More about lower bounds for the number of $(\leq k)$-facets *

O. Aichholzer1**, J. García2***, D. Orden3†, and P. Ramos3‡

1 Institute for Software Technology. Graz University of Technology. Graz, Austria.
 oaich@ist.tugraz.at
 jglopez@eui.upm.es
3 Departamento de Matemáticas. Universidad de Alcalá. Alcalá de Henares, Spain.
 {david.orden,pedro.ramos}@uah.es

Abstract. In this paper we present two results dealing with the number of $(\leq k)$-facets of a set of points:

- In \mathbb{R}^2, we use the notion of ϵ-net to give structural properties of sets that achieve the optimal lower bound $3\left(\frac{k+2}{2}\right)$ of $(\leq k)$-edges for a fixed $0 \leq k \leq \lfloor n/3 \rfloor - 1$;
- In \mathbb{R}^d, we show that for $k < \lfloor n/(d+1) \rfloor$ the number of $(\leq k)$-facets of a set of n points in general position is at least $(d+1)\left(\frac{k+d}{d}\right)$, and that this bound is tight in that range.

Key words: $(\leq k)$-edges, $(\leq k)$-facets, ϵ-nets

1 Introduction

In this paper we deal with the problem of giving lower bounds to the number of $(\leq k)$-facets of a set of points S: An oriented simplex with vertices at points of S is said to be a k-facet of S if it has exactly k points in the positive side of its affine hull. Similarly, the simplex is said to be an $(\leq k)$-facet if it has at most k points in the positive side of its affine hull. If $S \subset \mathbb{R}^2$, a k-facet of S is usually named a k-edge.

The number of k-facets of S is denoted by $e_k(S)$, and $E_k(S) = \sum_{j=0}^{k} e_j(S)$ is the number of $(\leq k)$-facets (the set S will be omitted when it is clear

* Research partially supported by grant HU2007-0017.
** Research partially supported by the FWF (Austrian Fonds zur Förderung der Wissenschaftlichen Forschung) under grant S09205, NFN Industrial Geometry.
*** Research partially supported by grant MCYT TIC2002-01541.
† Research partially supported by grants MTM2005-08618-C02-02 and S-0505/DPI/0235-02.
‡ Research partially supported by grants TIC2003-08933-C02-01 and S-0505/DPI/0235-02.
from the context). Giving bounds on these quantities, and on the number of
the companion concept of \(k\)-sets, is one of the central problems in Discrete
and Computational Geometry, and has a long history that we will not try to
summarize here. Chapter 8.3 in [4] is a complete and up to date survey of
results and open problems in the area.

Regarding lower bounds for \(E_k(S)\), which is the main topic of this paper,
the problem was first studied by Edelsbrunner et al. [6] due to its connections
with the complexity of higher order Voronoi diagrams. In that paper it was
stated that, in \(\mathbb{R}^2\),
\[
E_k(S) \geq 3 \left(\frac{k + 2}{2} \right),
\tag{1}
\]
and it was given an example showing tightness for \(0 \leq k \leq \lfloor n/3 \rfloor - 1\). The proof
used circular sequences but, unfortunately, contained an unpluggable gap, as
pointed out by Lovász et al. [8]. A correct proof, also using circular sequences,
was independently found by Ábrego and Fernández-Merchant [1] and Lovász
et al. [8]. In both papers a strong connection was discovered between the
number of \((\leq k)\)-edges and the number of convex quadrilaterals in a point set
\(S\). The interested reader can go through the extensive online bibliography by
Vrt’o [9] where the focus is on the problem of crossing numbers of graphs.

The lower bound in Equation 1 was slightly improved for \(k \geq \lfloor n/3 \rfloor\) by
Balogh and Salazar [3], again using circular sequences. Using different tech-
niques, and based on the observation that it suffices to proof the bound for
sets with triangular convex hull, we have recently shown [2] that, in \(\mathbb{R}^2\),
\[
E_k(S) \geq 3 \left(\frac{k + 2}{2} \right) + \sum_{j = \lfloor n/3 \rfloor}^{k} (3j - n + 3).
\tag{2}
\]
If \(n\) is divisible by 3, this expression can be written as
\[
E_k(S) \geq 3 \left(\frac{k + 2}{2} \right) + \left(k - \frac{n}{3} + 2 \right).
\]

In this paper we deal with two different problems related to lower bounds
for \(E_k\): In Section 2, we study structural properties of those sets in \(\mathbb{R}^2\) that
achieve the lower bound in Equation 1 for a fixed \(0 \leq k \leq \lfloor n/3 \rfloor - 1\). We use
the notion of \(\epsilon\)-net to prove that if \(E_k(S)\) is minimum for a given \(k\), then \(E_j(S)\)
is also minimum for every \(0 \leq j < k\). In Section 3 we study the \(d\)-dimensional
version of the problem and show that, for a set of \(n\) points in general position
in \(\mathbb{R}^d\),
\[
E_k(S) \geq (d + 1) \left(\frac{k + d}{d} \right), \quad \text{for } 0 \leq k < \lfloor n/d+1 \rfloor,
\tag{3}
\]
and that this bound is tight in that range. To the best of our knowledge, this
is the first result of this kind in \(\mathbb{R}^d\).
2 Optimal sets for \((\leq k)\)-edge vectors

Given \(S \subset \mathbb{R}^2\), let us denote by \(E_k(S)\) the set of all \((\leq k)\)-edges of \(S\), hence \(E_k(S)\) is the cardinality of \(E_k(S)\). Throughout this section we consider \(k \leq \left\lfloor \frac{n}{3} \right\rfloor - 1\). Recall that for a fixed such \(k\), \(E_k(S)\) is optimal if \(E_k(S) = 3\left(\frac{k+2}{2}\right)\).

Recall also that, by definition, a \(j\)-edge has exactly \(j\) points of \(S\) in the positive side of its affine hull, which in this case is the open half plane to the right of its supporting line.

We start by giving a new, simple, and self-contained proof of the bound in Equation 1, using a new technique which will be useful in the rest of the section. The following notions are presented in \(\mathbb{R}^d\) for further use in Section 3.

Definition 1 ([7]). Let \(S\) be a set of \(n\) points and \(H\) a family of sets in \(\mathbb{R}^d\). A subset \(N \subset S\) is called an \(\epsilon\)-net of \(S\) (with respect to \(H\)) if for every \(H \in H\) such that \(|H \cap S| > \epsilon n\) we have that \(H \cap N \neq \emptyset\).

Definition 2. A simplicial \(\epsilon\)-net of \(S \subset \mathbb{R}^d\) is a set of \(d+1\) vertices of the convex hull of \(S\) that are an \(\epsilon\)-net of \(S\) with respect to closed half-spaces. A simplicial \(\frac{1}{2}\)-net will be called a simplicial half-net.

Lemma 1. Every set \(S \subset \mathbb{R}^2\) of \(n\) points has a simplicial half-net.

Proof. Let \(T\) be a triangle spanned by three vertices of the convex hull of \(S\). An edge \(e\) of \(T\) is called good if the closed half plane of its supporting line which contains the third vertex of \(T\), contains at least \(\frac{n}{2}\) points from \(S\). \(T\) is called good if it consists of three good edges. Clearly, the vertices of a good triangle are a simplicial half-net of \(S\).

Let \(T\) be an arbitrary triangle spanned by vertices of the convex hull of \(S\) and assume that \(T\) is not good. Then observe that only one edge \(e\) of \(T\) is not good and let \(v\) be the vertex of \(T\) not incident to \(e\). Choose a point \(v'\) of the convex hull of \(S\) opposite to \(v\) with respect to \(e\). Then \(e\) and \(v'\) induce a triangle \(T'\) in which \(e\) is a good edge. If \(T'\) is a good triangle we are done. Otherwise we iterate this process. As the cardinalities of the subsets of vertices of \(S\) considered are strictly decreasing (the subsets being restricted by the half plane induced by \(e\)), the process terminates with a good triangle. \(\Box\)

Theorem 1. For every set \(S\) of \(n\) points and \(0 \leq k < \left\lfloor \frac{n-2}{2} \right\rfloor\) we have \(E_k(S) \geq 3\left(\frac{k+2}{2}\right)\).

Proof. The proof goes by induction on \(n\). From Lemma 1, we can guarantee the existence of \(T = \{a, b, c\} \subset S\), an \(\frac{1}{2}\)-net made up with vertices of the convex hull. Let \(S' = S \setminus T\) and consider an edge \(e \in E_{k-2}(S')\). We observe that \(T\) cannot be to the right of \(e\): there are at least \(\frac{n}{2}\) points on the closed half-plane to the left of \(e\) and that would contradict the definition of \(\frac{1}{2}\)-net. Therefore, \(e \in E_k(S)\). If we denote by \(E_T(S)\) the set of \((\leq k)\)-edges of \(S\) adjacent to points in \(T\), we have that
There are $2(k+1)$ ($\leq k$)-edges incident to each of the convex hull vertices a, b, c (which can be obtained rotating a ray based on that vertex). We observe that at most three edges of $\mathcal{E}_k(S)$ might be incident to two points of T (those of the triangle T) and that the union in Equation 4 is disjoint. Therefore, using the induction hypothesis we have

$$E_k(S) \geq E_{k-2}(S') + 3 + 6k \geq 3\binom{k}{2} + 3 + 6k = 3\binom{k+2}{2}.$$ \hfill (5)

\begin{corollary}
Let S be a set of n points, $T = \{a, b, c\}$ a simplicial half-net of S and $S' = S \setminus T$. If $E_k(S) = 3\binom{k+2}{2}$ then:

(a) $E_{k-2}(S') = 3\binom{k}{2}$.

(b) A k-edge of S is either a $(k-2)$-edge of S' or is adjacent to a point in T.

\begin{proof}
If $E_k(S) = 3\binom{k+2}{2}$, both inequalities in Equation 5 are tight. Therefore $E_{k-2}(S') = 3\binom{k}{2}$ and Equation 4 becomes $E_{k-2}(S') \cup \mathcal{E}_k(T) = \mathcal{E}_k(S)$ (disjoint union) which trivially implies part (b).
\end{proof}

\end{corollary}

\begin{theorem}
If $E_k(S) = 3\binom{k+2}{2}$, then S has a triangular convex hull.

\begin{proof}
We prove the statement by induction over k. For $k = 0$ nothing has to be proven, so let $k = 1$, assume that $E_1 = 9$ and let $h = |CH(S)|$. We have h 0-edges and at least h 1-edges (two per convex hull vertex, but each edge might be counted twice). Thus $E_1 = 9 \geq 2h$ and therefore $h \leq 4$. Assume now $h = 4$. Then at most two 1-edges can be counted twice, namely the two diagonals of the convex hull. Thus we have $4 + 8 - 2 = 10$ (≤ 1)-edges and we conclude that if $E_1 = 9$, then S has a triangular convex hull.

For the general case consider $k \geq 2$, let $T = \{a, b, c\}$ be the simplicial half-net guaranteed by Lemma 1 and let $S' = S \setminus T$. From Corollary 1, part (a), we know that $E_{k-2}(S') = 3\binom{k}{2}$ and, by induction, we may assume that S' has a triangular convex hull. Moreover, from part (b), no $(k-1)$-edge of S' can be an ($\leq k$)-edge of S and, therefore, any $(k-1)$-edge of S' must have two vertices of T on its positive side. Consider the six $(k-1)$-edges of S' incident to the three convex hull vertices of S': See Figure 1, where the supporting lines of these $(k-1)$-edges are drawn as dashed lines and S' is depicted as the central triangle. Each cell outside S' in the arrangement of the supporting lines contains a number counting the $(k-1)$-edges considered which have that cell on their positive side. A simple counting argument shows that the only way of placing the three vertices a, b, c of T such that each $(k-1)$-edge of S' drawn has three of them on its positive side is to place one in each cell labeled with a 4. We conclude that no vertex of S' can be on the convex hull of S and the theorem follows.
\end{proof}

\end{theorem}
More about lower bounds for the number of \((\leq k)\)-facets

Corollary 2. If \(E_k(S) = 3^{(k+2)/2}\), then the outermost \(\lceil k/2 \rceil\) layers of \(S\) are triangles.

Proof. From the optimality of \(E_k(S)\) and using the same argument as in the proof of Theorem 2, it follows that we can iteratively remove the outermost \(\lceil k/2 \rceil\) layers to obtain optimal subsets, which, by Theorem 2, have triangular convex hulls. \(\square\)

Theorem 3. If \(E_k(S) = 3^{(k+2)/2}\), then \(E_j(S) = 3^{(j+2)/2}\) for every \(0 \leq j \leq k\).

Proof. We prove the theorem by induction on \(k\). For \(k = 0, 1\) the theorem is equivalent to Theorem 2, so let \(k \geq 2\). It is sufficient to show that optimality of \(E_k(S)\) implies optimality of \(E_{k-1}(S)\), as the theorem follows by induction.

Let \(T\) be the vertices of \(CH(S)\) (which is a triangle as guaranteed by Theorem 2) and let \(S' = S \setminus T\). As in Theorem 1 we have

\[
E_{k-3}(S') \cup ET_{k-1}(S) \subset E_{k-1}(S).
\]

Observe that \(E_{k-2}(S')\) is optimal, as guaranteed by Corollary 1 and this implies optimality of \(E_{k-3}(S')\) by induction. \(|ET_{k-1}(S)|\) is also optimal because the convex hull of \(S\) is the triangle \(T\). Therefore, to prove optimality of \(E_{k-1}(S)\) it only remains to show that no \((k-2)\)-edge of \(S'\) can be a \((k-1)\)-edge of \(S\).

So let \(e\) be a \((k-2)\)-edge of \(S'\) and let \(p\) and \(q\) be the vertices of the convex hull of \(S'\) incident to \(e\) or on its positive side. The existence of \(p\) and \(q\) is guaranteed by Corollary 1, part (b). Without loss of generality, assume that the edge \(pq\) is horizontal with the remaining vertices of \(S'\) above it, see Figure 2 for the rest of the proof. Let \(\ell_1\) be the \((k-1)\)-edge of \(S'\) incident to \(p\) which has \(q\) on its positive side and \(\ell_2\) the \((k-1)\)-edge incident to \(q\) and having \(p\) on its positive side. The boundary chain is the lower envelope of \(\ell_1, pq,\) and \(\ell_2\).

Fig. 1. Each \((k-1)\)-edge of \(S'\) incident to a convex hull vertex of \(S'\) (supporting lines are shown as dashed lines) has two vertices of \(T\) on its positive side.
We claim that \(e \) does not intersect the boundary chain and lies above it. If \(e \) is incident to \(p \) or \(q \) then the claim is obviously true. Otherwise observe that \(e \) has to intersect the supporting lines of both considered \((k-1)\)-edges in the interior of \(S' \), as otherwise there would be too many vertices on the positive side of \(e \). But then again \(e \) lies above the boundary chain and the claim follows.

![Fig. 2. All \((k-2)\)-edges of \(S' \) (supporting lines are shown as dotted lines) lie above the (bold) lower envelope.](image)

From the proof of Theorem 2 we know that two of the vertices of the convex hull of \(S \) have to lie below our boundary chain (below the \((k-1)\)-edges, see \(a \) and \(b \) in Figure 2) and thus on the positive side of \(e \). Therefore \(e \) has at least \(k \) vertices of \(S \) on its positive side and does not belong to \(E_{k-1}(S) \). We conclude that \(E_{k-1}(S) \) is optimal and the theorem follows.

\[\Box \]

Corollary 3. Let \(0 \leq k \leq \lfloor \frac{n}{d+1} \rfloor - 1 \). If \(E_k(S) = 3^{(k+2)/2} \), then \(e_j(S) = 3(j+1) \) for \(0 \leq j \leq k \).

3 A lower bound for \((\leq k)\)-facets in \(\mathbb{R}^d \)

Throughout this section, \(S \subset \mathbb{R}^d \) will be a set of \(n \) points in general position. We remind that \(e_k(S) \) and \(E_k(S) \) denote, respectively, the number of \(k \)-facets and the number of \((\leq k)\)-facets of \(S \). The main result of this section is a lower bound for the number of \((\leq k)\)-facets of a set of \(n \) points in general position in \(\mathbb{R}^d \) in the range \(0 \leq k < \lfloor \frac{n}{d+1} \rfloor \).

The proof follows the approach in Theorem 1, using the fact that every set of points has a centerpoint: a point \(c \in \mathbb{R}^d \) is a centerpoint of \(S \) if no open halfspace that avoids \(c \) contains more than \(\lceil \frac{dn}{d+1} \rceil \) points of \(S \) (see [5]).

Theorem 4. Let \(S \) be a set of \(n \geq d+1 \) points in \(\mathbb{R}^d \) in general position. Then the following bound holds tightly in the given range of \(k \)

\[E_k(S) \geq (d+1) \binom{k+d}{d} \quad \text{if} \quad 0 \leq k < \lfloor \frac{n}{d+1} \rfloor. \]
More about lower bounds for the number of \((\leq k)\)-facets

Proof. The proof uses induction on \(n\) and \(d\). The base case for \(n = d + 1\) is obvious and for \(d = 2\) is just Equation 1.

