
<tr>
<th>Nº</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2 Vigas unidas en el centro de la luz, con placas externas.
ENSAYOS DE FLEXIÓN. INFLUENCIA EN LA RESISTENCIA DE LA LONGITUD DE LA PLACA.

MADERA: Pino Insigne
Humedad: 8 - 9 %

PLACA REFUERZO: Placa "Vipol", r. poliest. y f. v.
mat. Bremen S.A.

FORMULACIÓN: Sikadur 31 adhes.

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>VIGA</th>
<th>PLACA</th>
<th>FORMUL.</th>
<th>VEL.</th>
<th>CARGA P DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b - d</td>
<td>L</td>
<td>t - h</td>
<td>e</td>
<td>Kp/min</td>
<td>Kp</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>60 - 90</td>
<td>900</td>
<td>13 - 95</td>
<td>1 - 3</td>
<td>200</td>
<td>1.100</td>
</tr>
<tr>
<td>2</td>
<td>61 - 95</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>200</td>
<td>1.180</td>
</tr>
<tr>
<td>3</td>
<td>59 - 95</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>300</td>
<td>1.830</td>
</tr>
<tr>
<td>4</td>
<td>60 - 100</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>300</td>
<td>1.680</td>
</tr>
<tr>
<td>5</td>
<td>64 - 90</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>350</td>
<td>1.870</td>
</tr>
<tr>
<td>6</td>
<td>60 - 95</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>350</td>
<td>2.320</td>
</tr>
<tr>
<td>7</td>
<td>62 - 93</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>350</td>
<td>1.770</td>
</tr>
<tr>
<td>8</td>
<td>60 - 92</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>350</td>
<td>2.850</td>
</tr>
<tr>
<td>9</td>
<td>64 - 92</td>
<td>,,</td>
<td>13 - 95</td>
<td>,,</td>
<td>350</td>
<td>3.350</td>
</tr>
<tr>
<td>10</td>
<td>64 - 95</td>
<td>,,</td>
<td>13 - 95</td>
<td>1 - 3</td>
<td>350</td>
<td>2.660</td>
</tr>
</tbody>
</table>

Fecha: 30 - 9 - 85
GRAFICAS DE DEFORMACION. INFLUENCIA DE LA LONGITUD DE LA PLACA EN LA RESISTENCIA. FLEXION, PLACAS EXTERNAS.

- DEF. EN "A", m.m.-
7.3 Vigas de pequeña luz, con placas de refuerzo en un apoyo.
ENSAYOS DE FLEXION. PLACAS EN APOYOS. LONGITUD DE ANCLAJE VARIABLE.

MADERA : Pino Insigne
Humedad : 8 - 9 %

PLACA REFORZADO: Placa "Vipol" de
Bremen SA, e = 15
F.V. mat y r. poli.

FORMULACION : Sikadur 42 anclajes

Dosificación en peso: A : B : C
7 : 4 : 25

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>VIGA b - d</th>
<th>Lm</th>
<th>L</th>
<th>h</th>
<th>Lp - La</th>
<th>Lc</th>
<th>VEL. Kp/min</th>
<th>CARGA P DE ROTURA Kp</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65 - 98</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>180 - 40</td>
<td>21 - 10</td>
<td>300</td>
<td>3,030</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>67 - 98</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>180 - 40</td>
<td>21 - 10</td>
<td>300</td>
<td>3,300</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65 - 95</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>190 - 50</td>
<td>21 - 10</td>
<td>450</td>
<td>3,480</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>66 - 98</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>190 - 50</td>
<td>21 - 10</td>
<td>450</td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>64 - 97</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>200 - 60</td>
<td>21 - 10</td>
<td>450</td>
<td>2,880</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>66 - 97</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>200 - 60</td>
<td>21 - 10</td>
<td>450</td>
<td>2,090</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>64 - 100</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>220 - 80</td>
<td>21 - 10</td>
<td>450</td>
<td>3,900</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>64 - 94</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>220 - 80</td>
<td>21 - 10</td>
<td>450</td>
<td>3,920</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>66 - 97</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>240 - 100</td>
<td>21 - 10</td>
<td>450</td>
<td>3,720</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>67 - 98</td>
<td>420</td>
<td>560</td>
<td>15 - 75</td>
<td>240 - 100</td>
<td>21 - 10</td>
<td>450</td>
<td>> 4,000 No llegó a la rotura.</td>
<td></td>
</tr>
</tbody>
</table>

Edad de la formulación 11 días
Fecha: 21 - 10 - 85
GRÁFICAS DE DEFORMACIÓN. ENSAYOS DE FLEXIÓN DE VIGAS CON PLACAS EN UN APOYO. LONGITUD DE ANCLAJE VARIABLE.

- DEF. EN "A", mm -
<table>
<thead>
<tr>
<th>Nº</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Rotura de la viga por cortante. Fallo del anclaje de la placa por unión madera - madera. En zona inferior.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Rotura de la viga por cortante y posterior rotura a flexión. Fallo del anclaje de placa por unión madera - madera. En zona inferior.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Rotura de la viga por cortante y posterior rotura a flexión. Fallo del anclaje placa por unión j.u. - formulación. En zona inferior.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Rotura de la viga por flexión, por deformación local de la fibra (codo) y combinada con cortante.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Rotura de la viga por cortante. Fallo del anclaje de la placa en zona inferior por la unión j.u. - formulación.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Rotura de la viga por cortante. Fallo del anclaje por falta de "colado" de la formulación en una cara de la placa.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Rotura de la viga por cortante. Fallo en zona inferior del anclaje por unión j.u. - formulación.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Rotura de la viga por cortante. Fallo en zona inferior del anclaje por unión madera - madera.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Rotura de la viga por cortante y posterior rotura a flexión. Fallo en zona inferior anclaje por unión madera - madera.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>No rompió por sobrepasar la carga máxima de la máquina (4,000 Kp). No se aprecian fisuras.</td>
</tr>
</tbody>
</table>
7.4 Vigas unidas en el centro de la luz, con perfiles de pequeña sección.
ENSAYOS DE FLEXION. EMPLEO DE BARRAS DE SECCION RECTANGULAR.

MADERA: Pino insignis
Humedad: 12%

REFUERZO: Perfil rectangular, res. poliest. y f. vidrio en hilos paralel. Nioco SA
FORMULACION: Sikadur 42 anclajes
A : B : C
Dosif.: 7 : 4 : 40

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>VIGA</th>
<th>PERFIL REFUERZO</th>
<th>RANURA</th>
<th>VEL.</th>
<th>CARGA DE ROTURA P</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>b – d</td>
<td>L</td>
<td>t – h</td>
<td>e – p</td>
<td>Lp</td>
<td>Lr</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>75 - 100</td>
<td>600</td>
<td>8 - 13</td>
<td>16 - 16</td>
<td>130</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>''</td>
<td>8 - 13</td>
<td>16 - 16</td>
<td>''</td>
<td></td>
<td>2.510</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>''</td>
<td>8 - 13</td>
<td>16 - 16</td>
<td>''</td>
<td></td>
<td>3.380</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>''</td>
<td>8 - 13</td>
<td>16 - 16</td>
<td>''</td>
<td></td>
<td>3.170</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>''</td>
<td>8 - 13</td>
<td>16 - 16</td>
<td>''</td>
<td></td>
<td>3.850</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>75 - 100</td>
<td>600</td>
<td>8 - 13</td>
<td>16 - 16</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fecha: 18 - 6 - 86
<table>
<thead>
<tr>
<th>N°</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Rotura por flexión de la madera en zona con nudo. Combinada con fallo de cortante de la madera.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Rotura por la combinación de cortante de formulación - adheren. f.vid.- formul. - cortante de la madera.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Fallo principal: cortante de la madera. Además: f. vidrio-formulac. y cortante de la formulación.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Fallo principal: cortante de la madera. Y cortante en la formulación.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Rotura combinada: cortante madera. cortante f. vidrio. ad. f. vidrio-formulac.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Rotura por fallo de cortadura de la madera.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APENDICE N° 8

CONSOLIDACION Y ENSAYO DE VIGAS PARTIDAS.
ENSAYO DE FLEXION DE VIGAS CONSOLIDADAS.

MADERA : Pino insignis.
Humedad de la madera : 12 %

REFUERZO : Placas tipo Vipol, de e = 15 mm. Resina de poliéster y f. vidrio en mat.

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>SECCI. b</th>
<th>L</th>
<th>e</th>
<th>a</th>
<th>FORMULACION DOSIFICACION</th>
<th>CARGA DE ROTURA P</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sikadur 52 In.</td>
<td>3.680</td>
<td>previamente cortada.</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>900</td>
<td>16</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>900</td>
<td>16</td>
<td>170</td>
<td>Sikadur 52 In.</td>
<td>3.480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>930</td>
<td>19</td>
<td>65</td>
<td>Sikadur 52 In.</td>
<td>3.890</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>930</td>
<td>19</td>
<td>65</td>
<td>Sikadur 52 In.</td>
<td>2.620</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>66</td>
<td>930</td>
<td>19</td>
<td>45</td>
<td>Sikadur 42 An.</td>
<td>7 : 4 : 12</td>
<td>2.790</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>68</td>
<td>930</td>
<td>19</td>
<td>105</td>
<td>Sikadur 42 An.</td>
<td>7 : 4 : 33</td>
<td>3.030</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de carga : 400 Kp/ min. Fecha : 28 - 7 - 86
GRAFICAS DE DEFORMACIÓN. ENSAYO DE FLEXIÓN DE VIGAS CONSOLIDADAS. (SEGUNDO ENSAYO).

\[
P/2 \quad P/2
\]

- DEF. EN "A", mm -
<table>
<thead>
<tr>
<th>№</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Rotura por flexión de la placa.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Rotura por flexión de la placa.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Rotura por flexión de la madera, fuera de la zona de la placa. En el límite.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APÉNDICE Nº 9

CICLOS DE HUMEDAD Y TEMPERATURA.

9.1 Ensayo de las probetas sometidas a ciclos de temperatura.
9.2 Ensayo de las probetas sometidas a ciclos de humedad.
9.1 Ensayo de las probetas sometidas a ciclos de temperatura.
CICLOS DE TEMPERATURA. ADHERENCIA ENTRE MADERA Y FORMULACIÓN.

FORMULACIÓN: Sikadur 42 anclajes

MADERA: Pino insignis

- Humedad: 7,3 %
- Anillos/cm: 1,4 - 2,5
- Edad: menor a 1 año

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NÚMERO</th>
<th>E (mm)</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD (Días)</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - 2</td>
<td>5,0 x 3,9</td>
<td>Lisa</td>
<td>>21</td>
<td>1.170</td>
<td>60</td>
<td>0 rot. por formulación</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5,0 x 3,8</td>
<td></td>
<td></td>
<td>1.300</td>
<td>68,4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.200</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>1.110</td>
<td>56,9</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4,9 x 3,8</td>
<td></td>
<td></td>
<td>1.210</td>
<td>64,9</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.120</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>1.120</td>
<td>57,4</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>4,9 x 4,0</td>
<td></td>
<td></td>
<td>1.220</td>
<td>62,2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.070</td>
<td>53,5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>1.150</td>
<td>58,9</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.360</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>1.270</td>
<td>65,1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.130</td>
<td>56,5</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>1.200</td>
<td>61,5</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.320</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1 - 2</td>
<td>5,0 x 4,0</td>
<td>Lisa</td>
<td>>21</td>
<td>1.010</td>
<td>50,5</td>
<td>0</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 28 - 5 - 86
FORMULACION: Sikadur 31 adhesivo

MADERA: Pino insignis

Humedad: 7,0 %
Anillos/cm: 1,4 - 2,5
Edad: menor a 1 año

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E mm</th>
<th>SUP. ROTU. cm * cm</th>
<th>TEXTURA CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 8</td>
<td>5,0 x 4,0</td>
<td>Lisa</td>
<td>>21</td>
<td>2.980</td>
<td>149</td>
<td>90 rt</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.570</td>
<td>128,5</td>
<td>60 rt</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.200</td>
<td>110</td>
<td>80 t</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.050</td>
<td>102,5</td>
<td>95 t</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>2.300</td>
<td>117,9</td>
<td>85 t</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.450</td>
<td>122,5</td>
<td>90 t</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.040</td>
<td>102</td>
<td>100 t</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.560</td>
<td>128</td>
<td>100 rt</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5,1 x 4,0</td>
<td></td>
<td></td>
<td>1.630</td>
<td>79,9</td>
<td>100 t</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>2.160</td>
<td>108</td>
<td>100 t</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.940</td>
<td>97</td>
<td>100 t</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>5,0 x 4,1</td>
<td></td>
<td></td>
<td>2.430</td>
<td>118,5</td>
<td>100 rt</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>1.330</td>
<td>68,2</td>
<td>90 t</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>4,9 x 4,0</td>
<td></td>
<td></td>
<td>2.170</td>
<td>110,7</td>
<td>100 rt</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.670</td>
<td>83,5</td>
<td>100 t</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>2.490</td>
<td>127,7</td>
<td>90 rt</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>4,9 x 4,0</td>
<td></td>
<td></td>
<td>2.810</td>
<td>143,3</td>
<td>100 rt</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 29 - 5 - 86
CICLOS DE TEMPERATURA . ADHERENCIA ENTRE F. VIDRIO Y FORMULACION.

FORMULACION: Sikadur 42 anclajes

FIBRA DE VIDRIO:
Fabricante: Bremen S.A.
Producto: Vipol: res. de poliéster y f. vidrio
Placas de e = 15 mm

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TRATAMIE. SUPERF. CONTACTO</th>
<th>EDAD Días</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES ARRANCADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-1,5</td>
<td>4,0 x 3,0</td>
<td>lavado disol.</td>
<td>>21</td>
<td>970</td>
<td>80,8</td>
<td>0 rot. por formulac.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>990</td>
<td>82,5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>830</td>
<td>69,1</td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 28 - 5 - 86
FORMULACIÓN: Sikadur 31 adhesivo

FIBRA DE VIDRIO:
Fabricante: Bremen S.A.
Producto: Vipol : res. de polies ter y f. vidrio.
Placa de e = 15 mm

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E (mm)</th>
<th>SUP. ROTU. A * H (cm * cm)</th>
<th>TRATAMIE. SUPERF. CONTACTO</th>
<th>EDAD (Días)</th>
<th>CARGA DE ROTURA (Kp)</th>
<th>TENSION DE ROTURA (Kp/cm²)</th>
<th>OBSERVACIONES % FIBRAS ARRANCADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4,0 x 2,9</td>
<td>lavado disolv.</td>
<td>> 21</td>
<td>1.100</td>
<td>94,8</td>
<td>100 rot. por f. vidrio</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4,0 x 3,0</td>
<td>,</td>
<td>,</td>
<td>1.510</td>
<td>125,8</td>
<td>100 ,</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4,0 x 2,7</td>
<td>,</td>
<td>,</td>
<td>1.530</td>
<td>141,6</td>
<td>100 ,</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 29 - 5 - 86
CICLOS DE TEMPERATURA. ENSAYOS DE FLEXION, PLACAS EN APOYOS.

MADERA : Pino insignis
Humedad : 12 %

PLACA REFORZO : Placa tipo Vipol
esp.= 15 mm

FORMULACION : Sikadur 42 anclaj.
Dosificación : A : B : C
7 : 4 : 25

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>VIGA</th>
<th>PLACA</th>
<th>CAJEADO</th>
<th>VEL.</th>
<th>CARGA P DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b - d</td>
<td>L</td>
<td>t - h</td>
<td>e - d</td>
<td>Kp/min</td>
<td>Kp</td>
</tr>
<tr>
<td></td>
<td>Lm</td>
<td>L0</td>
<td>Lp - La</td>
<td>Lc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>68 - 95</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>1.820</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>190 - 50</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>67 - 95</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>2.250</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>190 - 50</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>66 - 94</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>2.660</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>200 - 60</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>65 - 96</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>2.600</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>200 - 60</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>66 - 96</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>2.480</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>220 - 80</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>66 - 94</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>2.590</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>220 - 80</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fecha : 17 - 6 - 86
GRAFICAS DE DEFORMACION. ENSAYO DE FLEXION DE VIGAS CON PLACAS EN APOYO. CICLOS DE TEMPERATURA.

- DEF. EN "A", mm -

0 10 50 100 150

0 200

1.000

2.000

3.000

P
Kp.
<table>
<thead>
<tr>
<th>Nº</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Fallo por cortante de la formulación. (disgregación) Además fallo f.v. en cortante y adh. f.v.-formulac.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Fallo por cortante de la formulación y de la placa en cortadura de las fibras.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Fallo por cortante de formulación y de la f. de vidrio.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Fallo por cortante de la formulación.</td>
</tr>
</tbody>
</table>
| 5 | ![Diagrama 5](image5.png) | Fallo combinado:
- cortante formulación
- cortante madera.
- interf. madera-formul. |
| 6 | ![Diagrama 6](image6.png) | Fallo por cortante formulación e interfase placa - formulación. |
| 7 | ![Diagrama 7](image7.png) | |
| 8 | ![Diagrama 8](image8.png) | |
| 9 | ![Diagrama 9](image9.png) | |
| 10 | ![Diagrama 10](image10.png) | |
9.2 Ensayo de las probetas sometidas a ciclos de humedad.
FORMULACIÓN: Sikadur 42 anclajes

MADERA: Pino insigne

- Humedad: 9%
- Anillos/cm: 1,4 - 2,5
- Edad: menor a 1 año

PROBETA:

![Diagrama de probeta](image)

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>E mm</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TEXTURA SUPERF. CONTACTO</th>
<th>EDAD Dias</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES % de madera arrancada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-1,5</td>
<td>4,0 x 4,0</td>
<td>Lisa</td>
<td>>21</td>
<td>1.610</td>
<td>82,1</td>
<td>rotura por formulación</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.290</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>910</td>
<td>45,5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5,0 x 3,8</td>
<td></td>
<td></td>
<td>1.280</td>
<td>66,3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5,0 x 4,1</td>
<td></td>
<td></td>
<td>1.250</td>
<td>60,9</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.140</td>
<td>57</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>560</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5,1 x 4,0</td>
<td></td>
<td></td>
<td>880</td>
<td>43,1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5,0 x 3,8</td>
<td></td>
<td></td>
<td>1.060</td>
<td>55,7</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.320</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>940</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>700</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5,0 x 3,9</td>
<td></td>
<td></td>
<td>790</td>
<td>40,5</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>5,0 x 4,2</td>
<td></td>
<td></td>
<td>870</td>
<td>41,4</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>5,0 x 4,0</td>
<td></td>
<td></td>
<td>1.430</td>
<td>71,5</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>5,0 x 4,1</td>
<td></td>
<td></td>
<td>1.060</td>
<td>51,7</td>
<td>0</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 29 - 5 - 86
CICLOS DE HUMEDAD, ADHERENCIA ENTRE MADERA Y FORMULACIÓN.

FORMULACIÓN: Sikadur 31 adhesivo

MADERA: Pino insigne

Humedad: 8,4 %

Anillos/cm: 1,4 – 2,5

Edad: menor a 1 año

PROBETA:

![Diagrama de probeta con cotas en mm]

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TEXTURA</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>mm</td>
<td>A * H</td>
<td>SUPERF. CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
<td>Kp/cm²</td>
<td>% de madera arrancada</td>
</tr>
<tr>
<td>1</td>
<td>0,8</td>
<td>5,0 x 4,1</td>
<td>Lisa</td>
<td>>21</td>
<td>1.060</td>
<td>51,7</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>,</td>
<td>4,9 x 4,0</td>
<td>,</td>
<td>,</td>
<td>630</td>
<td>32,1</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>,</td>
<td>5,0 x 4,9</td>
<td>,</td>
<td>,</td>
<td>540</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>,</td>
<td>5,0 x 3,8</td>
<td>,</td>
<td>,</td>
<td>1.020</td>
<td>53,7</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>,</td>
<td>5,0 x 3,8</td>
<td>,</td>
<td>,</td>
<td>1.130</td>
<td>59,4</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>,</td>
<td>5,0 x 3,9</td>
<td>,</td>
<td>,</td>
<td>700</td>
<td>35,9</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>,</td>
<td>5,0 x 3,9</td>
<td>,</td>
<td>,</td>
<td>1.030</td>
<td>52,8</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>,</td>
<td>4,9 x 3,9</td>
<td>,</td>
<td>,</td>
<td>2.020</td>
<td>105,7</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>,</td>
<td>5,0 x 3,8</td>
<td>,</td>
<td>,</td>
<td>940</td>
<td>49,4</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>,</td>
<td>5,0 x 3,9</td>
<td>,</td>
<td>,</td>
<td>1.810</td>
<td>92,8</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>,</td>
<td>5,0 x 4,0</td>
<td>,</td>
<td>,</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>,</td>
<td>5,0 x 4,0</td>
<td>,</td>
<td>,</td>
<td>1.370</td>
<td>68,5</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>,</td>
<td>5,0 x 4,0</td>
<td>,</td>
<td>,</td>
<td>1.160</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>,</td>
<td>5,0 x 3,9</td>
<td>,</td>
<td>,</td>
<td>1.340</td>
<td>68,7</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>,</td>
<td>5,0 x 3,8</td>
<td>,</td>
<td>,</td>
<td>1.440</td>
<td>75,8</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>,</td>
<td>5,0 x 4,1</td>
<td>,</td>
<td>,</td>
<td>210</td>
<td>10,2</td>
<td>10 grieta prev.</td>
</tr>
</tbody>
</table>
FORMULACION: Sikadur 42 anclajes

FIBRA DE VIDRIO:
Fabricante: Bremen S.A.
Producto: Vipol: placas de res. poliéster y f. vidrio en mat. (ε = 15 mm)

<table>
<thead>
<tr>
<th>PROBETA NÚMERO</th>
<th>E mm</th>
<th>SUP. ROTU. A * H cm * cm</th>
<th>TRATAMIE. SUPERF. CONTACTO</th>
<th>EDAD Días</th>
<th>CARGA DE ROTURA Kp</th>
<th>TENSION DE ROTURA Kp/cm²</th>
<th>OBSERVACIONES ARRANCADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-1,5</td>
<td>4,0 x 3,0</td>
<td>lavado disolven. >21</td>
<td></td>
<td>1.000</td>
<td>83,3</td>
<td>0 rot. por la formulación</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4,0 x 3,1</td>
<td>, ,</td>
<td></td>
<td>1.100</td>
<td>88,7</td>
<td>25 rot. por la interfase</td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.
Fecha: 29-5-86
CICLOS DE HUMEDAD . ADHERENCIA ENTRE F. VIDRIO Y FORMULACION.

