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Abstract: The subspace-based methods are effectively applied to classify sets of feature vectors by modelling them as 
subspaces. However, their application to the field of non-cooperative target identification of flying aircraft is barely 
seen in the literature. In these methods, setting the subspace dimensionality is always an issue. Here, it is 
demonstrated that a modified mutual subspace method, which uses softweights to set the importance of each 
subspace basis, is a promising classifier for identifying sets of range profiles coming from real in-flight targets with no 
need to set the subspace dimensionality in advance. The assembly of a recognition database is also a challenging task. 
In this study, this database comprises predicted range profiles coming from electromagnetic simulations. Even though 
the predicted and actual profiles differ, the high recognition rates achieved reveal that the algorithm might be a good 
candidate for its application in an operational target recognition system. 

1 Introduction 

Nowadays, with the secondary surveillance radar and the 
identification friend of foe in the civil and military aviation 
respectively, aircraft are able to recognise themselves upon a 
question from an interrogator system (normally a ground station). 
However, this cooperative identification procedure needs an active 
response from the target and in case of failure, the illuminated 
target might be classified erroneously or even pass unnoticed in 
the airspace. Non-cooperative target identification (NCTI) systems 
try to avoid these irregularities by acquiring the signature of the 
illuminated target, even if it is not aware, and further check its 
similarity with other pre-stored signatures. Since radar can operate 
at long ranges and under conditions of poor visibility or high 
noise, they were thought of as the best option to achieve NCTI 
[1, 2]. With a sufficiently wide bandwidth they can achieve high 
resolution in the collected data, providing target signatures with 
enough information to infer their structure. Great effort has been 
made along the years using high-resolution range profiles (HRRP) 
as signatures for air target identification [3-9]. A HRRP is the 
projection onto the radar line of sight of the radar energy scattered 
back by the different parts of an aircraft, thus, under the same 
measurement conditions, different aircraft will provide different 
HRRP. 

In the literature, different methods for recognition based on HRRP 
have been applied such as: statistical modelling for HRRP data, 
which has been used to describe the likelihood between HRRPs 
[10], a noise-robust factor analysis model based on multitask 
learning, developed in [11], or hidden Markov models, that have 
been applied to radar target recognition in several studies [12, 13]. 
Feature selection methods and dimensionality reduction algorithms 
are also frequently used in NCTI, including wavelet transformation 
[14], algorithms based on a reconstruction model such as principal 
component analysis (PCA) [4], the differential power spectrum 
[15], linear discriminant functions [16], or singular value 
decomposition (SVD) [17]. 

The concept of principal angles [18] between two linear subspaces 
has been widely used for recognition and classification of sets of 
images [19, 20]. However, the approach has been barely applied in 

the frame of NCTI and thus, this possibility is explored in this 
paper. Here, a subspace model based on the mutual subspace 
method (MSM) is applied to matrices of consecutively collected 
range profiles in order to determine the type of aircraft the radar is 
illuminating. 

The structure of the paper is as follows. Section 2 firstly introduces 
the algorithm methodology and further describes the test and training 
sets used in the experiments. Section 3 shows the results obtained 
with the proposed method and a comparison with other similar 
algorithms. Lastly, Section 4 presents the conclusions and future 
work. 

2 Methodology 

2.1 Mutual subspace method 

The conventional subspace method (CSM) [21] is a statistical pattern 
recognition method where each class is represented by a subspace 
and the belonging to a class, namely the similarity, is determined 
by the angle between a vector g, representing a test sample, and 
each subspace. 

The MSM presented in [22], on the contrary, defines the similarity 
by the angle between two subspaces where the bases of the 
subspaces are calculated by the PCA. The relationship between 
two subspaces, D and S, is then defined by their principal angles, 
so called canonical angles, which are an extension of the angle 
between two vectors. A graphical explanation of both methods can 
be found in Fig. 1, where Fig. la shows how in CSM only one 
angle (&i) is returned since the test sample is represented by one 
vector, and Fig. lb shows that MSM returns k canonical angles 
corresponding to the k vectors that compose the smallest subspace. 

Let XD = [x1,x2, ..., xM] €E R x be a matrix of feature 
vectors, in our experiment a matrix of HRRP of dimension NXM 
(assuming N> M), with M being the total number of profiles and 
N the number of samples. The set of profiles is modelled by the 
subspace spanned by the principal basis vectors: by applying 
eigen-decomposition to XpX]) and exploiting the eigenvectors 
corresponding to the hd largest eigenvalues, the basis of the 
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Fig. 1 Basic concepts of subspace methods 

a Conventional subspace method (CSM) 
b Mutual subspace method (MSM) 

subspace D is obtained as in (1) 

XDXD VD^DVD •• (1) 

where VD a matrix containing the eigenvectors, 
a diagonal matrix containing the 

nNxN • 

AD = diag(A) G R ^ S is 
eigenvalues and F D E l { x d is the selected basis of the subspace D. 

As stated, the similarity measure between two subspaces D and S 
is defined as their canonical angles {6k) [23]. These are obtained 
recursively as 

cos 9t = max max u v •• (2) 

such that 
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smaller and if the subspaces are orthogonal, it will become zero as 
Fig. 2 depicts. 

Selecting the dimensions (hd and hs) of the subspaces is crucial in 
the classification performance. These dimensions are set taking into 
account the eigenvalues in AD and As respectively since they reveal 
the information gathered by each eigenvector: the higher the 
eigenvalue, the higher the amount of information of the target 
contained in its associated eigenvector. According to this, 
eigenvectors with high eigenvalues will belong to a dominant 
subspace or signal subspace, containing information about the 
target, and those with low eigenvalues will form the 2202.se 
subspace, containing unwanted and negligible information. If 
subspace dimensionality is set to a high value, then too many 
vectors will make up the signal subspace. This will cause the 
subspaces to be noisy, making their separability more difficult and 
thus, the recognition performance will be impoverished. 
Unfortunately, there is no theoretical way to appropriately 
determine the subspace dimensionality and users should tune it in 
advance, normally by setting an energy threshold based on the 
eigenvalues [4, 25]. 

where [«ls ..., uk] and [v1; . . . , vk] are called the canonical vectors 
between subspaces D and S and hd and hs are the number of 
eigenvectors taken as bases of the subspaces D and S respectively. 

The canonical angles satisfy 0 < 6\ < 6>2 < • • • < #,t < ft/2. If the 
columns of Vn Rv and V, G Rv define orthonormal bases 
for D and S respectively, then 

cos ft. : max max u v • = max maxy1(VQVS)Z (3) 

considering ||M||2 = ||v||2 = |[y||2 = IIZII2 = 1- After the minimax 
characterisation of singular values given in [24] (section 8.6.1), it 
follows that YT(VQVS)Z = diagCo-j, . . . , <rk), that is, the SVD of 
VQVS. Thus, assuming hs<hd and applying SVD, then 

U-&-V1 
(4) 

where 
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canonical vectors 

© = diag(cos 9k) = diag(o-A.) —>• singular values; k = 1, ... ,hs 

The similarity measure can be defined as the largest singular value 
c w , as the mean of the obtained singular values, or as in here, as 
the squared sum of the canonical angles' cosines, that is, SDS = ft 
(62). The higher SDS, the higher the similarity between subspaces 
D and S. In the case that two subspaces coincide completely with 
each other, all canonical angles are zero and so their similarity will 
be SDS = k, with k being the dimension of the smallest subspace 
(k=hs). When the two subspaces separate, the similarity will get 

2.2 Softweighting 

In order to palliate the problem of subspace dimensionality, 
Kobayashi [26] introduces the concept of softweighting for image 
identification and proposes a generalised mutual subspace method 
(gMSM). Contrary to [26] in which gMSM is applied to static 
two-dimensional images for object classification, here this method 
is used for identification of flying aircraft from range profiles. To 
the authors knowledge, not only the method is used for the first 
time in this paper with this purpose, but also a study of the 
optimal selection of the softweighting parameter, which is critical 
for the identification and has not been done before, is carried out. 

In MSM algorithm, when setting the dimensionality of a subspace, 
the eigenvalues take an important role: only the eigenvectors with 
the highest eigenvalues will be considered as basis and the rest 
will be discarded. The eigenvalues can be seen as if they had a 
binary weight (1/0) that affects the eigenvectors. A weight of 1 
means that the corresponding eigenvector is a basis of the 
subspace and a weight of 0 means the opposite. That is, the 
subspace dimensionality is set based on a binary decision. 
Nevertheless, the eigenvalue per se does not take part in the 
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Fig. 2 Similarity concept between subspaces 


