Publishing FAIR Data: an exemplar methodology utilizing PHI-base. Frontiers in Plant Science

Rodriguez Iglesias, Alejandro; Rodríguez González, Alejandro; Irvine, Alistair; Sesma Galarraga, Ane; Urban, Martin; Hammond Kosack, Kim y Wilkinson, Mark Denis (2016). Publishing FAIR Data: an exemplar methodology utilizing PHI-base. Frontiers in Plant Science. "Frontiers in Plant Science", v. 7 ; pp. 7-22. ISSN 1664-462X. https://doi.org/10.3389/fpls.2016.00641.

Descripción

Título: Publishing FAIR Data: an exemplar methodology utilizing PHI-base. Frontiers in Plant Science
Autor/es:
  • Rodriguez Iglesias, Alejandro
  • Rodríguez González, Alejandro
  • Irvine, Alistair
  • Sesma Galarraga, Ane
  • Urban, Martin
  • Hammond Kosack, Kim
  • Wilkinson, Mark Denis
Tipo de Documento: Artículo
Título de Revista/Publicación: Frontiers in Plant Science
Fecha: Mayo 2016
Volumen: 7
Materias:
Escuela: Centro de Investigación en Biotecnología y Genómica de Plantas (CBGP) (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Pathogen-Host interaction data is core to our understanding of disease processes and their molecular/genetic bases. Facile access to such core data is particularly important for the plant sciences, where individual genetic and phenotypic observations have the added complexity of being dispersed over a wide diversity of plant species vs. the relatively fewer host species of interest to biomedical researchers. Recently, an international initiative interested in scholarly data publishing proposed that all scientific data should be ?FAIR?Findable, Accessible, Interoperable, and Reusable. In this work, we describe the process of migrating a database of notable relevance to the plant sciences?the Pathogen-Host Interaction Database (PHI-base)?to a form that conforms to each of the FAIR Principles. We discuss the technical and architectural decisions, and the migration pathway, including observations of the difficulty and/or fidelity of each step. We examine how multiple FAIR principles can be addressed simultaneously through careful design decisions, including making data FAIR for both humans and machines with minimal duplication of effort. We note how FAIR data publishing involves more than data reformatting, requiring features beyond those exhibited by most life science Semantic Web or Linked Data resources. We explore the value-added by completing this FAIR data transformation, and then test the result through integrative questions that could not easily be asked over traditional Web-based data resources. Finally, we demonstrate the utility of providing explicit and reliable access to provenance information, which we argue enhances citation rates by encouraging and facilitating transparent scholarly reuse of these valuable data holdings.

Más información

ID de Registro: 45761
Identificador DC: http://oa.upm.es/45761/
Identificador OAI: oai:oa.upm.es:45761
Identificador DOI: 10.3389/fpls.2016.00641
URL Oficial: http://journal.frontiersin.org/article/10.3389/fpls.2016.00641/full
Depositado por: Memoria Investigacion
Depositado el: 27 Jul 2017 17:02
Ultima Modificación: 27 Jul 2017 17:02
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM