Abstract.

We present a theoretical study about the interference of the harmonics generated by a mixture of two gases, He-Ne. Our model is based on the electron quantum paths, a discrete number of electron trajectories, and continuum-bound transitions. A laser with intensity around 10^{14}W/cm^2 that interacts with a mixture of gases, He-Ne, produces an interference that is destructive at the low-order harmonics and oscillates between constructive and destructive near to cutoff. This destructive interference at high-order harmonics may be used to explore other transitions, which are currently hidden. At low-order harmonic frequencies, our numerical results are in very good agreement with experimental data. At higher-order harmonics, where there are no experimental data, comparison is with a Schroedinger solver.

This work has been published at PHYSICAL REVIEW A 94, 023804 (2016)

1.- Theoretical model

- Based on Lewenstein model[1], the electron movement:
 \[d(t_i) = i \int_{t_i}^{t_f} dt' \langle \rho_i | \Psi(t_i) \rangle \langle \rho_i (t_i) | E(t'_i) | \Psi(t_i) \rangle e^{-iS_p(t_i)} \]

- Dipole transition : $< \rho | \Psi | p >$, depends on the ionization energy I_p

- Quantum paths are a small set of electron trajectories that are enough to describe the full physical interaction.

- The quantum paths are specified by the triads (t_i, t_s, t_s) obtained as solution of three equations:
 \[\nabla p \Sigma_S (p_i, t_i, t_s) = p_i (t_s - t_i) - \int_{t_i}^{t_s} A(t) dt = 0 \]
 \[\Re \partial p / \partial t_i = \Re \partial p / \partial t_s = 0 \]
 \[\Re \partial p / \partial t_i = \Re \partial p / \partial t_s = 0 \]

- The solutions (t_i, t_s, p) permit transform the integral into a sumatory which fourier transform is:
 \[d(\omega) = \sum_q | \chi_q (\omega) | e^{i \Phi_q (\omega)} \]

2.- Quantum paths

- There are two electron trajectories per laser subcycle: short and long, according to the recombination and ionization time t_i, t_s.

- The short and long paths converge into only one trajectory near the cut-off.

- The long path always has higher intensity than the short one, this difference is most important at low frequency. Fig B.

- The electron can recombine in the first visit to parent ion, or on the following, although with lower intensity. Fig B.

3.- Mixture of gases

- When a laser, with enough intensity $\sim 10^{14} \text{W/cm}^2$, interacts with a gas, produces harmonics.

- The phase of each harmonic depends on a combination of the ionization energy, kinetic energy and atomic structure.

- When there are two gases mixed, every harmonic is the result of an interference process:
 \[| d_{\text{Ne}} (\omega) |^2 + | d_{\text{He}} (\omega) |^2 = | d_{\text{Ne}} (\omega) |^2 + | d_{\text{He}} (\omega) |^2 + 2 \Re \{ d_{\text{He}} (\omega) d_{\text{Ne}} (\omega) \} \]

- Intensity depends on the density ρ of each gas:
 \[I(\omega) = \rho_{\text{Ne}} | d_{\text{Ne}} (\omega) |^2 (1 + \frac{1}{\sum_{\text{He}} \rho_{\text{He}} (\omega) | d_{\text{He}}(\omega) |^2} \]
 \[\Delta \Phi(\omega) \equiv \Phi_{\text{Ne}} (\omega) - \Phi_{\text{He}} (\omega) \]
 \[\tau_i = \rho_{\text{Total}} \tau_{\text{Ne}} + \rho_{\text{Total}} \tau_{\text{He}} \]

- The adjustment of the ratio between gases, allow us to get some spectrum equalization over some of the harmonics.

4.- He-Ne Comparison with experimental data.

- The model based on quantum paths has a good agreement at low-order harmonics where the long paths are predominant.

- At high-order harmonics, where there is no experiment data, calculations are compared with an Schroedinger solver Qprop[3].

- Only the quantum paths from the first visit to parent ion contribute to high-order harmonics.

B. The model has not a good prediction in the middle range.

5.- Quantum path. Simplification

- The short and long paths from the first visit to parent produce an oscillation which increases its the amplitude up to the cutoff.

- The interference between long and short paths explains the strong oscillations from 45th harmonics onwards. Fig A.

- The long trajectory indicates the evolution of the interference. Fig B.

6.- Mixtures. Comparison with experimental data.

- Comparison between calculation and experimental results from mixed gases.

- We present a theoretical study about the interference of the harmonics generated by a mixture of two gases, He-Ne. Our model is based on the electron quantum paths, a discrete number of electron trajectories, and continuum-bound transitions. A laser with intensity around 10^{14}W/cm^2 that interacts with a mixture of gases, He-Ne, produces an interference that is destructive at the low-order harmonics and oscillates between constructive and destructive near to cutoff. This destructive interference at high-order harmonics may be used to explore other transitions, which are currently hidden. At low-order harmonic frequencies, our numerical results are in very good agreement with experimental data. At higher-order harmonics, where there are no experimental data, comparison is with a Schroedinger solver.

7.- Conclusions

- The model based on quantum paths allows one to explain the constructive and destructive interference between harmonics generated with a mixture of two noble gases like He-Ne.

- The ratio between the densities of each gas can be used for tuning the intensity and the phase of harmonics.

- Finally, the selection of the dipole matrix for Ne which takes into account the parity of the electron, with mathematical expressions different from those commonly used, was crucial in reproducing the experimental and numerical results from a Schroedinger solver.

8.- References