A ROADMAP FOR VIRTUAL TESTING AND VIRTUAL PROCESSING OF CAST METALLIC MATERIALS

Javier LLorca
IMDEA Materials Institute & Polytechnic University of Madrid
SUMMARY

1. MOTIVATION
 - Integrated Computational Materials Engineering
 - Virtual design of cast metallic components

2. Virtual processing of Ni-based superalloys

3. Virtual testing of Ni-based superalloys

4. Conclusions
Virtual design, virtual processing and virtual testing of new materials *in silico*, before they are actually manufactured in the laboratory.

Benefits
- Accelerate materials development (reduce time to market).
- Integrate materials into the design optimization process.
- Unify design and manufacturing.

Strategy
- Integration of all available modeling tools into a multiscale strategy capable of simulating processing, structure, properties and performance of engineering materials.

What is the worst scenario for ICME?

cast Al alloys (J. E. Allison, JOM, 2006)

Mechanical properties of cast metals (stiffness, strength, toughness, fatigue limit) depend on phenomena and structures that span over 9 orders of magnitude!
Virtual design of cast metallic components

VIRTUAL DESIGN

VIRTUAL PROCESSING

CFD
- Temperature distribution
- Porosity & defects
- Residual stresses

Phases
- Driving force
- Gibbs energy

Computational thermodynamics
- Heat Capacity
- Enthalpy, Crystal structure

Computational kinetics
- Mobilities, Interfacial energy, Growth rate
- Atomic/interface mobility
- Lattice information
- Elastic constants

MD/MC
- MD/KMC

ab initio

VIRTUAL TESTING

Continuum Mechanics
- Macroscopic deformation and failure
- Polycrystal deformation
- Texture evolution

Polycrystal homogenization
- Microstructure

Single crystal plasticity model
- Single crystal deformation
- Dislocation

DD

European Research Council
Established by the European Commission
Supporting top researchers from anywhere in the world
VIRTUAL CASTING OF ENGINEERING ALLOYS

Component design

Component & wrapping

Porosity
Grain size

Mold filling & solidification simulation

Geometry

Solidification

Validation

Thermal

Casting experiments

computational thermodynamics
MAR 247 is a polycrystalline Ni-based superalloy with outstanding mechanical properties at high temperature due to the W, Hf and Ta content, which is widely used in nozzle guide vanes, blades and disks in gas turbines.

Chemical composition

<table>
<thead>
<tr>
<th>Element</th>
<th>Ni</th>
<th>W</th>
<th>Cr</th>
<th>Mo</th>
<th>Co</th>
<th>Al</th>
<th>Ti</th>
<th>C</th>
<th>Hf</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (%)</td>
<td>balance</td>
<td>10</td>
<td>8.4</td>
<td>0.7</td>
<td>10</td>
<td>5.5</td>
<td>1.05</td>
<td>0.15</td>
<td>1.4</td>
<td>3.1</td>
</tr>
</tbody>
</table>

COMPONENT

Nozzle guide vane for a gas turbine with complex shape and thinner wall sections to be manufactured by investment casting designed by ITP.

Accurate prediction of the temperature profile in the cast during solidification is critical. This is a very difficult task because of the different heat transfer mechanisms (radiation, conduction, convection) and the different materials involved (metal, mould shell and insulation wrap), together with the corresponding interfaces.
Finite element model of the NGV, mould and wrapping.
The thermal properties of the different materials and interfaces were fitted from the experimental temperatures measured in the casting experiments.
Shrinkage porosity and microporosity were computed by taking into account the progress of solid, mushy and liquid regions in the cast during solidification.
Grain size and shape was determined by means of a Cellular Automata model that assumed grain nucleation on the mould surface.

The nucleation rate was given by

\[\frac{dn}{d(\Delta T)} = \frac{n_{\text{max}}}{\sigma_{\Delta T} \cdot \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{\Delta T - \Delta T_m}{\sigma_{\Delta T}} \right)^2 \right] \]

where \(\Delta T \) was the local undercooling and \(n_{\text{max}}, \Delta T_m \) and \(\sigma_{\Delta T} \) are the model parameters.

Grain orientation was random and grain growth was given by

\[v(\Delta T) = a\Delta T^2 + b\Delta T^3 \]
GRAIN SIZE in a GUIDE VANE

<table>
<thead>
<tr>
<th></th>
<th>Leading edge</th>
<th>Middlepart</th>
<th>Trailing edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain size (µm)</td>
<td>1560 Exp.</td>
<td>785 Exp.</td>
<td>281 Exp.</td>
</tr>
<tr>
<td></td>
<td>1345 Model</td>
<td>869 Model</td>
<td>397 Model</td>
</tr>
<tr>
<td>Std. deviation</td>
<td>813</td>
<td>451</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>508</td>
<td>361</td>
<td>138</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>2.2</td>
<td>2.5</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>3.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Virtual testing of polycrystalline materials can now be achieved by means of computational homogenization.