FORMULACION: Sikadur 31 adhesivo

FIBRA DE VIDRIO:
- **Fabricante:** Bremen S.A.
- **Producto:** Vipol: res. de polies ter y f. vidrio en matic
- **Placas de e = 15 mm.**

PROBETA:

<table>
<thead>
<tr>
<th>PROBETA</th>
<th>E</th>
<th>SUP. ROTU.</th>
<th>TRATAMIE.</th>
<th>EDAD</th>
<th>CARGA DE ROTURA</th>
<th>TENSION DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
<td>mm</td>
<td>cm * cm</td>
<td>CONTACTO</td>
<td>Dias</td>
<td>Kp</td>
<td>Kp/cm²</td>
<td>% FIBRAS</td>
</tr>
<tr>
<td>1</td>
<td>4,0 x 2,9</td>
<td>lavado disolven.</td>
<td>> 21</td>
<td>1.430</td>
<td>123,2</td>
<td>100 rot. por f. vidrio</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4,0 x 3,1</td>
<td>, ,</td>
<td>, ,</td>
<td>1.420</td>
<td>114,5</td>
<td>100 , ,</td>
<td></td>
</tr>
</tbody>
</table>

Velocidad de carga = 750 Kp/min.

Fecha: 29 - 5 - 86
MADERA: Pino insignis
Humedad: 12%

PLACA REFUERZO: Vipol e = 15 mm

FORMULACION: Sikadur 42 anclajes
Dosificación A : B : C = 7 : 4 : 25

<table>
<thead>
<tr>
<th>PROBETA NUMERO</th>
<th>VIGA</th>
<th>PLACA</th>
<th>CAJEADO</th>
<th>VEL.</th>
<th>CARGA P DE ROTURA</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b - d</td>
<td>L_m</td>
<td>L_e</td>
<td>e - d_l</td>
<td>Kp/min</td>
<td>Kg/min</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>67 - 90</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>2.090</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>190 - 50</td>
<td>65</td>
<td></td>
<td>Fisura previa</td>
</tr>
<tr>
<td>2</td>
<td>66 - 91</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>2.570</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>190 - 50</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>66 - 99</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>1.880</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>200 - 60</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>65 - 97</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>3.010</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>200 - 60</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>65 - 97</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>3.700</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>220 - 80</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>65 - 98</td>
<td>500</td>
<td>15 - 75</td>
<td>21 - 10</td>
<td>450</td>
<td>3.480</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>560</td>
<td>220 - 80</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fecha: 17 - 6 - 86
GRAFICAS DE DEFORMACION. ENSAYO DE FLEXION DE VIGAS CON PLACAS EN APOYO. CICLOS DE HUMEDAD.

0 10 50 100 150

0 200 1.000 2.000 3.000

P Kp.

- DEF. EN "A", mm -
<table>
<thead>
<tr>
<th>Nº</th>
<th>ESQUEMAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Fallo por cortante de la madera con rotura de la interfase madera-formulac.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Rotura por cortante madera y cortadura de la placa.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Rotura por cortante de la madera, exclusivamente.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Rotura por cortadura de la madera y acompañada por cortadura de la placa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tangencial.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Fallo de cortadura de la fibra de la placa. Además cortante en la madera.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Rotura por fallo de cortante en la madera y en parte de la fibra de la placa.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A PENDICE Nº 10

FOTOGRAFIAS.
Foto nº 1. Formulación epoxi Sikadur 42 anclajes, formada por la resina, en el recipiente de mayor tamaño para realizar la mezcla, el endurecedor y la carga de arena de cuarzo en la bolsa.

Foto nº 2. Probetas de formulaciones epoxi para ensayo de flexión y compresión en formato de 4 x 4 x 16 cm. (S. 31 y S. 42).
Foto no 3. Probetas de formulaciones epoxi para ensayos de flexión y compresión en formato de 2 x 2 x 30 cm. S. 42, S. 31 y S. 52. Se aprecia la diferente forma de rotura del S. 52 respecto a las otras en compresión.

Foto no 4. Probetas para el ensayo de esfuerzo cortante de formulación epoxi Sikadur 31 adhesivo, recién sacadas del molde.
Foto n° 5. Probetas de formulación epoxi $S.42$ y $S.31$ de esfuerzo cortante, ya ensayadas.

Foto n° 6. Probetas para ensayo de flexión de los materiales compuestos. A la izquierda placas con fibra de vidrio en mat, en el centro placas con fibra en roving y el resto barbas de sección circular maciza con fibra en roving.
Foto n° 7. Ensayo de flexión de una barra de resina de poliéster y fibra de vidrio en roving.

Foto n° 8. Probadas para ensayo de cortadura en diversos materiales compuestos en formato de placas.
Foto no 9. Ensayo de adherencia tangencial entre madera y formulación mediante carga de compresión.

Foto no 10. Probetas para ensayo de adherencia tangencial entre formulación y placa de fibra de vidrio en m. En las probetas de la parte inferior, ya ensayadas, puede observarse la superficie de rotura.
Foto no 11. Proceso de elaboración de las probetas de adherencia tangencial entre formulación y barras de fibra de vidrio, mediante ensaya de tracción. Momento del vertido de la formulación S. 42.

Foto no 12. Probetas de adherencia tangencial entre formulación y barras de material compuesto. Obtendidas según el molde de la fotografía anterior.
Foto n° 13. Ensayo de adherencia tangencial entre barras de material compuesto y formulación, mediante ensayo de tracción.

Foto n° 14. Serie de probetas de vigas unidas en el centro de la luz con placas internas de longitudes de anclaje variable, preparadas para su elaboración.
Foto nº 15. Vertido de la formulación S. 42, en el cajeado de la viga, para después introducir la placa.

Foto nº 16. Momento de la rotura de una viga unida en el centro de la luz con placa interna y cargas en los tercios de la luz.
Foto n° 17. Aspecto de la rotura de vigas unidas en el centro de la luz con placas internas. La superior falla por cortante de la madera y la inferior por flexión de la madera fuera del anclaje de la placa.

Foto n° 18. Detalle de la rotura del anclaje de una placa interna. Se aprecia el fallo por cortadura de la madera.
Foto n° 19. Detalle de la rotura del anclaje de una placa interna. Fallo por cortante de la madera. Se observa como la parte inferior de la placa no arranca madera y en cambio presenta fallo en la propia fibra en planos paralelos al de la placa.

Foto n° 20. Rotura de una viga unida en el centro de la luz, con placa interna, por fallo en flexión de la placa de material compuesto.

Foto n° 22. Detalle de las placas adosadas externamente en las probetas comentadas en la fotografía anterior.
Foto n° 23. Detalle de la rotura del anclaje de una placa adosada a una viga. Se observa como el fallo viene dado por cortante de la madera y por despegue de la placa en el otro lado.

Foto n° 24. Detalle de la rotura de la zona de anclaje de una placa adosada. Se aprecia como el fallo se ha producido por la interfa- se entre placa y formulación.
Foto n° 25. Detalle de la rotura del anclaje de una placa adosada a una viga unida en el centro de la luz. La rotura viene dada por cortadura de la madera en ambos lados.

Foto n° 26. Proceso de elaboración de las probetas con placa de refuerzo en un apoyo. Momento del vertido de la formulación S. 42 modificada, reduciendo el porcentaje de cargas.
Foto n° 27. Momento de la rotura en un ensayo de viga con refuerzo de placa en apoyo. Falló por cortante de la madera.

Foto n° 28. Detalle de la rotura de una viga con placa en el apoyo ensayada a flexión.
Foto no 29. Tres probetas ensayadas con placa en un apoyo donde se puede observar el fallo por cortante de la madera.

Foto no 30. Serie de seis probetas de vigas unidas en el centro de la luz con perfiles de pequeña sección. Preparadas para la instalación de los perfiles.
Foto n° 31. Detalle de la sección de las probetas comentadas en la anterior fotografía.

Foto n° 32. Instalación de los perfiles de sección rectangular en los ranurados. Vertido de la formulación S.42. En vigas unidas en el centro de la luz.
BIBLIOGRAFÍA:

19.- Tamayo, F.. "Resinas epoxi en la conservación y restauración de obras de arte". Informes y trabajos del ICCR, nº 11, 1970

25.- Szabo, T. "Reinforcement of structural wood members". Eastern Forest Products Laboratory, 1975.
