Design Considerations in An Active Matched Semiloop Array with Non-Foster Networks

Fernando Albarracin-Vargas, Daniel Segovia-Vargas
Department of Signal Theory and Communications
University Carlos III of Madrid
Av. de la Universidad 30, 28911, Leganes, Madrid, Spain.
falbarracin@tsc.uc3m.es, dani@tsc.uc3m.es

Vicente Gonzalez-Posadas
Department of Audiovisuals and Communications
Polytechnic University of Madrid
Ctra. de Valencia Km 7, 28031, Madrid, Spain.
vgonzalez@pdiac.upm.es

Abstract—Most of the work in phased arrays loaded with non-Foster forms has been made about characteristics that look for avoiding beam squint in radiation along frequency or enhancing the array beam-width or gain at a broad frequency range. This work aims at pointing some considerations about a two elements array loaded with non-foster forms in terms of impedance matching and radiation pattern.

Keywords—small antennas; phased arrays; non-Foster networks; sensitivity

I. INTRODUCTION

Active loaded phased array has been designed by some authors in such a way the objective consist of increasing gain over a broadband, given continuity of current at lower frequencies, or improving the scan element pattern (SEP) using passive and active reactive elements, well connected between the array elements (coupling configuration) well connected at each element input port (matching configuration) [1]. Those reactive elements would be lumped inductors or capacitors in the passive case, and negative engineered capacitors or inductors realized by means of the negative impedance converters (NIC) for the active ones. A NIC is a two port network where one port presents a negated version of the impedance loading the other port, so elements that do not obey the Foster’s reactance theory [2] can be implemented.

Among other work in phased arrays loaded with active elements, it is possible to find the inclusion of negative group delay networks (NGD) in the feeding of a linear array [3] or a parasitic element loaded with a NIC [4]. Both cases take advantage of the property of increasing phase-response (i.e. another non-Foster behavior) of the NGDs and NGD with frequency, looking for a broadband squint-free and steerable pattern. On the other hand, when the intended frequency band is such as the electrical size of the elements in the array is around 0.1λ, the designer have to deal with an additional constraint: high reactance value and a strongly frequency dependent resistance presented by electrically small antennas (ESA), related with the well-known high quality factor Q in this structures [5], that implies hard working in broadband impedance matching [6].

II. ACTIVE IMPEDANCE MATCHING DESIGN

A. Two-element array loaded with a non-Foster network

In this work, a two-element linear array composed of two semiloops, as it is shown in Fig. 1, connected through a non-Foster matching network (MN) in a coupling configuration, is presented as a comparative design between two cases: an ideal non-Foster MN (a series negative inductor, \(L < 0 \)) and a MOSFET based NIC acting as the realized active MN. A FR4 slab, with \(\varepsilon_r = 4.3 \) and 1.5 mm in thickness, contains the co-planar array elements. The design aims at matching the array at the lower part of the VHF band (under 150 MHz). The natural frequency for the array, \((2\pi R = \lambda_0) \) is 1200 MHz, where the typical double lobe (i.e. along the +z and −z axis) is observed for a \(\lambda_0/2 \) separation between elements.

Fig. 1. Sketch of the two elements array. All dimensions in mm: \(R = 40, g_1 = 80, g_2 = 260 \).

A multiport antenna approach is used to deduce the analytical impedance, \(Z_{MN}^{an} \), that have to be implemented well with an ideal non-Foster MN well with a transistorized circuit for broadband impedance matching. As a previous work in [7], the authors found the most suitable location for an active MN in a single semiloop. Such location is the opposite side from the input port. Due to the symmetry of the two-element array here (see Fig. 1), it is possible to deduce the analytical \(Z_{MN}^{an} \) by using a S-parameter matrix of a two-port structure extracted from any fullwave simulator (port 1 and port MN); the other port of the array is terminated with the system impedance: 50 Ω. Then, we can do some calculus with the input reflection coefficient, \(\Gamma_N \) given by (1).

\[
\Gamma_N = S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_{MN}}{1 - S_{22} \cdot \Gamma_{MN}} = 0 \tag{1}
\]
Once (1) is set to zero, the optimum reflection coefficient that the active MN must provide, Γ_{MN}^{opt}, can be extracted as (2) and the associated non-Foster impedance, Z_{MN}^{opt} needed to match the antenna at port 1 and 2 can be expressed as (3).

$$\Gamma_{MN}^{opt} = \frac{S_{11}}{S_{22} \cdot S_{11} - S_{12} \cdot S_{21}}$$

$$Z_{MN}^{opt} = Z_0 \left(\frac{S_{22} \cdot S_{11} - S_{12} \cdot S_{21} + S_{11}}{S_{22} \cdot S_{11} - S_{12} \cdot S_{21} - S_{11}} \right)$$

B. Sensitivity analysis over the array structure:

When this impedance: Z_{MN}^{opt} is placed between the semiloops, the reflection coefficient at port 1 and 2, Γ_{IN}, is ideally equal to 0 in the design band. Here it is possible to use the sensitivity parameter S_{ens}, introduced by the authors in [7] and derived from (4) and (5) in order to understand how the changes in the MN impedance, affects the input impedance in the array ports.

$$\Delta \Gamma_{IN} = \frac{\partial \Gamma_{IN}}{\partial \Gamma_{NIC}} \Delta \Gamma_{NIC} = Sens \cdot \Delta \Gamma_{NIC}$$

$$Sens = \left(\frac{(S_{11} \cdot S_{22} - S_{12} \cdot S_{21})^2}{S_{21} \cdot S_{12}} \right)$$

Figure 2 shows the parameter S_{ens} with frequency for the proposed two-element array compared to the single two-port semiloop. Values near 10 dB or lower can be treated as low sensitivity. S_{ens} parameter enlarges in the lower VHF band, but still remains under reasonable values for broadband impedance matching.

III. RADIATION PERFORMANCE

In terms of radiation performance, it was found an omnidirectional response in the horizontal plane, in the lower VHF band (100 MHz) for the NIC loading the array, as can be seen in Fig. 4(a). In 1200 MHz (see Fig. 4(b)) the obtained pattern remains basically unchanged, compared with the unloaded array when two in-phase signals are applied at the input of each element. For the series negative inductor case, the radiation response in both frequencies is not reported here, being almost the same as the one with a transistorized MN.

As a conclusion it is possible to state an important advantage in loading symmetric structures with active MN. Two-element semiloop array appears to be a suitable choice for broadband impedance matching. However, the broadband characteristic is constrained by the NIC maximum frequency. At the time of the conference, the authors hope to have measured results.

REFERENCES