Key ingredients

Microstructural features: Grain size, shape and orientation distributions easily obtained by means of 2D and 3D characterization techniques (including serial sectioning, X-ray μtomography, 3D EBSD, X-ray diffraction, etc.)

Single crystal behavior: CRSS for each slip system and twinning (including latent and forest hardening) provided by
- Multiscale modelling
- Mechanical tests of single crystals
- Inverse problem: back up single crystal behavior from tests on polycrystals
 - Homogenization of polycrystals
 - Nanoindentation

Fig. 6. FE response to 10% strain. (a) Unirradiated, (b) \(r = 3.61 \cdot 10^{21} \text{m} \). Fig. 7. Mesh refinement results. \(h \) is the relative element size.
polycrystalline IN718

single crystal properties (T, strain rate) from micropillar tests

Macroscopic mechanical properties (strength, fatigue, creep)

Inconel 718 is a polycrystalline Ni-based superalloy used in cast or wrought form for high temperature structural applications up to 650-700°C. The most widely used Ni-based superalloy due to its good castability and weldability, high mechanical properties and corrosion resistance and low cost.

<table>
<thead>
<tr>
<th>Element</th>
<th>Ni</th>
<th>Fe</th>
<th>Cr</th>
<th>Mo</th>
<th>Nb</th>
<th>Al</th>
<th>Ti</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (%)</td>
<td>balance</td>
<td>18.5</td>
<td>19.0</td>
<td>3.0</td>
<td>5.1</td>
<td>0.5</td>
<td>0.9</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Single crystal properties as a function of orientation, temperature and strain rate were obtained by means of micropillar compression tests.
Micropillar compression tests show limited experimental scatter. Partial unloadings were due to dislocation bursts.
No size effects on the initial CRSS nor in the strain hardening were observed for micropillars with D > 3 \(\mu m \).

This is very likely due to the fact that the strength is controlled by the small spacing between \(\gamma' \) and \(\gamma'' \) precipitates.
The CRSS were obtained by fitting the micropillar compression tests with numerical simulations carried out using a crystal plasticity finite element model.

A crystal plasticity model was implemented as a UMAT in Abaqus/Standard.

Multiplicative decomposition $F = F^e F^p$; velocity gradient $L = L^e + F^e L^p F^{e-1}$

Plastic deformation in a FCC crystal is accommodated by $N (=12)$ slips systems corresponding to the $\{111\}\langle110\rangle$ family:

$$L^p = \sum_{\alpha=1}^{N} \dot{\gamma}^\alpha (s^\alpha \otimes m^\alpha)$$

The Green-Lagrange elastic strain is expressed as

$$E^e = \frac{1}{2} \left(F^{eT} F^e - I\right)$$

and the second Piola-Kirchhoff stress tensor is given by

$$S = CE^e = C \left[\frac{1}{2} \left(F^{eT} F^e - I\right)\right]$$

where C stands for the fourth-rank elastic stiffness tensor of the crystal.
The single crystal behaves as an elasto-viscoplastic solid:

- Shear strain rate in system α:
 \[\dot{\gamma}^\alpha = \dot{\gamma}_0 \left| \frac{\tau^\alpha}{\tau_c^\alpha} \right|^{1/m} \text{sgn}(\tau^\alpha) \]

- Resolved shear stress in system α:
 \[\tau^\alpha = C \left[\frac{1}{2} \left(F e^T F e - I \right) \right] : (s^\alpha \otimes m^\alpha) \]
 \[\tau^\alpha = S : (s^\alpha \otimes m^\alpha) \]

- Critical resolved shear stress in system α:
 \[\tau_c^\alpha = \sum_{\beta} q_{\alpha\beta} h |\dot{\gamma}| \]

- Hardening modulus h is given by the Voce Model:
 \[h(\gamma) = h_s + \left(h_0 - h_s + \frac{h_0 h_s \gamma}{\tau_s - \tau_0} \right) \exp \frac{-\gamma h_0}{\tau_s - \tau_0} \]
 \[\gamma = \int_0^t \sum_\alpha |\dot{\gamma}^\alpha| \, dt \]

The mechanical behavior of the single crystal is given by:

- C: $C_{11} = 260$ GPa; $C_{12} = 179$ GPa; $C_{44} = 110$ GPa for IN718
- τ_0, τ_s, h_0, h_s, $q_{\alpha\beta}$ and the strain rate sensitivity m are obtained from micropillar compression tests.
Strain rate sensitivity \(m = 0.017 \)

