Basketball game related statistics that discriminate between players with intellectual impairment and able-bodied players

Article in Revista de Psicología del Deporte · April 2017

3 authors:

- **Javier Pinilla**
 Universidad Camilo José Cela
 23 PUBLICATIONS 9 CITATIONS
 SEE PROFILE

- **Javier Pérez-Tejero**
 Universidad Politécnica de Madrid
 43 PUBLICATIONS 81 CITATIONS
 SEE PROFILE

- **Debbie Van Biesen**
 University of Leuven
 19 PUBLICATIONS 98 CITATIONS
 SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- Influence of intellectual impairment on basketball performance [View project]
- Shoulder Therapeutic Exercise Program in Wheelchair Basketball [View project]
Basketball game related statistics that discriminate between players with intellectual impairment and able-bodied players

Javier Pinilla Arbex*, Javier Pérez-Tejero* y Debbie Van Biesen**

ABSTRACT: The development of evidence-based eligibility systems in basketball for athletes with intellectual impairment (II) requires investigating the influence of II on performance. Due to this, the present study aimed to compare game-related statistics from II and able-bodied (AB) competitions. The World Men II-Basketball Championship 2013 (n=13 games and 63 players) and the Spanish Men AB-Basketball Championships 2014 under 16-years-old (n=10 games and 95 players) and under 18-years-old (n=18 games and 175 players) were analyzed. Team and individual statistics were normalized to 100 ball possessions and to 40 minutes played respectively. One-way ANOVA and post hoc Tukey tests were conducted to compare II and AB-teams. Also, a discriminant analysis was employed to identify which variables discriminated them best. The Kruskal-Wallis and U Mann-Whitney tests were applied to compare the II and AB individual game-related statistics. II-teams played more ball possessions per game (p<0.05) and the variables which best discriminated II and AB-teams were: 2-point unsuccessful shots \(SC=-0.384 \), 3-point successful \(SC=0.456 \), 3-point unsuccessful \(SC=-0.399 \), free-throw successful \(SC=0.319 \) and fouls \(SC=0.454 \). In all playing positions II-players presented more 2-point unsuccessful and lower shooting percentage in all kind of shots. II-guards attempted more field shots and made more turnovers than their peers, showing an unbalanced roles’ distribution compared with AB-players. These results confirmed that II and AB-players perform basketball in different ways.

Recent studies have demonstrated the negative influence of intellectual impairment (II) on performance in sports such as track and field, swimming and table-tennis (Burns, 2015; Van Biesen, Mactavish, Pattyn and Vanlandewijck, 2012; Van Biesen, Mactavish and Vanlandewijck, 2013). Thus, organizing specific sport competitions for II-athletes seems necessary to provide them the opportunity to reach sport excellence in equal conditions (IPC, 2015). To be eligible for II-competition, the impairment of the II-athletes should be documented and the impact of II on sport-specific performance should be proven (IPC, 2015; Tweedy and Vanlandewijck, 2011). This is proven by eligibility systems which were developed for each sport based on how impairment negatively impacts on performance in each sport. Moreover, these systems are required for all sports included in the Paralympic program. As these systems were developed in table tennis, which were developed for each sport based on how impairment negatively impacts on performance in each sport. Moreover, these systems are required for all sports included in the Paralympic program. As these systems were developed in table tennis, these systems have not been developed yet. Current eligibility is based on primary eligibility check, which proves that athletes present the diagnosis of intellectual disability, but they are not based on sport-specific criteria. Due to this fact, to develop these systems is relevant to guarantee that only athletes having significant limitations to perform basketball participate in specific II-competitions. Also, developing these systems is relevant to re-include II-basketball in the Paralympic program. This article is a contribution to the development of these systems, studying the impact of II on basketball performance.

Performance in basketball is about defeating your opponent. According to the Official Rules (FIBA, 2014; p.5), “The team that has scored the greater number of points at the end of playing time shall be the winner”. Performance depends on multiple interactions between teammates and opponents in which both individual and collective actions are relevant (García, Ibáñez, Cañadas and Antúnez, 2013). Technique, tactics and strategy are key components of basketball performance (Sampedro, 1999); but they also depend on individual capacities in different areas: fitness, cognition and psychological skills (Refoyo, Sampedro and Sillero, 2009). Different studies highlighted that intellectual functioning is relevant to perceive a situation, to decide and to carry out effective motor solutions (García et al., 2013; Tenenbaum, 2003). Jakovljevic (1996) demonstrated that perceptive differentiation and logical conclusions were the cognitive abilities best related with success in basketball.

Previous studies in II-basketball found significant relationship between athletes’ intellectual quotient and proficiency in four basketball skills: ball handling, reception, pass and shooting (Guidetti, Franciosi, Emerenziani, Gallotta and Baldari, 2007). However, another study pointed out that II influences more negatively tactics than technique (Polito, Pinilla, Pérez-Tejero and...
Vanlandewijck, 2014). In this line, a recent study compared II and AB-players’ capacity to solve eight standardized basketball game situations played on court (Pinilla et al., 2016). In this study, II-players decided slower, made more dribbles and ended the situations less successfully (scoring or giving a correct pass). According to these evidences, II might negatively influence performance during competition.

Pérez-Tejero, Pinilla and Vanlandewijck (2015) compared game-related statistics in high-level II-basketball competitions between successful and unsuccessful teams. In this study authors discussed that II-teams seemed to present lower shooting percentages, more rebounds and more turnovers than AB-teams in previous studies from the literature (Gómez, Lorenzo, Ortega, Sampaio and Ibáñez, 2009; Trninic, Dizdar and Luksic, 2002). A further study found that variability of game-related statistics in II-competitions was higher than in AB-competitions, suggesting that II-players’ performance was more dispersed (Pinilla, Pérez-Tejero, Van Biesen and Vanlandewijck, 2015). The aforementioned studies seem to indicate that II and AB-players played basketball in a different way, probably influenced by II. However, these differences were based on the comparison of different studies, not being possible to calculate statistical differences. In this study, data from II and AB-competitions were collected and analyzed by the same researches and the statistical analysis could be done based on the raw data of both the II and AB sample. The aim of the present study was to explore the differences in team and individual game-related statistics between II and AB-competitions and to identify which variables best discriminate them. The hypothesis is that game-related statistics from II and AB-players competitions will present significant differences, showing different ways to perform basketball.

Method

Sample and variables
Data were collected from the Men’s II-Basketball World Championships (Turkey, 2013) and from the Spanish Men’s AB-Championships under 16-years-old (U-16) and under 18-years-old (U-18) held in 2014. Number of games and participants were: II-championships, 13 games (all games played), six teams and 63 players; U-16, 10 games (from 1/4 finals on), 8 teams and 95 players and U-18, 18 games (from 1/8 finals on), 16 teams and 175 players. The following game-related statistics were gathered per team and player in each game: two-point shots successful, unsuccessful and percentage; three-point shots successful, unsuccessful and percentage; free throws successful, unsuccessful and percentage; offensive rebounds, defensive rebounds, assists, fouls, steals, turnovers, blocks and points scored. These variables were gathered through FIBA Live Statistics Software by experienced officials who followed the International Basketball Federation descriptors of each variable (FIBA, 2005). Also, playing position and minutes played per player were gathered in each game. Only players who participated more than 10 minutes during the game were included in the analysis. Consequently, number of observations (statistics from one player in one game) included in this study was: 194 from II-players (Guards = 42, Forwards = 85, Centers = 67) and 438 from AB-players (Guards = 107, Forwards = 194, Centers = 137). To check reliability of game-related statistics a sub-sample of 10% of the games were randomly selected and analyzed by an expert in basketball analysis with more than five years’ experience. Intraclass Correlation Coefficients (ICC) obtained was higher than 0.94 in all variables.

Data processing
Team variables per game were normalized to 100 ball possessions played in order to account for game rhythm contamination, allowing to compare teams’ efficiency per ball possession even between different games (Gómez, Lorenzo, Sampaio, Ibáñez and Ortega, 2008). Team variables were divided by the number of ball possessions played during the game and multiplied by 100. Oliver’s equation (2004) was used to calculate ball possessions (BP): BP = (field-goals attempted) – (offensive rebounds) + (turnovers) – 0.4 x (free-throws attempted). Individual variables from each game were normalized to 40 minutes played in order to compare player’s performances independently the time played (Vanlandewijck et al., 2004).

Statistical Analyses
The following descriptive statistics were calculated from team and individual variables: mean, standard deviation, range, variance and variability coefficient. The Shapiro-Wilk and Kolmogorov-Smirnov tests were performed to explore the normality of team statistics (n < 50) and individual statistics (n > 50) respectively. Normal distribution was confirmed in the team variables but not in the individual variables. To compare II, U-16 and U-18 team game-related statistics one-way ANOVA and post hoc Tukey tests were employed. Brown-Forsythe robust test complemented this analysis to avoid assumptions of type I errors. In order to analyze the effect size (ES) of the differences between samples, eta-square was calculated. In addition, different discriminant functions were calculated to identify which variables discriminated best between II and AB-teams. The structural coefficients (SC’s) obtained from the discriminant functions were used to identify these variables (Ntoumanis, 2001). Level of significance for the discrimination was set at SC above │0.30│ (Tabachnick and Fidell, 2005). Kruskal-Wallis test was employed to identify differences in individual game-related between the three groups of players (guard, forward and center) from II and AB-players. U-Mann Whitney tests were used to explore paired-matched differences between two playing positions from the same sample and to compare II and AB individual statistics from players in the same playing positions. In order to identify the effect size of individual differences, Cliff’s Delta was calculated (Macbeth, Razumiejczyk and Ledesma, 2011). Statistical analyses were performed using PASW statistics 20 (SPSS Inc., Chicago, IL, USA). Statistical significance was set at p < .05.

Results
In Table 1, descriptive game-related statistics from II, U-16 and U-18-teams are presented and compared through one-way ANOVA and post hoc Tukey test, indicating significant differences (p < .05) between II and AB-team statistics in different variables. Based on the mean number of ball possessions played per game, the calculated mean length of ball possessions in each competition was: 16.98 ± 3.0 seconds in II-teams, 20.31±3.3 seconds in U-16 teams and 20.41 ± 2.8 seconds in U-18 teams. Regarding variability of game-related statistics, variability coefficient was 50.7% in II-teams, 41.1% in U-16 teams and 38.6% in U-18 teams. This coefficient seemed to decrease as the level of competition increased. However, no significant differences were found between the three groups (p > .05).
Basketball game related statistics that discriminate between players with intellectual impairment and able-bodied players

In Table 2 it is presented the SCs values of the game-related statistics obtained from the different discriminant functions calculated: a comparison of II with all AB-teams and an independent comparison of II-teams with U-16 and U-18 teams. The three calculated functions were significant \((p<0.001) \) and SCs over absolute \(|0.30| \) indicates the variables that significantly contributed to discriminate AB and II-team’s statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>II-teams</th>
<th>U-16-teams</th>
<th>U-18-teams</th>
<th>F</th>
<th>ANOVA</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possessions</td>
<td>72.9 (12.8)</td>
<td>60.7 (9.9)</td>
<td>59.9 (8.1)</td>
<td>13.86*</td>
<td>II>U-16, U-18</td>
<td>0.26</td>
</tr>
<tr>
<td>2-pt successful</td>
<td>25.7 (10.4)</td>
<td>30.4 (7.7)</td>
<td>31.8 (9.2)</td>
<td>3.43*</td>
<td>U-18>II</td>
<td>0.08</td>
</tr>
<tr>
<td>2-pt unsuccessful</td>
<td>52.6 (12.0)</td>
<td>46.8 (13.5)</td>
<td>37.0 (8.7)</td>
<td>15.6*</td>
<td>II>U-18</td>
<td>0.28</td>
</tr>
<tr>
<td>2-pt percentage</td>
<td>32.8 %</td>
<td>39.4 %</td>
<td>46.2 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-pt successful</td>
<td>4.6 (3.6)</td>
<td>9.4 (4.7)</td>
<td>11.5 (5.7)</td>
<td>15.5*</td>
<td>U-16, U-18>II</td>
<td>0.28</td>
</tr>
<tr>
<td>3-pt unsuccessful</td>
<td>17.8 (8.3)</td>
<td>25.6 (8.9)</td>
<td>27.4 (8.0)</td>
<td>10.5*</td>
<td>U-16, U-18>II</td>
<td>0.21</td>
</tr>
<tr>
<td>3-pt percentage</td>
<td>20.5 %</td>
<td>26.9 %</td>
<td>29.6 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT successful</td>
<td>13.7 (9.1)</td>
<td>22.3 (10.8)</td>
<td>24.8 (14.0)</td>
<td>6.84*</td>
<td>U-16, U-18>II</td>
<td>0.148</td>
</tr>
<tr>
<td>FT unsuccessful</td>
<td>13.4 (9.5)</td>
<td>13.4 (8.3)</td>
<td>12.7 (5.8)</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT percentage</td>
<td>50.6 %</td>
<td>62.5 %</td>
<td>66.1 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off. Reb.</td>
<td>22.5 (10.4)</td>
<td>26.6 (17.9)</td>
<td>20.2 (9.9)</td>
<td>1.7</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Def. Reb.</td>
<td>41.6 (16.1)</td>
<td>41.7 (11.2)</td>
<td>41.7 (13.2)</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Assists</td>
<td>15.3 (9.8)</td>
<td>16.8 (6.4)</td>
<td>19.4 (8.2)</td>
<td>1.93</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Fouls</td>
<td>25.5 (6.9)</td>
<td>33.9 (6.7)</td>
<td>36.5 (9.6)</td>
<td>14.00*</td>
<td>U-16, U-18>II</td>
<td>0.26</td>
</tr>
<tr>
<td>Steals</td>
<td>16.5 (8.9)</td>
<td>15.7 (6.3)</td>
<td>15.1 (5.9)</td>
<td>0.33</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Turnovers</td>
<td>32.6 (14.6)</td>
<td>28.7 (10.3)</td>
<td>27.5 (9.3)</td>
<td>1.51</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Blocks</td>
<td>4.8 (4.4)</td>
<td>6.4 (5.2)</td>
<td>4.8 (3.4)</td>
<td>1.12</td>
<td></td>
<td>0.03</td>
</tr>
</tbody>
</table>

* \(p < .05 \)

Table 1. Descriptive game-related statistics normalized to 100 ball possessions and ANOVA between II, U-16 and U-18 competitions.

<table>
<thead>
<tr>
<th>Game-related statistics</th>
<th>II and all AB teams</th>
<th>II and U-16</th>
<th>II and U-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-pt successful</td>
<td>.227</td>
<td>.207</td>
<td>.177</td>
</tr>
<tr>
<td>2-pt unsuccessful</td>
<td>-.384*</td>
<td>-.187</td>
<td>-.429*</td>
</tr>
<tr>
<td>3-pt successful</td>
<td>.456*</td>
<td>.474*</td>
<td>.394*</td>
</tr>
<tr>
<td>3-pt unsuccessful</td>
<td>.390*</td>
<td>.369*</td>
<td>.329*</td>
</tr>
<tr>
<td>Free-throws successful</td>
<td>.319*</td>
<td>.352*</td>
<td>.225</td>
</tr>
<tr>
<td>Free-throws unsuccessful</td>
<td>-.023</td>
<td>-.004</td>
<td>-.025</td>
</tr>
<tr>
<td>Defensive rebounds</td>
<td>.002</td>
<td>.003</td>
<td>.001</td>
</tr>
<tr>
<td>Offensive rebounds</td>
<td>.001</td>
<td>.119</td>
<td>-.062</td>
</tr>
<tr>
<td>Assists</td>
<td>.141</td>
<td>.070</td>
<td>.130</td>
</tr>
<tr>
<td>Steals</td>
<td>-.067</td>
<td>-.045</td>
<td>-.057</td>
</tr>
<tr>
<td>Turnovers</td>
<td>-.151</td>
<td>-.123</td>
<td>-.120</td>
</tr>
<tr>
<td>Blocks</td>
<td>.052</td>
<td>.138</td>
<td>.001</td>
</tr>
<tr>
<td>Fouls</td>
<td>.454*</td>
<td>.499*</td>
<td>.357*</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>1.613</td>
<td>1.558</td>
<td>3.206</td>
</tr>
<tr>
<td>Wilk’s Lambda</td>
<td>.383</td>
<td>.391</td>
<td>.238</td>
</tr>
<tr>
<td>Canonical Correlation</td>
<td>.786</td>
<td>.78</td>
<td>.87</td>
</tr>
<tr>
<td>Chi-squared</td>
<td>71.069</td>
<td>35.7</td>
<td>77.57</td>
</tr>
<tr>
<td>Significance</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Reclassification</td>
<td>95.1%</td>
<td>95.7%</td>
<td>96.8%</td>
</tr>
</tbody>
</table>

* SC discriminant value > \(0.30 \)

Table 2. Discriminant analysis SC from II and AB-teams (U-16 and U-18).

