Escuela Técnica Superior de Ingeniería de Sistemas Informáticos

Titulación: Grado en Ingeniería de Computadores

Curso académico: 2016-2017

Título: Posicionamiento de vehículos inteligentes mediante la integración de GPS con sistemas inerciales (Análisis y diseño del sistema)

Autor: Sergio Gutiérrez Gutiérrez
Escuela Técnica Superior de Ingeniería de Sistemas Informáticos

Titulación: Grado en Ingeniería de Computadores

Curso académico: 2016-2017

Título: Posicionamiento de vehículos inteligentes mediante la integración de GPS con sistemas inerciales (Análisis y diseño del sistema)

Autor: Sergio Gutiérrez Gutiérrez

Tutor: José Eugenio Naranjo
ÍNDICE

ABSTRACT ... 1
INTRODUCCIÓN Y OBJETIVOS 2
PUNTO DE PARTIDA 4
CONTENIDO DEL TRABAJO 7

BLOQUE I: ESTADO DE LA TÉCNICA
1. Fundamentos básicos 8
 1.1. Coordenadas geográficas 8
 1.1.1. Meridianos
 1.1.2. Paralelos
 1.1.3. Longitud
 1.1.4. Latitud
 1.2. Proyección cartográfica 11
 1.2.1. Proyección Mercator
 1.2.2. Proyección UTM
 1.2.2.1. Coordenadas UTM
 1.2.2.2. Husos y zonas UTM
 1.2.2.3. Geometría de los husos
 1.3. Esfericidad de la tierra 16
 1.3.1. Geoide
 1.3.2. Elipsoide
 1.3.3. Datum
 1.3.3.1. WGS84
2. Equipamiento del vehículo 18
 2.1. Receptor GPS Ashtech G12 18
 2.2. Sensor de velocidad L-CE Correvit 19
 2.3. Plataforma giroscópica RMS FES 33 20
 2.4. Tarjeta de adquisición DAQCard 22
 2.5. Tarjeta de adquisición Advantech 22
3. Filtro de Kalman 24
 3.1. Filtro discreto de Kalman 24
 3.2. Modelo de sistema 25
 3.3. Algoritmo 25
 3.4. Parámetros y sintonización 27
 3.5. Integración de sensores 27
ÍNDICE

BLOQUE II: SISTEMAS DE POSICIONAMIENTO

4. Modelo matemático
 4.1. Orientación inicial del vehículo 28
 4.2. Distancia recorrida ... 30
 4.3. Cálculo de posición del vehículo 30
 4.4. Integrándolo todo ... 30
 4.5. Diagrama de flujo .. 31

5. Filtro de Kalman
 5.1. Sensor de velocidad y giróscopo 32
 5.2. Implementación del filtro de Kalman 33
 5.2.1. Etapa de predicción .. 33
 5.2.2. Etapa de corrección .. 33

BLOQUE III: ANÁLISIS DE RESULTADOS

6. Gps vs matemático
 6.1. Inicialización de la trayectoria 39
 6.2. Análisis de los segmentos .. 40
 6.2.1. Segmento de ruta entre punto 700 y 1200
 6.2.2. Segmento de ruta entre punto 1350 y 1600
 6.2.3. Segmento de ruta entre punto 3800 y 4000
 6.2.4. Segmento de ruta entre punto 4800 y 5800
 6.3. Análisis de resultados ... 50

7. Gps vs Filtro de Kalman
 7.1. Vista general ... 51
 7.2. Inicialización de la trayectoria 51
 7.3. Sintonización del parámetro R 52
 7.3.1. Opción A .. 52
 7.3.2. Opción B .. 52
 7.3.3. Elección final ... 52
 7.4. Análisis de los tramos .. 59
 7.4.1. Tramo I .. 59
 7.4.2. Tramo II .. 59
 7.4.3. Tramo III ... 59
 7.4.4. Tramo IV .. 59
 7.4.5. Tramo V .. 59

CONCLUSIONES ... 69
REFERENCIAS BIBLIOGRÁFICAS ... 70
Nowadays, the GPS system is very common in all areas. It is also incorporated in some recent models of cars and smartphones too. The use of this device is growing rapidly because it has a great number of applications especially in navigation. The GPS technology is available worldwide 24 hours per day. It permits to locate the position of an automobile regardless of the time of use or weather conditions except if the GPS navigator suffers interferences which do not allow to receive the signal from satellites. As a consequence, this is a very accurate method to locate a car and, at the same time, it permits to improve the experience of driving.

The space environment has between twenty-four and twenty-seven satellites which are located 20,000 kilometres away from Earth. A GPS navigator only needs the signal from four satellites to calculate its location with an error of less than twenty metres. It is possible to reduce this error to less than two centimetres if the signal is provided by five or more satellites.

The main drawback is that GPS accuracy is not uniform depending on the place. There are factors which can reflect or block the signal, such as buildings, trees or tunnels. If this loss of signal stayed for a long period of time, navigation could turn out to be an impossible mission.

An INS system can also locate the position of an automobile from a set of sensors which measure velocity and angular variations. This is an accurate system which is independent of external signals. However, the process depends on a correct initialization and the measurement corrupts with time.

When they calculate positions independently, both systems have advantages and disadvantages, however it is possible to improve the resultant position when they are used together.

In this thesis a data fusion method called Kalman Filter is the principal tool to improve GPS positioning. This method permits to incorporate the information received from both systems at the same time. The system itself could also decide the influence of each system to calculate the best result depending on the external situation.

The results show that the Kalman Filter improves the navigation in good conditions, and it is also able to reduce bias when the GPS system is out of signal and permits to continue navigation with a smaller associated error.
Actualmente, los ‘sistemas de posicionamiento global’, GPS como herramienta de orientación es utilizada de manera masiva en la conducción de cualquier vehículo y en particular en el ámbito de los automóviles. Estos sistemas sean cual fuere el fabricante, permiten calcular en tiempo real y con gran precisión, la posición del vehículo en la cartografía digital correspondiente durante el recorrido que se está realizando y además, mantiene su fiabilidad y exactitud a lo largo del tiempo, independientemente de la duración del viaje, condiciones climatológicas y en cualquier parte del mundo salvo que, el navegador se vea afectado por interferencias que impidan una buena recepción de la señal que llega de los satélites.

El segmento espacial está formado por una constelación de 24 a 27 satélites orbitando a 20.000 Km de distancia y si el receptor GPS incorporado en el automóvil es capaz de captar la señal de cuatro satélites, entonces podrá calcular su posición en el espacio tridimensional (X, Y, Z) y el tiempo UTC (Tiempo Universal Coordinado) con un error que no supera los 20 metros.

La información que recibe el navegador de usuario es vulnerable debido a la potencia relativamente baja de la señal recibida, y cualquier interferencia de índole electromagnética (radiofrecuencias de antenas, equipos electrónicos de usuario) o física (árboledas, edificios metálicos o altos, túneles), podría dar lugar a la pérdida del posicionamiento correcto del vehículo, agravándose la situación si la perdida de señal se prolonga durante algunos segundos como suele ser habitual en el recorrido a través de un túnel.

Llegados al punto anterior, se podría mantener la precisión del posicionamiento del vehículo si se integran o complementan las medidas del GPS con un ‘sistema de navegación inercial’ (INS).

Un sistema de navegación inercial está formado por un conjunto de sensores que miden aceleraciones y velocidades angulares. Complementando estas medidas con algún sensor adicional, se podría calcular la posición del vehículo en un instante de tiempo t a partir de su posición inicial. Este sistema de navegación, solo depende de las lecturas de los diferentes sensores y por tanto es independiente de señales externas, teniendo como inconveniente su dependencia extrema de una correcta inicialización de la posición del automóvil, ya que un pequeño error en esta posición inicial, daría lugar a una trayectoria incorrecta debido a la acumulación de error producido en el cálculo de cada posición. Otro importante problema de estos sistemas, es que la medida obtenida en cada instante de tiempo t va acumulando una deriva por lo que se degrada con el tiempo.

Como se desprende de la descripción anterior del sistema GPS y del INS, ambos tienen sus ventajas e inconvenientes al ser utilizados para el posicionamiento del vehículo de manera independiente, pero utilizados de manera conjunta llegan a complementarse mejorando la posición resultante.

En un recorrido arbitrario de un automóvil podrían darse diferentes situaciones de cobertura GPS. Por un lado, en zonas despejadas como autopistas, la cobertura de
satélites será muy buena. En zonas menos despejadas, como ciudades en calles con altos edificios, podríamos llegar a tener cortes puntuales de pequeña duración de la señal, y por último nos encontraríamos en zonas ciegas como por ejemplo túneles, donde la señal GPS se pierde durante un lapso importante de tiempo.

En este trabajo y para la integración de ambos sistemas se utiliza un filtro de Kalman donde el peso que aporta el sistema GPS frente al INS, va en función del número de satélites disponibles; así para una muy buena cobertura de la señal GPS (6 satélites o más), la salida del filtro de Kalman tiene muy en cuenta la señal del GPS aunque no en solitario puesto que aún con muy buena cobertura, el sistema GPS puede incorporar errores puntuales y por esto es complementada con un porcentaje pequeño de la señal proveniente del INS.

En zonas donde la señal GPS llega al dispositivo de usuario montado en el vehículo, pero con un número de satélites intermedios, el filtro de Kalman pondera ambas señales incrementando el peso del INS, mientras que en zonas de muy baja cobertura GPS o nula (2 o menos satélites), el filtro de Kalman da protagonismo en exclusiva a la señal con origen en el INS.

Expuesto lo anterior, los objetivos de este trabajo serán:

1. Desarrollo matemático necesario para el cálculo de la ruta seguida por el automóvil a partir de las lecturas suministradas por el INS en solitario, enfrentando estas rutas a las proporcionadas por el GPS para determinar hasta qué punto son fiables y hasta dónde la deriva intrínseca asociada al INS permite que el posicionamiento calculado sea correcto. En este punto también veremos la importancia que tiene una correcta inicialización de la posición del vehículo.

2. Desarrollar la integración del modelo matemático del punto anterior, obtenido a partir del INS, en un filtro de Kalman junto con las lecturas proporcionadas por el GPS, donde será balanceada la importancia que toma el GPS y el INS en el filtro de Kalman en función del número de satélites que recibe el GPS de usuario.

2.1. Se procederá a la caracterización de diferentes tipologías de tramos de rutas recorridas, enfrentando la señal original GPS con la salida del filtro dilucidando si se produce o no, una mejora del posicionamiento del vehículo.

2.2. Se analizará las diferentes sintonizaciones realizadas en los parámetros del filtro para la obtención de los mejores resultados, viendo el comportamiento adoptado por variables como las ganancias y covarianzas del filtro.
El punto de partida son los datos expresados en el fichero Excel señalado como tabla1.

Todas las pruebas se realizan sobre un mismo trayecto del cuál se tienen las lecturas que se detallan a continuación.

<table>
<thead>
<tr>
<th>Velocidad*40</th>
<th>giro en torno a X*10 (º)</th>
<th>giro en torno a Y*10 (º)</th>
<th>giro en torno a Z*18 (º)</th>
<th>Altura</th>
<th>sat</th>
<th>t ms</th>
<th>UTM Este</th>
<th>UTM Norte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.73335</td>
<td>0.144162</td>
<td>0.205078</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.728516</td>
<td>0.144664</td>
<td>0.205078</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.723023</td>
<td>0.151256</td>
<td>0.195312</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.71875</td>
<td>0.151256</td>
<td>0.195312</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.71875</td>
<td>0.151256</td>
<td>0.195312</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.71875</td>
<td>0.151256</td>
<td>0.195312</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.71875</td>
<td>0.151256</td>
<td>0.195312</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.708984</td>
<td>0.161133</td>
<td>0.195312</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.713867</td>
<td>0.161133</td>
<td>0.195312</td>
<td>-4.047152</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.708984</td>
<td>0.170898</td>
<td>0.180644</td>
<td>-4.052734</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>442859</td>
<td>4471783</td>
</tr>
<tr>
<td>1.704102</td>
<td>0.180644</td>
<td>0.175781</td>
<td>-4.057617</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>442859</td>
<td>4471783</td>
</tr>
</tbody>
</table>

Tabla 1: Datos obtenidos de los sensores y GPS instalados en el vehículo

- **Velocidad.** Obtenida de sensores situados en las ruedas; viene expresada en km/h y debe ser multiplicada por un factor de 40.

- **Actitud del vehículo.** La orientación respecto del sistema de referencia inercial viene determinada por los ángulos que se detallan a continuación. Todos han sido obtenidos de la unidad de medidas inercial IMU300CC de Crossbow.
 - **Orientación.** Determinado por el ángulo entorno al eje Z. debe ser multiplicado por un factor de 10 y viene expresado en grados.
 - **Pendiente.** La determina el giro entorno al eje Y. Debe ser multiplicado por un factor de 10. Viene expresado en grados.
 - **Alabeo.** Lo determina el ángulo girado en torno al eje X y debe ser multiplicado por un factor de 18. Viene expresado en grados.

- **Tiempo.** En origen viene expresado en milisegundos y representa el tiempo transcurrido entre cada toma de datos.

- **Altura, satélites, UTM Este y UTM Norte.** Datos obtenidos del GPS.