Limited strain rate sensitivity of IN718 at ambient temperature.
Micropillar compression tests were simulated using the crystal plasticity model. The model includes the curvature at the fillet and the tapper angle ($\approx 1.5^\circ$). The flat punch was modelled as rigid body with a lateral stiffness of 10 μN/nm. Coulomb friction ($\mu = 0.1$) between flat punch and micropillar. Discretization with 8-noded liner brick elements (C3D8).
PARAMETER IDENTIFICATION CRYSTAL PLASTICITY MODEL

<table>
<thead>
<tr>
<th>τ_0 (MPa)</th>
<th>τ_s (MPa)</th>
<th>h_0 (GPa)</th>
<th>h_s (GPa)</th>
<th>$q_{\alpha\beta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>466</td>
<td>599</td>
<td>6</td>
<td>0.3</td>
<td>1</td>
</tr>
</tbody>
</table>

Effect of strain rate (single slip $<$123$>$ and $<$235$>$)

(a) Experiment Simulation

(b) Experiment Simulation

CRSS (MPa) vs. Plastic strain

- 10^{-3} s$^{-1}$
- 10^{-4} s$^{-1}$

CRSS (MPa) vs. Plastic strain for 5 µm
Effect of double slip: coplanar $<414>$ and non coplanar $<012>$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experiment</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<414>$</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>$<012>$</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>$<414>$</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>$<012>$</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>$<110>$</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>$<110>$</td>
<td>0.43</td>
<td>0.43</td>
</tr>
</tbody>
</table>
VALIDATION OF CRYSTAL PLASTICITY MODEL

Multiple slip condition <001>

![Graph showing compressive stress vs. plastic strain for experiment and simulation](image)

- **Compressive stress (MPa)**
- **Plastic strain**
- **Experiment**
- **Simulation**

![SEM image showing crystal structure](image)

Scale bar: 2 µm
VALIDATION OF CRYSTAL PLASTICITY MODEL

Deformed micropillar along <212>
The mechanical behavior of the polycrystal is computed by means of the finite element simulation of the mechanical behavior of a representative volume element of the microstructure with periodic boundary conditions.

Representative Volume Element

2D grain size distribution obtained from micrographs is transformed into 3D using strip-star (Basel University).

RVE is obtained by the Laguerre tessellation of an initial set of points obtained from a Monte Carlo algorithm to provide the actual grain size distribution 3D.

The orientation of the grains within the RVE was random.

![Graph showing grain size distribution](image)

- **average grain size**: 90 ± 52 µm
Discretization was carried out 10-noded quadratic tetrahedral elements (C3D10).

Sensitivity analysis: number of grains in RVE and number of elements per grain

210 grains
610 finite element per grain

The displacement of opposite pairs of nodes on the RVE surfaces $x_B - x_A = L_{AB}$ is given by $u_B - u_A = (F - I) L_{AB}$ where $L_{AB} = (L, 0, 0), (0, L, 0)$ or $(0, 0, L)$
Uniaxial compression of polycrystalline IN718 at 25°C and 5.0×10^{-4} s$^{-1}$

Good agreement between experiments and simulations: validation of the strategy.

Opens the way for further developments: high temperature, fatigue, creep, etc…
Virtual design, virtual processing and virtual testing of engineering alloys is becoming feasible by means of multiscale, bottom-up approaches.

Current available approaches still have to rely in phenomenological models (cellular automata model of grain nucleation and growth) and experiments (micropillar compression) provide accurate predictions for engineering alloys components. That will be gradually replaced by rigorous models based on ab initio and atomistic simulations as well as by more sophisticated coupling between simulations tools (phase field - computational thermodynamics - computational kinetics).

ACKNOWLEDGEMENTS

Dr. J. Segurado, IMDEA Materials Institute & Polytechnic University of Madrid
Dr. J. M. Molina-Aldareguía, IMDEA Materials Institute
Dr. I. Sabirov, IMDEA Materials Institute
Dr. M. Rahimian, Dr. A. Cruzado & Dr. B. Gan, IMDEA Materials Institute
Mr. M. Jiménez, IMDEA Materials Institute
ACKNOWLEDGEMENTS

MICROMECH project (Microstructure-based Material Mechanical Models for Superalloys), EU 7th FP, Clean Sky JTI, grant agreement nº 62007

VANCAST project (Next Generation Nozzle Guide Vanes), EU 7th FP, ERA-NET Matera+.

VIRMETAL project (Virtual Design, Virtual Processing and Virtual Testing of Metallic Materials), ERC Advanced Grant, EU H2020 programme, grant agreement nº 669141