Optimizing phosphorus diffusion for photovoltaic applications: Peak doping, inactive phosphorus, gettering, and contact formation

Wagner, Hannes; Dastgheib-Shirazi, Amir; Min, Byungsul; Morishige, Ashley E.; Steyer, Michael; Hahn, Giso; Cañizo Nadal, Carlos del; Buonassisi, Tonio y Altermatt, Pietro P. (2016). Optimizing phosphorus diffusion for photovoltaic applications: Peak doping, inactive phosphorus, gettering, and contact formation. "Journal of Applied Physics", v. 119 ; pp.. ISSN 0021-8979. https://doi.org/10.1063/1.4949326.

Descripción

Título: Optimizing phosphorus diffusion for photovoltaic applications: Peak doping, inactive phosphorus, gettering, and contact formation
Autor/es:
  • Wagner, Hannes
  • Dastgheib-Shirazi, Amir
  • Min, Byungsul
  • Morishige, Ashley E.
  • Steyer, Michael
  • Hahn, Giso
  • Cañizo Nadal, Carlos del
  • Buonassisi, Tonio
  • Altermatt, Pietro P.
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Applied Physics
Fecha: 13 Mayo 2016
Volumen: 119
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Electrónica Física
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (6MB) | Vista Previa

Resumen

The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860?°C for 60?min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density Npeak?=?8.0?×?1018?cm?3 and a junction depth dj?=?0.4?m, resulting in a sheet resistivity?sh?=?380 ?/sq and a saturation current-density J0 below 10 fA/cm2. With these properties, the POCl3 process can compete with ion implantation or doped oxide approaches.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Comunidad de MadridS2013/MAE-2780Sin especificarSin especificarSin especificar

Más información

ID de Registro: 45994
Identificador DC: http://oa.upm.es/45994/
Identificador OAI: oai:oa.upm.es:45994
Identificador DOI: 10.1063/1.4949326
URL Oficial: http://aip.scitation.org/doi/10.1063/1.4949326
Depositado por: Memoria Investigacion
Depositado el: 23 May 2017 17:53
Ultima Modificación: 23 May 2017 17:53
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM