Accurate numerical orbit propagation of planetary close encounters

Amato, Davide; Baù, Giulo y Bombardelli, Claudio (2017). Accurate numerical orbit propagation of planetary close encounters. "Monthly Notices of the Royal Astronomical Society", v. 470 (n. 2); pp. 2077-2099. ISSN 0035-8711.


Título: Accurate numerical orbit propagation of planetary close encounters
  • Amato, Davide
  • Baù, Giulo
  • Bombardelli, Claudio
Tipo de Documento: Artículo
Título de Revista/Publicación: Monthly Notices of the Royal Astronomical Society
Fecha: 11 Septiembre 2017
Volumen: 470
Palabras Clave Informales: Numerical methods, celestial mechanics, minor planets, asteroids: general
Escuela: E.T.S. de Ingeniería Aeronáutica y del Espacio (UPM)
Departamento: Física Aplicada a las Ingenierías Aeronáutica y Naval
Grupo Investigación UPM: Grupo de Dinámica Espacial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa


We present an efficient strategy for the numerical propagation of small Solar System objects undergoing close encounters with massive bodies. The trajectory is split in several phases, each of them being the solution of a perturbed two-body problem. Formulations regularized with respect to different primaries are employed in two subsequent phases. In particular, we consider the Kustaanheimo-Stiefel regularization and a novel set of non-singular orbital elements pertaining to the Dromo family. In order to test the proposed strategy, we perform ensemble propagations in the Earth-Sun CR3BP using a variable step-size and order multi-step integrator and an improved version of Everhart's RADAU solver of 15th order. By combining the trajectory splitting with regularized equations of motion in short-term propagations (one year), we gain up to six orders of magnitude in accuracy with respect to the classical Cowell's method for the same computational cost. Moreover, in the propagation of asteroid (99942) Apophis through its 2029 Earth encounter, the position error stays within 100 meters after 100 years. In general, as to improve the performance of regularized formulations, the trajectory must be split between 1.2 and 3 Hill radii from the Earth. We also devise a robust iterative algorithm to stop the integration of regularized equations of motion at a prescribed physical time. The results rigorously hold in the CR3BP, and similar considerations may apply when considering more complex models. The methods and algorithms are implemented in the NAPLES Fortran 2003 code, which is available online as a GitHub repository.

Proyectos asociados

FP7317185PEOPLE-2012-ITNSin especificarStardust Marie Curie Initial Training Network

Más información

ID de Registro: 47096
Identificador DC:
Identificador OAI:
Identificador DOI: 10.1093/mnras/stx1254
URL Oficial:
Depositado por: Memoria Investigacion
Depositado el: 15 Ene 2018 11:42
Ultima Modificación: 15 Ene 2018 11:42
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM