IX Simposio Internacional de Actualizaciones en Entrenamiento de la Fuerza, Madrid 16-17 de Diciembre 2016

IX SIMPOSIO INTERNACIONAL DE ACTUALIZACIONES EN ENTRENAMIENTO DE LA FUERZA

IX International Symposium in Strength Training

Editores/Editors: Pedro J. Benito, Ana B. Peinado, Rocío Cupeiro & Francisco J. Calderón

UNIVERSIDAD POLITÉCNICA DE MADRID
Facultad de Ciencias de la Actividad Física y del Deporte-INEF
Departamento de Salud y Rendimiento Humano

NSCA-Spain
Diciembre 2016,
Todos los derechos reservados.

©Universidad Politécnica de Madrid
Pedro J. Benito,
Ana B. Peinado,
Rocío Cupeiro,
Francisco J. Calderón
http://www.congresodefuerza.com/

ISBN: 978-84-617-6562-1

Depósito Legal: M-40063-2016

Impreso en España – Printed in Spain
Printa Tecnology S. L.
28040 Madrid
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRÓLOGO</td>
<td>5</td>
</tr>
<tr>
<td>PREFACE</td>
<td>9</td>
</tr>
<tr>
<td>1. Presentación del Simposio</td>
<td>13</td>
</tr>
<tr>
<td>1. Symposium Presentation</td>
<td>15</td>
</tr>
<tr>
<td>2. Dirección, Comité Científico y Organización</td>
<td>17</td>
</tr>
<tr>
<td>2. Direction, Scientific Committee and Organizing Committee</td>
<td>19</td>
</tr>
<tr>
<td>3. Programa científico/Scientific Program</td>
<td>21</td>
</tr>
<tr>
<td>4. Programa ampliado/Extended Program</td>
<td>27</td>
</tr>
<tr>
<td>4.1. Ponentes internacionales/International Speakers</td>
<td>31</td>
</tr>
<tr>
<td>4.2. Ponentes nacionales/National Speakers</td>
<td>45</td>
</tr>
<tr>
<td>4.3. Comunicaciones orales/Oral Presentations</td>
<td>63</td>
</tr>
<tr>
<td>4.4. Pósteres/Posters</td>
<td>97</td>
</tr>
<tr>
<td>NOTAS/NOTES</td>
<td>167</td>
</tr>
<tr>
<td>ORGANIZADORES/ORGANIZERS</td>
<td>195</td>
</tr>
<tr>
<td>PATROCINADORES/SPONSORS</td>
<td>197</td>
</tr>
<tr>
<td>COLABORADORES/CONTRIBUTORS</td>
<td>199</td>
</tr>
</tbody>
</table>
9. Determining physiological and performance variables during a time trial in a first category mountain pass

LFE Research Group, Department of Health and Human Performance. Faculty of Physical Activity and Sport Science-INEF. Technical University of Madrid

Background: Physiology and performance of uphill time-trials (TT) in professional road cycling have been previously described (Lucia A et al., 2004; Padilla S, Mujika I, Orbañanos J, & Angulo F, 2000; Padilla S, Mujika I, Santisteban J, Impellizzeri FM, & Goiriena JJ, 2008). Recent field-based uphill trials focused on power output due to its reliability and accuracy to assess aerobic and anaerobic performance (Bossi AH, Lima P, Perrout de Lima J, & Hopker J, 2016; Vogt et al., 2008; Vogt et al., 2007). However few studies have attempted to correlate the different physiological and performances variables in field conditions.

Objective: To assess the relationships among power output, velocity, cadence and oxygen uptake (VO₂) during an uphill time-trial frequently used in cycling competitions.

Methods: Fourteen elite road cyclists (mean±SD: 25±6 years, 174±4.2 cm, 64.4±6.1 kg) completed a field-based uphill TT in a 9.2 km first category mountain pass with a 7.1% slope. Oxygen uptake, power output, velocity and cadence were measured throughout the test.

Results: During the TT mean power output and velocity were: 302±7 W (4.2±0.1 W·kg⁻¹) and 18.7±1.6 km/h, respectively. Mean VO₂ was: 3941±110 ml·min⁻¹ (61.6±2.0 ml·kg⁻¹·min⁻¹). Mean power output, both absolute and relative to body mass, were strongly correlated with mean velocity (r= 0.82, for both correlations) and maximum velocity (r=0.77 and r=0.75, respectively). Strong associations were also observed between
peak power output and both mean and maximum velocity ($r=0.78$ and $r=0.80$, respectively). Regarding cadence, a moderate correlation was appreciated with mean power output relative to body mass ($r =0.50$), whilst non significant associations were found with velocity. Finally, a moderate correlation between oxygen uptake ($\text{ml} \cdot \text{min}^{-1} \cdot \text{kg}^{-1}$) and power output relative to body mass was observed ($r=0.42$), ($p < 0.001$ for all correlations)

Conclusion: During an uphill TT, velocity rises as a consequence of increasing power output whilst cadence and oxygen uptake do not seem as decisive in order to achieve a competitive advantage.

Practical Application: This data may provide coaches and cyclists, both elite and non professional, with information to adjust training prescription accordingly, allowing them to compare their performance to an elite model.

IX Simposio Internacional de Actualizaciones en Entrenamiento de la Fuerza, Madrid 16-17 de Diciembre 2016

Corresponding author:
Nuria Romero-Parra
Facultad de Ciencias de la Actividad Física y del Deporte–INEF
Universidad Politécnica de Madrid C/ Martín Fierro nº7.
28040 Madrid - España.
913364070
romero.nuria2010@gmail.com
617150826