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Abstract—This paper studies the disruption management prob
lem of rapid transit rail networks. We consider an integrated 
model for the recovery of the timetable and the rolling stock 
schedules. We propose a new approach to deal with large-scale dis
ruptions: we limit the number of simultaneous schedule changes as 
much as possible, and we control the length of the recovery period, 
in addition to the traditional objective criteria such as service 
quality and operational costs. Our new criteria express two goals: 
the recovery schedules can easily be implemented in practice, and 
the operations quickly return to the originally planned schedules 
after the recovery period. We report our computational tests on 
realistic problem instances of the Spanish rail operator RENFE 
and demonstrate the potential of this approach by solving different 
variants of the proposed model. 

Index Terms—Passengers, railways, recovery, rolling stock, 
schedule. 

I. INTRODUCTION 

D ESIGNING, planning and operating transport systems, 
such as railways or public transport systems, is an area 

where operations research can help substantially. 
Railway transportation starts with an extensive planning 

process involving several combinatorial optimization problems 
such as line planning, timetabling and rolling stock scheduling. 

During the daily operations of a dense passenger railway 
network, incidents may cause the traffic to deviate from the 
planned operations. Small-scale incidents, such as a delay of 
a train by a few minutes, do not require any major intervention 
from the operator, the delays gradually disappear thanks to the 
slack of the timetable. In this paper we focus on large-scale 
incidents, also called disruptions, where significant and non-
trivial adjustment of the timetable and the rolling stock sched
ules is inevitable. In a typical case, a line segment becomes 
unavailable for a few hours due to causes such as weather 
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conditions or mechanical failures. We admit that the distinction 
between small-scale and large scale incidents is practice driven, 
it cannot be easily formalized. 

In case of a disruption, the operator needs first to compute a 
new timetable. Then, the rolling stock schedules are modified 
such that the rolling stock balance between the stations is 
restored by the end of the day [2]. To produce recovery plans 
is a complex task since the re-planning has to be done in real
time [15]. 

Regardless of the cause of a disruption, it has an impact on 
the railway system. The impact is generally in the form of a 
change in the system settings, a change in resource availability, 
or both. 

The disruption management process has several objectives. 
The first goal is to provide the best possible service quality. 
The second goal aims at easing the rescheduling process by 
minimizing the differences between the original plan and the 
recovery plan. Third, the operators often want to quickly return 
to the original plan once the disruption is over. 

This paper studies the integrated timetabling and rolling 
stock re-scheduling problem in the disruption management of 
dense passenger railway networks and places a special empha
sis on the latter two objectives while providing a high quality 
service. Any deviation from the undisrupted timetable or from 
the undisrupted rolling stock assignment is called a schedule 
change. 

We measure the quality of a recovery plan by two metrics: 
the smoothness and the controllability. Here smoothness refers 
to the number of simultaneous schedule changes; a smoother 
recovery plan has fewer schedule changes. Indeed, less smooth 
plans are often impractical for the operator. Controllability 
refers to the length of the time period after which the schedules 
have fully returned to the undisrupted schedule. We call this pe
riod the recovery period. The main motivation of controllability 
is that operators often want to recover before a certain point in 
time, e.g., before the peak hours. 

This paper is organized as follows. Section II provides a 
literature overview and summarizes the contribution of this 
paper. Section III describes the problem in detail. Section IV 
is devoted to the mathematical model. In Section V we present 
our computational experiments. We draw some conclusions in 
Section VI. 

II. STATE OF ART 

Reference [14] deals with disruption management in passen
ger railway transportation. The authors describe the disruption 
management process and the roles of the different actors in
volved in it. 
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During rail operations, unforeseen events may cause 
timetable perturbations, which ask for the capability of traffic 
management systems to reschedule trains and to restore the 
timetable feasibility ([9], [10]). The dispatchers try to use 
all available rolling stock to transport as many passengers as 
possible in the right direction. As a result, the rolling stock 
units will not finish their daily duties at the location where they 
were planned to. Reference [2] states that in order to prevent 
expensive deadheading trips, it is attractive to modify the 
rolling stock schedules such that the rolling stock is balanced 
before the night. Reference [19] develops a novel approach in 
order to reschedule the railway system reducing the current 
supply along one transportation line in order to reinforce the 
service of another line (managed by the same operator), which 
has suffered a disruption. Reference [3] describes a two-stage 
optimization model for determining robust rolling stock cir
culations for passenger trains. Here robustness means that the 
rolling stock circulations can better deal with large disruptions 
of the railway system. They measure lack of rolling stock 
capacity based on a given anticipated passenger demand. 

All the previous research address the railway re-scheduling 
problems in a sequential manner. However, sequential solv
ing approach has many drawbacks ([1]). Although practical, 
the sequential nature of the subproblems leads to sub-optimal 
plans, with potentially significant economic losses. The airline 
industry has been a leader in the development of integrated 
approaches for scheduling and recovering from disruptions. 
There has been research in the integration of problems such 
as flight schedule and fleet assignment ([6], [17]), fleet 
assignment and aircraft routing ([20]), aircraft routing and 
crew scheduling ([18]), and scheduling and competitive effects 
([8], [21]). All these problems were first developed and solved 
in a sequential fashion. However, integration has outperformed 
sequential approaches. Reference [22] is among the first ones 
to deal with the integration of railway timetabling and re
source scheduling in disruption management. References [5] 
and [7] also demonstrate that integrated models provide better 
solutions for problems within the railway industry. Reference 
[13] presents a novel weighted train delay based on demand 
approach for rescheduling railway systems. Reference [16] 
describes a real-time rolling stock rescheduling model for dis
ruption management which takes dynamic passenger flows into 
account. The authors describe a heuristic for solving the model 
with dynamic passenger flows and show that the average delay 
of the passengers can be reduced significantly. 

Rescheduling of airline operations leads to problems compa
rable to those in railway application. References [11] and [12] 
combine vehicle scheduling with a dynamic passenger flows. 
The main difference between the airline and railway settings is 
that airline passengers are fully controlled by the operator. Our 
railway application, on the other hand, features passengers who 
can select their paths through the network. 

A. Contributions 

In this paper we present a new approach to deal with large-
scale disruptions in rapid transit networks. A large-scale disrup
tion usually requires a large number of simultaneous schedule 

changes in order to recover to the original planning once the 
disruption has ended. However, it is always difficult to execute 
a large number of schedule changes at the same time . Another 
challenge is to control the length of the recovery period: once 
the disruption has ended the operator wants to recover as fast as 
possible to the original planning. 

The proposed model, which is based on the paper published 
by [7], is focused on the real-time optimization of train re
scheduling (i.e., timetable and rolling stock) and its interactions 
with the passenger demand. 

The main difference between the work in this paper and 
all the research presented in the literature review is that we 
explicitly control the recovery length and the number of si
multaneous schedule changes to be implemented during the 
recovery process while recovering the timetable, rolling stock 
and passenger demand altogether. 

The main contributions of this paper are summarized as 
follows. 

• We address the disruption management problem of rail
way timetable and rolling stock rescheduling with the 
main focus on providing pragmatic plans for the operator 
but also accounting for the passenger demand. 

• We control the length of the recovery period and limit the 
number of the simultaneous schedule changes during the 
recovery from disruptions. 

• We carry out computational experiments on realistic study 
cases of the Spanish rail operator RENFE. 

• We demonstrate the potential of this novel approach by 
solving different variants of the proposed model and 
showing smoothness and controllability can be achieved 
at a low cost to both the operator and the passenger 
demand. 

• We perform a multiobjective optimization study in or
der to study the trade-offs between smoothness and 
controllability. 

We note that we leave certain aspects out of account: our 
approach allows limited timetable changes, and we model pas
senger behavior in a heuristic way. We discuss these limitations 
in Section III-C and E. 

III. PROBLEM DESCRIPTION 

In this section, the recovery problem in rapid transit networks 
is described. First, disruption characteristics are presented. 
Then, the railway infrastructure is introduced. Next, we de
scribe train services and shunting in rapid transit networks. 
Finally, we explain how we treat the passenger demand in case 
of disturbances. 

A. Disruption 

The railway network is composed of stations and arcs; the 
arcs consist of one or two pairs of rails; the latter case allows 
simultaneous traffic in both directions. 

In this paper, we focus on disruptions that have signifi
cant negative disruptive impacts in the transportation system. 
We make special emphasis on the common type of disrup
tions when a line segment between two neighboring stations 



becomes fully or partially blocked for a certain time period. 
Both blockages may have tremendous negative impacts on the 
system because many services will have to be canceled. But 
the partial blockage is particularly interesting in that two-way 
traffic may be scheduled on a single pair of rails. A completely 
new train schedule is needed because the planned operations are 
infeasible in the new scenario. However, these negative impacts 
will not only be limited to the operator but they will also cause 
passenger demand deviations because some passengers will not 
be able to realize their travel as it was planned. 

Whenever a disruption occurs, the operator will have to 
recover from it by applying schedule changes such as train 
delays, train cancellations, and changes of the rolling stock 
schedules. These types of operations are always difficult to be 
operated and they are avoided if possible; moreover, the more 
schedule changes the more human resources are needed. 

The two main objectives are the controllability and the 
smoothness of the recovery plan. These criteria are clearly 
contradicting: smooth plans need to divide the necessary sched
ule changes over a longer time period. We are interested in 
the trade-off between controllability and smoothness. At the 
same time, we do not want the controllability and smoothness 
considerations to compromise the operational costs (e.g., the 
carriage kilometers) and the service quality for passengers. 

B. Railway Infrastructure 

The railway network consists of tracks and stations. There 
exist two different types of stations: passenger and depot sta
tions. The former are stations where passengers get in/off the 
trains. The latter are the locations where trains are parked or 
shunted. 

We model the infrastructure as a graph with nodes, and with 
directed arcs. The existing infrastructure between stations is 
represented by arcs. Between two stations, two different arcs 
exist, one for each direction of movement. 

Rapid transit railway networks usually compete with other 
transportation modes for passengers (i.e., metro, buses, taxi, 
etc.). Therefore, we will consider the existence of the Metro 
network. This Metro network has several stations in common 
with the rapid transit railway network. However, they are inde
pendent, they use different infrastructure and they are operated 
by different operators. Passengers may find an attractive path 
using both, the railway and Metro network. 

The planning time is discretized into time periods, t e T. 
Due to the high train frequencies, the duration of one time 
period is set to one minute. The existing physical network is 
replicated once for each time period existing in the planning 
period (e.g., 20 hours). 

C. Timetable 

Timetable information (i.e., departure times and frequencies) 
is fixed and publicly available for non-disrupted situations. 
Hence, passengers know when the trains depart and plan their 
travel accordingly. 

Departure times are usually very inflexible because the time 
slots are negotiated with the infrastructure manager since it may 

be shared among different operators and lines. However, for 
disrupted situations there is some freedom to schedule trains 
with different timetables. 

In this research, the timetable consists of three types of train 
services: the planned train services, emergency services and 
empty services. Planned train services are the trains scheduled 
for a normal (undisrupted) situation and they may be canceled 
due to constraints imposed by some disruption. Emergency 
services are inserted to the schedule during the disruption in 
order to alleviate its negative impacts on passengers. Due to the 
high frequencies, an emergency service may (and mostly does) 
require the cancellation of a planned service, taking over its 
timetable slot. Empty services can help satisfy both capacity and 
rolling stock material availability in depot stations (they do not 
carry passengers). For every infrastructure element, headway 
times must be maintained between all the train services which 
come through. 

Our model assumes that the departure and arrival times of a 
planned service cannot be changed whenever it is not cancelled. 
This limitation may exclude solutions that would be possible 
in practice; we need it due to the difficulties that arise when 
simultaneously handling variable departure and arrival times 
and the complex rolling stock decisions. We are not aware of 
any approach that could solve our real-world problem subject to 
variable event times in reasonable time. In our case study, the 
effects of this limitation are mitigated by the fact that, during 
the rush hours, the rapid transport network we study operates 
close to its maximum capacity. 