Let \(k < \lfloor \frac{n}{d+1} \rfloor\) and let \(c\) be a centerpoint of \(S\). Let us consider a simplex \(T\) with vertices in the convex hull of \(S\) and containing \(c\) and let \(S' = S \setminus T\). From the definition of centerpoint, it follows that no open halfspace that avoids \(T\) contains more than \(\lfloor \frac{dn}{d+1} \rfloor - 1\) points or, equivalently, every closed halfspace containing \(T\) has at least \(\lfloor \frac{n}{d+1} \rfloor + 1\) points. We denote by \(E_k^j(S)\) the set of \((\leq k)\)-facets of \(S\) adjacent to exactly \(j\) vertices of \(T\), and \(E_k^j(S)\) will be the cardinality of \(E_k^j(S)\).

For \(j = 0\), we observe that \(E_{k-d}^0(S') \subseteq E_k^0(S)\), because a closed halfspace containing at most \(k\) points cannot contain all the vertices of \(T\). Because \(k - d \leq \lfloor \frac{n-(d+1)}{d+1} \rfloor - 1\), we can apply induction on \(n\) and get

\[
E_k^0(S) \geq E_{k-d}^0(S') \geq (d + 1) \binom{k - d + d}{d} = (d + 1) \binom{k}{d}.
\]

For \(1 \leq j \leq d\), let \(T_j\) be a subset of \(j\) vertices of \(T\) and let \(S_{\pi}\) be the projection from \(T_j\) of \(S \setminus T\) onto the \((d-j)\)-dimensional subspace \(\pi\) defined by the points in \(T \setminus T_j\); a point \(p \in S \setminus T\) is mapped to the intersection between the \(j\)-flat defined by \(p\) and \(T_j\) and the \((d-j)\)-flat defined by points in \(T \setminus T_j\). Using the general position assumption, it is easy to see that the intersection has dimension zero. If the intersection were empty, we could slightly perturb \(p\) without changing the number of \((\leq k)\)-facets of \(S\).

Now, if \(\sigma \subset S_{\pi}\) is an \((\leq (k-d+j))\)-facet of \(S_{\pi}\), then \(\sigma \cup T_j\) is an \((\leq k)\)-facet of \(S\) (as before, a halfspace containing at most \(k\) points of \(S\) cannot contain all the vertices of \(T\)). Because \(k - d + j \leq \lfloor \frac{n}{d+1} \rfloor - 1 \leq \lfloor \frac{n}{d-j+1} \rfloor - 1\), we can apply induction on \(d\) and \(n\), obtaining that there are at least

\[
(d-j+1) \binom{k-d+j+(d-j)}{d-j} = (d-j+1) \binom{k}{d-j}
\]

\((\leq k)\)-facets of \(S\) adjacent to \(T_j\). Summing on all the subsets of \(j\) points of \(T\), we get

\[
E_k^j(S) \geq (d + 1) \binom{d-j+1}{j} \binom{k}{d-j},
\]

and, finally,

\[
E_k(S) \geq \sum_{j=0}^{d} \binom{d+1}{j} \binom{d-j+1}{d-j} \binom{k}{d-j} = (d + 1) \binom{k + d}{d}.
\]

As for tightness, the example showing that the bound \(3\binom{k+2}{2}\) is tight for \(0 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1\) in the planar case [6] can be extended to \(\mathbb{R}^d\): Consider \((d+1)\) rays in \(\mathbb{R}^d\) emanating from the origin and with the property that any hyperplane containing one of them leaves on each open halfspace at least one
of the remaining rays. For instance, we could take the rays defined by the origin and the vertices of a regular simplex inscribed in the unit d-sphere. Let $n = (d + 1)m$ and put chains C_1, \ldots, C_{d+1} with m points on each ray, slightly perturbed to achieve general position.

\[
\square
\]

4 Open problems

Our bound in \mathbb{R}^d generalizes that in Equation 1 except for the restriction $k < \lfloor n/(d + 1) \rfloor$, which stems from the underlying technique, namely using the centerpoint of a set, and can probably be removed. An alternative proof of Theorem 4, using a simplicial half-net instead of a centerpoint, would be sufficient to extend the bound to the whole range of k. Therefore, it is a challenging task to extend Lemma 1 to dimension d, as the following conjecture states:

Conjecture 1. Every point set $S \subset \mathbb{R}^d$ has a simplicial half-net.

References