The comparison between II and AB-individual statistics showed that in the three playing positions (guard, forward, center), II-players committed significantly \((p < .05) \) more 2-point unsuccessful and that AB-players scored more 3-point shots. Descriptive game-related statistics per 40 minutes played and significant differences \((p < .05) \) between II and AB-players per playing position and between positions from the same sample (II or AB) are presented in Table 3.

The calculated variability coefficients indicated that mean variability in all variables were higher in II-players in all playing positions (II-guards: 113.7% vs AB-guards: 95.8%; II-forwards: 114.4% vs AB-guards: 100.1% and II-centers: 108.5% vs AB-
es Cliff es Cliff es Cliff

4.1 (3.1) 2.3 (2.8) es Cliff

et al., 2009). It seems that II-players played “in a hurry”, probably

AB-players the same number of actions. However, the lower
defensive pressure, not tiring out the defenders by penetrating
shooting percentages of II-teams and the lack of differences found
AB-teams suggest that the higher game rhythm in II-teams might

be consequence of a poorer shot selection. Also, a lower shooting
efficiency might be explained by a higher defensive pressure.

probably less involved, was also lower in II-teams. This could be
explained by possible limitations of II-athletes to concentrate, to
perform an efficient technique (Gómez et al., 2009), to have good
confidence (Trninic et al., 2002) or by employing less time
training this skill. Number of 3-point shots scored and missed by

II-players (e.g. turnovers, steals, shots
missed, etc…) because the influence of game rhythm but not as
significantly higher in II-teams in this study; probably, if two AB

teams independently, it was detected that differences grew bigger
and variability was reduced when results were compared with U-

centers: 107.8%). However, these differences were not significant
(p > .05). A comparison of number of field shots attempted by II
and AB-players per playing positions is presented in figure 1. II-
guards attempted significantly more two-point shots than
AB-guards (p <.05) and in the three playing positions, AB-
players took more three-point shots.

The aim of the present study was to compare individual and
team game-related statistical indicators of performance between II
and AB-competitions. In line with the established hypothesis and
with conclusions from previous studies (Pérez-Tejero et al., 2015),
results confirmed that II and AB-players presented significant
differences performing basketball during competition, showing that
II and AB-players perform basketball indifferent ways.

Differences in number of possessions indicated that game
rhythm in II-games was higher than in AB-games. The relationship
between game rhythm and success was not significant in other
comparisons between U-16 and U-18 teams independently, it was detected that differences grew bigger
and variability was reduced when results were compared with U-

teams. This result suggests the balance between inside and outside
actions differences II and both U-16 and U-18 teams performing
basketball; II-teams playing closer to the basket. As Trninic et al.
(2002) manifested, systems of play of the successful teams
contain balance between inside and outside play, providing good
opportunities to draw fouls, to carry out 3-point power plays and
to have more chances to get offensive rebounds.

Comparing II-teams’ statistics with both U-16 and U-18
teams independently, it was detected that differences grew bigger

and variability was reduced when results were compared with U-

teams. With regards to previous studies, it seems that performance becomes more compacted (less variability) and
differences between II and AB-teams bigger while the level of
competition increases (Pérez et al., 2015; Pinilla et al., 2015). As
a methodological issue, it is important to take into consideration
that normalizing game-related statistics to 100 ball possessions,
differences refer to how II and AB-teams play each ball
possesion. However, as number of ball possessions was
significantly higher in II-teams in this study; probably, if two AB
II and II-games were compared directly, it might occur that several
variables are higher in II-players (e.g. turnovers, steals, shots
missed, etc…) because the influence of game rhythm but not as
a result of lower efficiency presented in each ball possession.

Individual analysis provided deeper information about how
II and AB-players perform basketball per playing position. In this

Table 3. Descriptive individual game-related statistics related to 40 minutes played and significant differences between II and all
AB-players (both U-16 and U-18) according to player’s position.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Guard (g)</th>
<th>Forward (f)</th>
<th>Center (c)</th>
<th>Intra samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II-players</td>
<td>AB-players</td>
<td>Sig.</td>
<td>ES Cliff</td>
</tr>
<tr>
<td>Minutes</td>
<td>28.7 (9.8)</td>
<td>23.1 (6.8)</td>
<td>ES Cliff</td>
<td>II>AB</td>
</tr>
<tr>
<td>2-pt successful</td>
<td>4.1 (3.1)</td>
<td>2.6 (2.3)</td>
<td>II>AB</td>
<td>0.43</td>
</tr>
<tr>
<td>3-pt successful</td>
<td>3.6 (3.9)</td>
<td>4.5 (3.4)</td>
<td>II>AB</td>
<td>0.34</td>
</tr>
<tr>
<td>2-pt percentage</td>
<td>33.1 %</td>
<td>26.6 %</td>
<td>II>AB</td>
<td>0.5</td>
</tr>
<tr>
<td>3-pt percentage</td>
<td>20%</td>
<td>28.1%</td>
<td>II>AB</td>
<td>0.5</td>
</tr>
<tr>
<td>FT successful</td>
<td>1.2 (1.7)</td>
<td>3.1 (1.4)</td>
<td>II>AB</td>
<td>0.23</td>
</tr>
<tr>
<td>3-pt unsuccessful</td>
<td>3.6 (4.4)</td>
<td>4.1 (3.2)</td>
<td>II>AB</td>
<td>0.19</td>
</tr>
<tr>
<td>FT percentage</td>
<td>50%</td>
<td>72.5%</td>
<td>II>AB</td>
<td>0.27</td>
</tr>
<tr>
<td>Offensive</td>
<td>1.9 (2.4)</td>
<td>4.1 (1.6)</td>
<td>II>AB</td>
<td>0.47</td>
</tr>
<tr>
<td>rebounds</td>
<td>5.1 (4.4)</td>
<td>3.8 (2.9)</td>
<td>II>AB</td>
<td>0.25</td>
</tr>
<tr>
<td>Assists</td>
<td>3.8 (4.5)</td>
<td>3.4 (2.8)</td>
<td>II>AB</td>
<td>0.25</td>
</tr>
<tr>
<td>Fouls</td>
<td>3.6 (3.1)</td>
<td>4.1 (3.0)</td>
<td>II>AB</td>
<td>0.25</td>
</tr>
<tr>
<td>Steals</td>
<td>2.9 (2.9)</td>
<td>2.3 (2.2)</td>
<td>II>AB</td>
<td>0.25</td>
</tr>
<tr>
<td>Turnovers</td>
<td>6.8 (5.3)</td>
<td>4.3 (3.3)</td>
<td>II>AB</td>
<td>0.24</td>
</tr>
<tr>
<td>Blocks</td>
<td>0.4 (1.3)</td>
<td>0.3 (0.7)</td>
<td>II>AB</td>
<td>0.13</td>
</tr>
<tr>
<td>Points</td>
<td>13.1 (8.0)</td>
<td>12.7 (6.6)</td>
<td>II>AB</td>
<td>0.23</td>
</tr>
</tbody>
</table>

* Significant differences (p<0.05)

Javier Pinilla Arbex, Javier Pérez-Tejero y Debbie Van Biesen
point it is important to take into account that individual results refer to 40 minutes played. Also, players were observed in different games; consequently, the same player could present different ranges of performance throughout different games instead of a mean value from all the games. According to this, it was observed that individual performance variability was high in both AB and II-samples and game-related statistics did not follow a normal distribution.

In all playing positions was observed that II-players missed more 2-point shots, they presented lower shooting percentages and AB-players scored more 3-point shots. These results seem to support team’s results. In the sample of AB-players, the closer to the basket the playing position was, the number of two-point shots attempted increased and three-point shots attempted decreased, showing a clear distribution of playing roles (Escalante, Saavedra and García-Hermoso, 2010). However, II-players did not follow the same distribution, especially analyzing two-point shots attempted in guards. These results suggest that II- guards, as responsible of handling and distributing the ball, might not distribute the ball as much as AB-players. Probably, they decided to shoot more times instead of passing the ball to reach better shooting opportunities (Sampaio, Janeira, Ibáñez and Lorenzo, 2006). In addition, the higher number of turnovers presented by II-guards, as responsible to handle the ball, could be consequence of lower skills and difficulties on problem solving capacity, decision-making, anticipation or the lack of a controlled style of play (Garcia et al., 2013; Lorenzo et al., 2010) that usually involves more bad passes and poor dribbling skills (Gómez et al., 2009). Moreover, an excessive use of ball dribbling, normally presented in less effective teams (Gómez et al., 2006), could increase turnovers and steals. In this line, II-centers stole higher number of balls than AB-centers. Although steals represents a measure of defensive pressure (Gómez et al., 2009; Ibáñez et al., 2008); limited offensive skills or tactics could provide the opponents with more opportunities to steal the ball. In addition, a consequence of steals and turnovers could be a high number of fast breaks, increasing the number of ball possessions in II-games and the high number of shots attempted by II-guards with relative high success (Sampaio et al., 2006).

The statistical contrast performed in this study comparing II and AB-team and individual game-related statistics provides innovate insight for better understanding the influence of II on basketball performance as it is needed to develop evidence-based eligibility systems for this sport (Tweedy and Vanlandewijk, 2011).

Conclusions
This study confirmed the game-related statistics from II and AB-players during competition differ significantly in several variables, showing differences in the way II and AB-players perform basketball. II-teams were characterized by playing higher game rhythm, obtaining lower shooting percentages, attempting and scoring less 3-point shots and by making less fouls per ball possession. In addition, individual results showed unbalanced distribution of roles in II-players compared with AB-players. II-guards attempted more shots and made more turnovers than their peers. These results could be consequence of a negative influence of II to carry out activities which are fundamental performing this sport as e.g.: to read the situations, to make decisions or to elaborate team actions. Results from this study provide scientific evidences that contribute to develop eligibility systems in II-basketball and contributes to orientate further research.
ESTADÍSTICAS DE JUEGO EN BALONCESTO QUE DISCRIMINAN ENTRE JUGADORES CON Y SIN DISCAPACIDAD INTELECTUAL

PALABRAS CLAVE: Elegibilidad, para-deporte, clasificación, discapacidad.

RESUMEN: El desarrollo de sistemas de elegibilidad basados en la evidencia en baloncesto para deportistas con discapacidad intelectual (DI) requiere investigar la influencia de la DI en el rendimiento. Debido a ello, el presente estudio tuvo por objetivo comparar las estadísticas de juego en competiciones para personas con DI y sin discapacidad (SD). El Campeonato del Mundo de Baloncesto-DI de 2013 (n=13 partidos y 63 jugadores) y los Campeonatos de España de Baloncesto-SD de 2014 sub-16 (n=10 partidos y 95 jugadores) y sub-18 (n=18 partidos y 175 jugadores) fueron analizados. Las estadísticas de equipo e individuales fueron normalizadas a 100 posesiones de balón y 40 minutos de juego respectivamente. Los test one-way ANOVA y post hoc Tukey fueron utilizados para comparar los equipos con DI y SD. También se realizó un análisis discriminante para identificar qué variables los discriminaban mejor. Los test Kruskal-Wallis y U Mann-Whitney fueron empleados para comparar las estadísticas individuales de los jugadores con DI y SD. Los equipos con DI jugaron más posesiones de balón por partido (p <0.05) y las variables que más discriminaron los equipos con DI y SD fueron: lanzamientos de 2 puntos fallados [SC= −0.384], 3 puntos encestados [SC=−0.456], 3 puntos encestados [SC=−0.456], 3 puntos encestados [SC=−0.456] y tiro [SC=0.454]. En todas las posiciones de juego los jugadores con DI presentaron más fallos de 2 puntos y menor porcentaje de tiro en todo tipo de lanzamientos. Los basquetes con DI intencionaron más lanzamientos de campo y cometieron más pérdidas que sus compañeros, mostrando un desequilibrio entre la distribución de roles comparado con los jugadores SD. Estos resultados confirmaron que los jugadores con DI y SD rinden de manera diferente en baloncesto.

Referencias

Basketball game related statistics that discriminate between players with intellectual impairment and able-bodied players