D. Rolling Stock and Shunting 

There are self-propelled train units of type m e M; they all 
have a driver seat at both ends. Train units can be attached 
to each other to form trains compositions. A composition c e 
C of train units is a sequence of elements of M (note that, 
due to technical limitations, not all sequences of M are valid 
compositions). Each train unit type has a given capacity; this 
value includes both seated and standing passengers. 

Shunting refers to train operations inside a station. In this 
paper, shunting is limited to composition changes where the 
length of an inbound composition is adjusted before its subse
quent departure as an outbound train. The adjustments are either 
disaggregations of a composition into single, or aggregations of 
a composition from single units. Composition changes, which 
are only performed in depot stations, enable the operator to have 
smaller fleet sizes. Composition changes complicate network 
operation because their processing times are on the same order 
as the service frequency times. Further complications arise from 
the necessity of human resources and from the possibility of a 
mechanical failure during the process. In our case, the operator 
wishes to restrict the number of composition changes initiated 
each period to at most one (per depot). 

E. Passengers 

Once a disruption has occurred, the network topology 
changes and passengers will have to use different paths to 
reach their destination. First, they will have to find a path in 



the modified network, then wait for a train service and finally 
enter the train if enough capacity is available. We impose a 
technical assumption that each passenger has a deadline: the 
last time instant when he is willing to board a train. If he 
cannot find a seat in any train till his deadline, he is supposed 
to leave the system, and seek for an alternative mode of 
transport. 

The demand is defined by an origin, a destination and a 
departure time, that is a passenger group w eW. The size 
of the passenger group is denoted by gw. The network con
tains different paths p £ P through which the demand will 
be realized. Each passenger group w eW will be able to 
choose a path p G Pw, where Pw c P denotes the set of paths 
attending w eW. Each path is characterized by its origin, 
destination and its expected travel time. Due to the fact that 
several paths with identical origin and destination may exist, 
passenger groups are assumed to be splittable. Moreover, due 
to the nature of the transportation system under study, where 
different modes of transportation exist, different paths coming 
through different modes of transportation are also taken into 
account. 

Passengers make their trip decisions based on both the 
timetable and the rolling stock schedule; in addition, rolling 
stock scheduling needs information about the demand for 
each trip, which is not available for a disrupted situation. 
Reference [7] proposes a way to anticipate passenger demand 
before computing the resource schedules; the anticipated de
mand is used to guide an integrated optimization model for 
the timetabling and rolling stock scheduling. This approach is 
heuristic in that it ignores the dynamic interaction between de
mand and supplied capacity. This heuristic approach employs a 
multinomial logit model to represent the passengers' behavior, 
where the utility of a path is a function of the attributes of the 
path itself and of the decision-maker. 

We will consider the passengers' flows in arcs only, instead of 
passengers' flows in paths. The per-pafh demand is transformed 
into per-arc demand as follows. Let a be an arc in the network, 
and let T be a time period in which the demand is to be 
measured. Then, the per-arc demand is computed by pfa T = 
Zwew E p e p r a %? • P(P I w) • gw, where 5^ G {0,1} 
expresses whether or not passenger group w using path p is 
coming through arc a during time period T and P(p \ w) is the 
probability of choosing a given itinerary p among the set Pw 

by the demand w (see [7]). That is, we assume that each group 
splits according to the probabilities, and we sum up these split 
passenger groups on each arc. The values pfa,T express the 
demand for the integrated smooth and controlled re-scheduling 
model. 

The proposed model for the passenger demand is valid as 
long as each passenger is accommodated in the trains. However, 
if a passenger cannot take a train (due to insufficient capacity), 
his/her presence as demand on later trips becomes meaningless. 
Our optimization model cannot cope with this issue, but [7] 
justifies this heuristic demand treatment by using an iterative 
framework where the demand of the next iteration is computed 
from the optimized timetable of the current iteration. The 
authors demonstrate that the heuristic approach captures prop
erly the overwhelming majority of the passengers. 

IV. INTEGRATED SMOOTH AND CONTROLLED 

RE-SCHEDULING MODEL 

The Integrated Smooth and Controlled Re-Scheduling Model 
(ISCREM) aims at computing the timetable and the rolling 
stock schedule for a disrupted rapid transit network. The 
ISCREM has its foundations on the models already described 
in [5] and [7]. These models are in turn extensions of the model 
described by [4]. 

The novelty of the current paper lies in Section IV-C2 
and C3: 

• varying penalties for a schedule change based on the 
time the change is initiated (see the objective function in 
Section IV-C4); 

• the length of the recovery period is controlled (controlled 
recovery plan) (see Section IV-C2); 

• and the number of simultaneous schedule changes is 
limited (smooth recovery plan) (see Section IV-C3). 

The following sections give an overview of the sets and of 
the decision variables employed in the ISCREM. 

A. Sets 

• S is the set of stations and SC C S is the set of depot 
stations. 

• A is the set of arcs. 
• L is the set of train services; Lp c L is the set of planned 

train services; L^ c L is the set of empty train services; 
and Le c L is the set of emergency train services. 

• T is the set of time intervals and TDa C T is the set of 
time intervals through which the demand is counted in 
each arc a. 

• M is the train unit type set. 
• C is the set of compositions and Cm is the set of compo

sitions made of train units type m. 
• LSjt is the set of train services £ coming through station 

s and during the set of time periods [t, t + h], where h is 
the headway time. 

• La<T is the set of train services £ coming through arc a 
during time period T. 

B. Variables 

' xe,c € {0,1} determines whether composition c G C is 
scheduled for service £ G L. Note that x£tC G Lp U Le are 
the only variables that link the timetabling and passenger-
related constraints to the rolling stock constraints. 

• a\, G Z+ represents the number of schedule changes that 
started during time period t' and that are being performed 
during time period t. 

• r t G {0,1} controls the length of the recovery period. It 
takes value 1 if the recovery period is active during time 
period t; 0, otherwise. The recovery period is defined to be 
active until the latest time period after which no schedule 
change starts. 

• Ve £ {0,1} determines whether service £ G Lp is 
canceled. 



• yc
at G Z+ gives the number of compositions c G C at 

station s e S a t t e T period. 
• dpa<T G Z+ is the number of denied passengers due to 

insufficient capacity in each arc a, T defined for a G 

• zs',t e {0,1} represents whether a composition change 
starts during t G T in depot s G 5 C from composition 
c G C to composition c' G C. Recall that at most one 
composition change can start in each time period. 

For the sake of clarity we declared all variables to be integral. 
We note that the nature of the constraints allows us to relax the 
integrality of a\,, dpa<T and yc

st. 

C. Model Formulation 

Given the above definitions, the model that is used for 
rescheduling the timetable and the rolling stock for a disrupted 
rapid transit network can be described as follows: 

min Z0F(X, Z, y, dp, a, T) = c{x,z,y,dp) +r(a,T) (1) 

subject to (2)-(10) 

Y, Y,x^< 1 Vs€S,t€T (2) 

y ^ y ^ CapcX£iC > pfaiT - dpaiT 

£eLa>T ceC 

Va G A, T G TDa (3) 

$ > * , c + 3fc=l W e i ? (4) 
cec 

J2xe,c<1 VleLeUL* (5) 
cec 

VCs,t-l + J2 X£>c + J2 7*,cz8,i-ad 
£eL- c'eC 

= yr
s,t + X I x<c + X ) ilc,c>zs',t 

£eL- c'eC 
<*e,s,t=-l 

Vs G SC,teT,ceC (6) 

X X tUcyCs,t + 5 3 X tuc^,txe,c 
seSC ceCm £eLceCm 

s e S C t ' e T c , c ' £ C m 

Vm G M, t G T (7) 

cec t'eTceC 

VseSC\teT (8) 

ycs,u = ycs,o VseSG\ceC (9) 

^ = ^ , 0 0 V S G 5 C , C G C . (10) 

The objective function (1) is explained in detail in 
Section IV-C4 below. Constraints (2) enforce the headway re
quirements. The constraints state that, during each time interval 
of length h (the headway time), each station can accommodate 

at most one departing service at non-zero amount of rolling 
stock. Constraints (3) link the allocated capacity to the number 
of passengers pfa,r- The constraints say that for each arc a G A 
and each time interval T G TDa, the combined capacity of the 
trains on the arc during the time interval is enough to accommo
date the passenger demand minus the denied passengers. Here 
pfa,r is the passenger demand in each arc a, T obtained from 
the multinomial logit model, while capc is the capacity in com
position c. Constraints (4) state that each planned service is ei
ther canceled or it gets exactly one composition. Constraints (5) 
express that emergency and empty services get at most one 
composition. Composition conservation constraints (6) ensure 
the train units' flow balance; the model does not decide the 
sequence of services that are to be carried out by a train unit, 
the non-negative inventories make sure that such sequences 
can indeed be created. The schedule is given by a^iSit, which 
takes the value 1, - 1 or 0, if train service £ arrives, leaves or 
stays in station s at period t, respectively. When performing a 
(dis)aggregation from compositions c to compositions d, 7* c, 

is the number of needed compositions c, and ^cc, is the number 
of produced compositions c'. The shunting time ad indicates 
the time needed to perform an aggregation or disaggregation. 
Fleet capacity constraints (7) ensure that the number of train 
units used at time t G T is limited by the size of the fleet 
Xm and depot capacity constraints (8) ensure that the total 
capacity caps<t is not exceeded. tuc is the number of train units 
in composition c. Each train service £ time duration is given 
by /?^t, which takes value 1, if train service £ is rolling at 
period t; 0, otherwise. (j,s,t>,t gives similar information about 
performance time of composition changes, which started at s 
during t'. Constraints (9) and (10) denote that the inventory dur
ing the initial U and final tf period must be equal to the sched
uled one during those time periods (y° 0 and yc

Sj00), respectively. 
1) Disruption Constraints: In this section we add constraints 

to the basic rolling stock rescheduling model in order to express 
the limitations of the disruption. We focus on the common type 
of disruptions when a line segment between two neighboring 
stations becomes fully or partially blocked for a certain time 
period. Due to this disruption's nature we need the following 
additional variables: 

• r\t-, 0t G {0,1} indicate which of the two riding directions 
is opened in the line segment between two neighboring 
stations in period t G IT. If r\t = 1 or 6t = 1 then one 
of the riding directions is opened during t G IT and the 
opposite direction is closed. IT dT is the set of time 
periods during which the disruption is active 

X x*,c ^nt Va G INO, t G IT 
cec 

£eLa:dtdSa(£)<t<ataSa(£) (11) 

X xe,c <0t Va G ISO, t G IT, 
cec 

£eLa:dtdSa(£)<t<ataSa(£) (12) 
i]t + 9t< aint Vt G IT. (13) 

Constraints (11) and (12) make sure that services can use the 
disrupted arc only at those time periods when the arc is open 



for their riding direction. I NO, ISO c A are the sets of arcs 
affected by the disruption. The first set contains the arcs with a 
riding direction which is the opposite one to the riding direction 
in the second set in an undisturbed situation. La C L is the set 
of train services that use arc a G A. ataSa {£) is the arrival time 
of service £ to the arrival station asa of arc a and dtdSa {£) is 
the departure time of service £ from the departure station dsa of 
arc a. Constraints (13) express the infrastructure limitation to 
one direction at a time (aint = 1) or to no traffic at all (aint = 
0). The value aint = 2 indicates no infrastructure limitation in 
time period t. 

2) Recovery Period Constraints: In order to control the 
recovery period length the following constraints are introduced: 

r t - i > Tt Vt G RT (14) 
xe,c - x£iC <Tt \/£eL,ceC,te DTe C\RT (15) 
xe,c - x£iC <Tt \/£eL,ceC,te DTe C\RT (16) 

< f - Ki < Tt Vs G SC, c,c' eC,teRT (17) 

Ki - < f < Tt Vs G SC, c,c' eC,teRT (18) 

ycs,tf - yc
s,tf < Moor t / v s G sc, c G c (19) 

r t = 0 Vt £ RT. (20) 

Constraints (14) ensure that the recovery period is active during 
time period t if and only if it is active during the immediately 
predecessor time period t — 1; here, RT is the set of time 
periods that are allowed by the operator to be within the 
recovery period. Recall that the recovery period is considered 
active until the latest time period when a schedule change starts. 
Constraints (15)—(18) ensure that schedule changes related to 
a train and a composition change can occur if the recovery 
period is active; here, DT£ represents the departure time of 

's,t> and yc
st indicate the rolling stock train service £. xi}l 

assignment, the composition changes and the train inventory on 
a normal day. In essence, these four constraints say that, with 
a slight abuse of notation, if V = 0 then x = x and z = z hold. 
Constraints (19) feature a sufficiently large value M^, and they 
state that if T corresponding to the end of the day is zero then 
each station's end-of-day inventory is at most the originally 
planned inventory value. Observe that J2c,s Vs,ts = J2c,s Vs,ts • 
Thus constraints (19) say that Ttf = 0 implies yc

st = yc
st 

for each composition set c and for each station s. Finally, 
constraints (20) ensure that the recovery period is not active 
for all the time periods not contained in RT. 

3) Schedule Changes Constraints: Finally, the amount of 
schedule changes during the recovery period is limited by the 
following constraints: 

eeLt, cec 

seSC c,c'eC 

c,c ^c,c' 
Zs,t' ~ Zs,t' 

E E S ? \y%t - Vcs,tI Vt,t'eRT:t> t> (21) 
seSC ceC 

Y^ o\> <v Vt G RT. (22) 

Constraints (21) count the number of schedule changes 
which began during time period t' and are being performed 
during time period t. These constraints count schedule changes 
related to train, emergency and empty services, composition 
changes and train inventory at depot stations; Lt> is the subset 
of train services which depart at t' and Sf

t' is 1 if t is equal to 
t'. Constraints (22) limit the number of schedule changes to be 
operated during every time period t to a maximum value v. 

All the terms on the right hand side of constraints (21) are 
non-linear; however, the binary character of the variables x£<c 

and zr
s'

r
t, admits a straightforward linearization; the last term 

requires a slightly more complex linearization 

at' = E E Pl,tX£,c 
£eLti ceC:xi>tC=0 

+ E E A,t(l-a*,c) 

+ E E A*»,t',t̂  
seSG c,c'eC:za'a[=0 

' s,t' 

+ E E ^s't,'t v ~ z°si 
seSG c,c'eC:za'a[ = \ 

' s,t' 

+ E J2St<t Vt,t>eRT:t>t> 
seSC cec 

ylt -ylt > -4,t Vs esc,teRT,ceC Js,t S)s,t — c s , i 

fs,t - yc
s,t < <,t ylt-ylt < <.t VseSC,teRT,ceC 

(23) 

(24) 

(25) 

where ec
st are non-negative variables. Note that whenever af

t, 
has a positive coefficient in the objective, any optimal solution 
satisfies \yc 

y. s,t\ cs,f 

4) Objective Function: The linear objective function (1) of 
the ISCREM consists of two parts: the operator and passenger 
related costs c(x, z, y, dp) and the recovery schedule quality re
lated costs r(a, T). The operator and passenger related costs pe
nalize the following quantities, (i) Operating costs of planned, 
empty and emergency services; here occ is the operating cost 
per kilometer and krri£ is the distance in kilometers of service £. 
(ii) Composition changes; here tfs,t is the cost of a composition 
change at depot s in time period t. (iii) Cancellation of services; 
here canc£ is the cancellation cost for service £. (iv) Denied 
passengers; here dpca^T is the cost per denied passenger due to 
insufficient capacity in each arc a during time period T. That is 

c(x,z,y,dp)=^2^2occkmex£iC+^2 ^ ^ ^ M Z M 
£<EL ceC seSC teT c,c'eC 

+ ^ canceye + Y Y dpcaiTdpaiT. (26) 
ieLP aeAreT 

The recovery schedule quality related costs penalize the follow
ing quantities, (i) Deviation from the planned schedule; every 
schedule change has an associated penalty p^ which depends on 
the time period C, it starts, (ii) Every time period during which 
the recovery is active has an associated penalty costt. That is 

t'eRT:t>t' 

*/ tf tf 

(* r) = = E^< 5>cT + E 
c=u r=C t=U 

cost+Yt (27) 
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Fig. 1. Left: RENFE's Rapid Transit Network around Madrid. Right: The network topology while the blockage is active; the dashed arrows indicate the 
independently operated Metro line. A cross indicates the disrupted segment between OR and VIAL. 

V. COMPUTATIONAL EXPERIMENTS 

Our experiments are based on realistic cases drawn from 
RENFE's network in Madrid for 2008 (on the left in Fig. 1). The 
whole network is composed of 10 different lines with almost 
100 stations, carrying more than one million passengers every 
day. The network has double tracks on all segments. In this 
section, we study the disruption that has been already analyzed 
in [7]; this allows a direct comparison of our results to those 
of [7]. We report our results on a case study with the failure of 
a particular line segment during a particular time interval. We 
did carry out tests on three other cases that concern another line 
segment, another time interval, or both. The results on the three 
cases are in line with the conclusions of Section V-C, therefore 
we omit the details. 

We used for our tests a personal computer with an Intel 
Core 2 Quad CPU at 2.83 GHz and 8 GB of RAM, running 
under Windows 7 64-Bit, and we implemented the models in 
GAMS/Cplex 12.1. 

A. Case Description 

This case study concerns a disruption where one of the 
two tracks between two stations is blocked: trains in different 
directions must share the remaining track. Also, some trains 
that were supposed to pass may turn back instead of entering 
the disrupted segment. The disruption starts at 8:00 A.M. and it 
lasts 120 minutes. 

The disrupted segment is only used by trains belonging to the 
C5 line. Passengers of line C5 have multiple traveling options: 
they can remain in the line C5 waiting for a direct or indirect 
train; they also can make use of lines C3, C41, and C42 as 
well as of a line of the Metro network. The Metro line is 
considered because it provides a particularly convenient way to 
circumvent the blockage. The disruption has no direct effect on 
the passengers of lines C3, C41, and C42; they will just stick 
to their intended paths. We note that the lines C3, C41, C42, 
and C5 belong to RENFE while the Metro network is run by 
another operator. 

The travel choices of the passengers can be represented by 
a network restricted to the aforementioned lines only. The 
restricted network, depicted on the right in Fig. 1, features 
46 stations, and about 12000 trips in 760 timetable services. 
About 530 000 passengers use the restricted network, 47 000 of 
which are directly affected by the disruption. The frequency on 
the C5 line is rather high: there is a train service every 3 minutes 
in the peak hours and every 10 minutes in the off-peak hours. 
Lines C3, C41, and C42 have a slightly lower frequency: trains 
in the peak hours run every 6 minutes and every 16 minutes in 
the off-peak hours. The considered lines are served by two train 
unit types with a capacity of 588 and 757, respectively. Trains 
on the Metro line run every 3 minutes and we assume that they 
have unlimited capacity. 

The integrated timetable and rolling stock rescheduling prob
lem instances are solved by two approaches: by the model of 
[7]; and by the model proposed in this paper (which is an 
extension of [7]). 

The optimization models can make timetabling decisions in 
Line C5: cancellations of existing services or insertions of emer
gency services. The model selects emergency services from a 
pool of potential candidates which depart every minute and go 
through the non-blocked area. Also, the model decides on the 
rolling stock allocation of the lines C5, C3, C41, and C42. The 
undisrupted lines are incorporated in order to adjust the train 
capacities to the elevated demand figures. We do forbid, though, 
the cancellation of any of the C3, C41, and C42 services. 

The objective functions arise as a weighted combination of 
different terms; the relative importance of the criteria expresses 
different overall managerial goals. In order to compare the two 
solution approaches, we use a particular weight setting for the 
objective criteria. 

B. Recovery Solutions 

In this section we describe and compare solutions to the in
tegrated optimization problem. The complete ISCREM model 
(1)—(25) leads to a mixed integer program with about 39 000 