El recorrido realizado por el vehículo, comienza en el campus Sur, continúa por el lateral de la carretera A3 sentido Madrid, para después circular por la M30 hasta llegar a Méndez Álvaro.

Cada 200 iteraciones de tiempo se coloca un icono en el mapa para que sirva de referencia; nuestra ruta tiene un total de 10123 mediciones.

A continuación, se muestra el tramo que va desde el origen hasta la posición que se identifica como 4600.
El siguiente tramo quizá sea el más delicado, puesto que una vez el vehículo entra en uno de los túneles de la M30 pierde la señal de todos los satélites disponibles y por tanto la información del GPS es nula hasta que vuelve a salir de él y recupera la señal.

A la hora de representarlo, el GPS une el último punto con señal de satélites con el primero a su salida del túnel en línea recta, por tanto, no tenemos información de guiado durante este tramo, además es el más amplio sin señal GPS, y es el que utilizamos de referencia en nuestras pruebas, como se verá más adelante.
Una vez recuperada la señal el vehículo abandona la M30 dirección Méndez Álvaro para finalizar la ruta por sus proximidades. Por último, se muestra una panorámica general de la ruta:
El Bloque I agrupa todos los conceptos teóricos y fundamentales que son básicos para el posterior desarrollo del trabajo.

En el capítulo 1 se desarrolla los conceptos fundamentales sobre cartografía, modelos geodésicos de la tierra con el objetivo de poder posicionar posteriormente al vehículo bajo unas coordenadas homogéneas.

En el capítulo 2 se desarrolla el equipamiento y las características de todos los dispositivos instalados en el vehículo, así como se hace una descripción teórica de los elementos considerados más importantes, GPS e INS.

En el capítulo 3 se desarrolla el Filtro de Kalman paso a paso, explicando sus diferentes etapas así como el significado de cada uno de sus parámetros.

El Bloque II agrupa las metodologías y desarrollo matemático necesario para el posicionamiento estudiado del vehículo.

En el capítulo 4 se desarrolla el modelo matemático que utiliza como fuente el INS.

En el capítulo 5 se desarrolla el filtro de Kalman teniendo como entrada el INS y como observador el GPS.

El bloque III agrupa todas las comparativas relacionadas con el GPS frente a modelo matemático y filtro de Kalman.

En el capítulo 6 se particulariza al modelo matemático y analiza la bondad de este, basándose en distancias recorridas dentro de unos límites marcados a modo de carril en diferentes tipologías de tramos de ruta.

En el capítulo 7 se debate los valores óptimos de los parámetros del filtro (R) y posteriormente se analizan las gráficas de las principales variables como por ejemplo R, ganancia y covarianza en diferentes tipologías de tramos de ruta.
1. FUNDAMENTOS BÁSICOS

1.1. COORDENADAS GEOGRÁFICAS

Las coordenadas geográficas son una forma de representar un punto sobre la superficie terrestre.

1.1.1. MERIDIANOS

Se tiene como referencia el eje de la tierra como la recta que une el Polo Norte con el Polo Sur, se definen los meridianos como las líneas de intersección con la superficie terrestre, de los infinitos planos que contienen el eje de la tierra.
El sistema toma como origen para poder situar a una posición el Meridiano de Greenwich debido a la ciudad inglesa por la que pasa. De esta manera el globo terráqueo queda dividido en dos zonas el Oeste y el Este.

1.1.2.PARALELOS

Los paralelos se consideran a las líneas de intersección de los infinitos planos perpendiculares al eje terrestre con la superficie de la tierra.

Se toma como paralelo principal el que tiene mayor radio, es decir, corresponde al que se encuentra a mayor distancia del centro de la tierra. Se denota como el paralelo de Ecuador. Con esta división la tierra queda partida en hemisferio norte y hemisferio sur. De esta manera se puede situar un punto en el plano terrestre con estructura longitud y latitud.
1.1.3. LONGITUD

La longitud de un punto P, corresponde al valor del diedro formado por el plano meridiano que pasa por P y el meridiano de Greenwich, como se puede ver en la imagen sería el ángulo 0AB. Además la designación de la longitud lleva ligada la designación de la posición espacial con referencia al meridiano principal, si se encuentra a la derecha de éste forma parte del Este (East) y si no, por el contrario se asigna el Oeste (West). El rango de posibles valores queda 0 180°E, 0 180°W.
1.1.4. LATITUD

La latitud de un punto P, corresponde al ángulo formado por la vertical a la tierra, que pasa por P con el plano Ecuador. Tomando la vertical como la línea que une el punto P con el origen de la tierra 0. Como se puede ver en la imagen sería OAP. El rango de posibles valores sería de 0° a 90°N y de 0° a 90°S.

1.2. PROYECCIÓN CARTOGRÁFICA

Es un sistema gráfico de representación que relaciona de manera ordenada y proporcional los puntos de la superficie curva de la tierra y los de una superficie plana a través de una malla o red de meridianos y paralelos.

1.2.1. PROYECCIÓN MERCATOR

La proyección Mercator es una proyección cartográfica cilíndrica que fue ideada por Gerardus Mercator en 1569. Se caracteriza por ser una proyección que transforma el sistema de meridianos y paralelos en un sistema de coordenadas cartesiano, con líneas rectas que se cortan perpendicularmente. Para conseguir esta proyección se posiciona un cilindro de forma tangente al elipsoide en el ecuador.
1.2.2. PROYECCIÓN UTM

La proyección UTM (Universal Trasverse Mercator) se utiliza de manera habitual debido a que el Servicio de Defensa de los Estados Unidos lo estandarizó en la década de 1940.

Se caracteriza por ser una proyección cilíndrica debido a que se obtiene proyectando el globo terráqueo sobre una superficie cilíndrica. Además, es transversa puesto que el cilindro es tangente a la superficie terrestre, el eje del cilindro corresponde con el eje ecuatorial. Por último, es conforme puesto que mantiene el valor de los ángulos; si se mide un ángulo sobre la proyección coincide con la medida sobre el elipsoide terrestre.

 algunas de las ventajas del modelo serían:

- Paralelos y meridianos representados sobre líneas rectas formando una cuadrícula, el sistema de coordenadas pasa de ser esférico a ser rectangular, por lo tanto, resulta sencillo señalar puntos y trazar rumbos entre ellos.
- Las distancias se miden fácilmente, puesto que la línea que une dos puntos es una recta.
- Para áreas pequeñas se conserva la forma de los accidentes geográficos sin deformación significativa.
- Los rumbos y las direcciones se marcan con facilidad.

Como inconvenientes se podrían destacar los siguientes:
- No existe una uniformidad en la escala de distancias.
- En latitudes elevadas no se utiliza puesto que produce una distorsión más acusada cuanto mayor es la distancia al Ecuador, como ocurre en los polos donde se utiliza el sistema de coordenadas UPS (Universal Polar Stereographic).
1.2.2.1. COORDENADAS UTM

Las coordenadas UTM tienen el siguiente formato, aunque puede variar en función de la resolución.
X=462.130m; Y=4634.140m; Huso=30; Zona=T; Datum=ED50

El valor de una coordenada no corresponde a un punto, corresponde a un área cuadrada cuyo lado depende del grado de resolución de la coordenada. Cualquier punto comprendido dentro de ese cuadro tiene el mismo valor de coordenada UTM. El valor que representa la coordenada no se localiza justo en el centro de ese cuadro, sino que hace referencia a la esquina inferior izquierda.

Esto quiere decir que el valor de Easting corresponde a la distancia hacia el Este desde la esquina inferior izquierda de la cuadrícula UTM y de la misma manera el Norting corresponde a la distancia hacia el Norte desde el Ecuador. Mientras mayor sea el número de dígitos que se utilicen en la coordenada menor será el área representada.

Por el momento solo se ha mencionado la coordenada UTM X e Y, pero falta describir la coordenada Z. Esta coordenada puede referenciar la distancia existente entre el punto objeto y el elipsoide en cuyo caso hablamos de Altitud, o por el contrario Cota del punto si nos referimos al nivel medio del mar. Estas distancias se denotan como HAE (Altura sobre elipsoide) o bien como HMM (Altura sobre el nivel del mar).
1.2.2.2. HUSOS Y ZONAS UTM

El sistema UTM divide el globo terráqueo en 60 husos, cada huso se identifica con un número del 0 al 60 y cada zona con una letra de la C hasta la X (O e I no se utilizan). La distribución de husos es la siguiente.

Cada huso comprende un total de 6º de longitud, medidos desde el antemeridiano de Greenwich (180º Este), numerados en dirección Este, se encuentran divididos en 20 zonas, 10 en el hemisferio Norte y 10 en el hemisferio Sur. Cada zona comprende un total de 8º de latitud excepto la zona B y X que comprenden 12º de latitud. A continuación, se muestran las zonas que comprenden España.
1.2.2.3. GEOMETRÍA DE LOS HUSOS

Cada huso comprende desde 80° S hasta 84° N, el origen de coordenadas es diferente en cada huso, tomándose como origen el siguiente punto.

La intersección del meridiano central del huso con el ecuador toma el valor X=500.000m e Y=0m, de esta manera se evita que el sistema genere coordenadas negativas en el hemisferio norte.
Sobre el hemisferio sur el origen es el mismo, pero con diferentes coordenadas, en este caso, X=500.000m e Y=10000.000m. Sólo varía la coordenada Y con la misma intención que en el caso anterior evitar las coordenadas negativas.
1.3. ESFERICIDAD DE LA TIERRA
1.3.1. GEOIDE

Se denomina geoide a la superficie teórica de la tierra que une todos los puntos que tienen la misma gravedad. Esta superficie no es uniforme debido a la distinta composición mineral del interior de la tierra y de sus distintas densidades. Debido a esto para cada punto de la superficie terrestre existe una distancia diferente desde el centro de la tierra hasta el punto del geoide.

1.3.2. ELIPSOIDE

Debido a que la superficie de la tierra posee muchas imperfecciones, no hay ninguna figura geométrica que pueda representarla, por tanto, existe la necesidad de buscar un elemento de representación válido. El elipsoide es precisamente una elipse con sus ejes modificados de tal manera que consiga representar la superficie terrestre.

El elipsoide se caracteriza por los valores que tomen los siguientes parámetros:

- Semieje mayor (a)
- Semieje menor (b)
- Aplastamiento = 1/f = 1 (b/a) (suele tomar valores enteros)
1.3.3. DATUM

Se define el datum como el punto tangente al elipsoide y al geoide, donde ambos son coincidentes. Cada datum está compuesto por un elipsoide definido por a, b y un punto llamado Fundamental definido por su coordenada geográfica latitud, longitud y acimut. En el punto fundamental el elipsoide y la tierra son coincidentes.

Los datum más utilizados según la zona geográfica son los siguientes:
- América del Norte: NAD27, NAD83 y WGS84
- Argentina: Campo inchauspe
- Brasil: SAD69/IBGE
- Colombia: MAGNA SIRGAS
- Sudamérica: PSAD56 y WGS84
- España: ED50, aunque desde el 2007 se utiliza en toda Europa ETRS89.

Cabe destacar que el datum WGS84 es casi idéntico a NAD83, es el único sistema de referencia mundial utilizado hoy en día. Es el datum utilizado por defecto en los dispositivos GPS comerciales.

1.3.3.1. WGS84

WGS conocido como Sistema Geodésico Mundial (World Geodetic System) fue creado por primera vez como WGS74. Posteriormente fue revisado y modificado para convertirlo en lo que hoy conocemos como WGS84.

Está definido por los siguientes parámetros:
- Origen: centro de masa de la tierra
- Eje Z: dirección del polo de referencia del IERS (The International Earth Rotation Service)
- Eje X: intersección del meridiano de Greenwich y el plano del Ecuador
- Eje Y: eje perpendicular a los dos anteriores y coincidentes en el origen

Su elipsoide toma los siguientes valores:
- Semieje mayor: 6378137m
- Semieje menor: 6356752.3142m

Achatamiento: 1/298.257223563
2. EQUIPAMIENTO DEL VEHÍCULO

A continuación, se detalla todos los dispositivos que se utilizan en el vehículo:
- Receptor GPS Astech G12 (posicionamiento absoluto)
- Receptor GPS Garmin eTrex H (GPS de uso doméstico)
- Sensor de velocidad sin contacto L CE Correvit
- Plataforma RMS FES 33
- Tarjeta de adquisición DAQCard 6062E de National Instruments
- Tarjeta de adquisición Advantech USB 4711A AE

2.1. RECEPTOR GPS ASHTECH G12

El sistema de posicionamiento global (Global Positioning System) es un sistema de navegación basado en 24 satélites puestos en órbita por el Departamento de Defensa de los Estados Unidos. En sus orígenes estuvo destinado al ámbito militar, pero a partir de los años 80 el gobierno estadounidense lo puso a disposición de la población civil y funciona bajo cualquier circunstancia meteorológica.

Los 24 satélites que forman el sistema se encuentran en continuo movimiento. Están en órbita alrededor de la tierra, dándole 2 vueltas diarias, de esta manera van mandando información a la tierra sobre su posición y la hora gracias a un reloj atómico que incorporan. Todos los satélites están sincronizados y envían esta información en el mismo momento.
Los receptores se encargan de comparar la hora en la que el satélite emite la información con la hora en la que reciben la información para conocer a qué distancia se encuentran del satélite. Con la información de 4 satélites diferentes, el receptor es capaz de conocer su posición con exactitud y utilizar un mapa para posicionarse en tres dimensiones, longitud, latitud, y altitud.

El GPS Ashtech G12 es un receptor de 12 canales con una velocidad de actualización de 20 MHz para la orientación en tiempo real y la posición. El G12 ofrece una precisión diferencial mayor de 40 cm y una latencia de posición inferior a 50ms.

2.2 SENSOR DE VELOCIDAD SIN CONTACTO L CE CORREVIT

El velocímetro sin contacto L CE Correvit constituye un sistema de determinación de la velocidad de un vehículo, la distancia recorrida por el mismo y el tiempo transcurrido.

El equipo de medida consta de tres subsistemas principales:

- Fuente de haz luminoso
- Detector de haz reflejado por la calzada
- Unidad de procesamiento

El principio de funcionamiento está basado en el de un filtro espacial. Si se dispone un sistema óptico entre un foco luminoso móvil y una placa con ranuras con una distancia p entre ellas, el resultado es un patrón de pulsos luminosos de frecuencia m·v/p, donde m es el aumento proporcionado por la lente.

En este caso, la fuente de luz no es puntual, sino que puede considerarse como múltiples focos luminosos de diferente intensidad que se mueven simultáneamente y paralelamente. Esto implica que la amplitud y la fase de la señal de entrada serán aleatorias, no así el valor medio de la frecuencia, que seguirá siendo igual a m·v/p, mientras que la distancia recorrida será p/m. El receptor es una célula fotoeléctrica de silicio en forma de peine con de banda calculado para filtrar la señal de frecuencia media.

Las características del sensor son las siguientes:

- Rango: 1 400 km/h
- Ganancia: 1.25 V/ 50 km/h (25 mV/km/h)
- Opciones configurables: 12.5, 25, 50, 100
- Alimentación: 12V
- Montaje: 300 ±60mm
2.3. PLATAFORMA RMS FES 33

El giróscopo RMS FES 33 es una plataforma que comprende dos DTG´s (Dry Tuned Gyros) de dos grados de libertad y tres acelerómetros lineales de gran precisión, que miden las velocidades angulares y aceleraciones lineales de un vehículo, permitiendo el análisis de su cinemática y su trayectoria. Las salidas directas que presenta la unidad de control son las aceleraciones según los 3 ejes coordenados, los 3 ángulos y 3 velocidades angulares alrededor de esos mismos ejes.

El rotor de los DTG´s está soportado pero desacoplado del eje de rotación por un sistema de suspensión específicamente ajustado. La posición del elemento sensor respecto a la carcasa del giróscopo se mide mediante unos captadores inductivos. La señal de los captadores genera una corriente proporcional al régimen que equilibra el rotor. Los DTG´s actúan como giróscopos libres funcionando a 180°. Esta característica les confiere una fiabilidad superior no sólo a la de los giróscopos mecánicos, sino incluso a la de los láseres.

Los tres acelerómetros ortogonales incorporan un péndulo gobernado eléctricamente. En caso de aceleración, el desplazamiento del péndulo es detectado ópticamente mediante la interferencia del haz de luz entre un led y un fotodiodo. Este último produce una corriente proporcional a la aceleración del péndulo, que está expuesto a un campo magnético radial permanente.

Las características técnicas son las siguientes:

- Tensión de alimentación 10.8 13.8 V (DC)
- Corriente: < 6 A
- Arranque: < 3 min
- Peso: 10 kg
- Comportamiento de deriva: < 1‰

- Salidas:
 - Aceleraciones según los 3 ejes
 - Ángulos alrededor de los 3 ejes coordinados
 - Velocidades angulares

- Aceleración:
 - Ganancia: ±1g corresponde a ±5 V
 - Calibrado: 0.2g/V
 - Resolución: 0.001g

- Ángulos:
 - Ganancia (x e y): ±60° corresponde a ±6 V
 - Ganancia (z): ±180° corresponde a ±5 V
 - Calibrado: 10°/V (o 36°/V a z=180°)
 - Resolución: 0.03° (o 0.01 a z=180°)
• Velocidad angular:
 - Ganancia: ±60°/s corresponde a ±6 V
 - Calibrado: 10(°/s)/V
 - Resolución: 0.03°/s

• Entrada de velocidad externa:
 - Señal analógica
 - Factor de escala: ±10 V, 300 km/h
 - Resolución: 0.005°, 0.15 km/h

La plataforma giroscópica que proporciona los ángulos está colocada de tal forma que el eje X tiene la dirección longitudinal del vehículo hacia delante, conocido también como Roll y corresponde con la rotación debida al peralte de la carretera especialmente notable en las curvas.

El eje Z es el eje vertical hacia arriba, conocido también como Yaw que corresponde al giro que realiza el vehículo en función del giro del volante.

Por último, el eje Y que forma un triédrico a derechas con los dos anteriores, conocido también como Pitch. En este caso el vehículo rota en el eje Y en función de la pendiente que tenga la carretera por la que circula en ese momento, influyendo por tanto en la distancia recorrida real.
2.4. TARJETA DE ADQUISICIÓN DAQCARD_6062E DE N. Instruments

La tarjeta de adquisición DAQCard 6062E de National Instruments dispone de 16 canales de entrada no diferencial (8 canales de entrada diferencial) con una resolución de 12 bits y una frecuencia máxima de muestreo de 500kS/s. Además, tiene 2 canales de salida analógica con resolución de 12 bits nuevamente que proporcionan salidas comprendidas entre ±10V. Por último, dispone de 8 canales de intercambio de datos digitales y una salida de tensión constante e igual a 5V. La tarjeta es conectada al ordenador por el puerto PCMCIA, lo que facilita su uso en portátiles.

2.5. TARJETA DE ADQUISICIÓN ADVANTECH USB 4711A AE

La serie USB 4700 consiste en módulos plug&play de adquisición de datos a través del interfaz USB. Este tipo de módulos de adquisición son fáciles de usar e instalar y eficientes, adaptado para usos industriales. USB 4711A es un módulo de multifunción, con 16 canales analógicos de entrada, 2 canales analógicos de salida, 16 canales de E/S digital y 1 canal contador capaz de emitir una onda de frecuencia constante.
3. FILTRO DE KALMAN

El filtro de Kalman es un algoritmo que fue desarrollado por Rudolf E. Kalman en 1960 y describe una solución recursiva para problemas de filtrado de datos discretos. Ha sido objeto de un estudio exhaustivo debido a las numerosas aplicaciones que puede ofrecer especialmente en sistemas de navegación.

El filtro de Kalman es un estimador óptimo que puede implementarse en sistema de carácter tanto lineal como no lineal y cuyo procesamiento de datos es de carácter recursivo. Se denomina óptimo puesto que recibe y procesa todas las mediciones disponibles y en base a estas, estima el valor actual de las variables de interés.

Se necesitan conocer ciertas características del sistema antes de implementar el filtro como son:
- El funcionamiento del sistema, así como las mediciones dinámicas provenientes de los dispositivos a utilizarse.
- Descripción estática del ruido presente en el sistema, la información acerca del error, la incertidumbre en el modelo.
- Conocer las condiciones iniciales de las variables más importantes presentes en el modelo.

El término recursivo en este caso está relacionado con un algoritmo que no tiene la necesidad de almacenar todos los valores anteriores de las variables, por tanto, no tiene que reprocesarlos cada vez que realiza una nueva medición. Hace uso de estados anteriores, es decir, el último valor calculado que junto con las nuevas medidas tomadas entrega nuevos resultados que posteriormente serán considerados como estados anteriores. Debido a esto el filtro se presenta como una herramienta muy útil en sistemas de tiempo real.

Estas características hacen del filtro de Kalman una poderosa herramienta para la estimación de estados pasados, presentes y futuros.

[Ilustración 3.1: Recursividad en el Filtro de Kalman]
3.1. FILTRO DISCRETO DE KALMAN

El filtro discreto de Kalman es un algoritmo dividido en dos procesos el de predicción y el de corrección mediante la medición y observación de un grupo de variables presentes en el sistema a tratar, dicho grupo de variables forman el vector de estados y el observador. Estas variables están representadas en las ecuaciones del sistema, basadas en el efecto del ruido presente en las observaciones, así como en la incertidumbre de la dinámica del sistema.

La dinámica del sistema tiene que ser de tipo lineal para poder eliminar el ruido de la señal que se está midiendo en un proceso. Como se mencionó anteriormente, el filtro de Kalman utiliza un algoritmo recursivo con el fin de obtener una variable estimada que se acerque lo más posible a la realidad. A continuación se muestra el modelo general del sistema y la ecuación del observador.

3.2. MODELO DEL SISTEMA

El sistema dinámico trata de estimar el estado x. Dicho sistema se puede describir mediante la siguiente ecuación de estado.

\[x_k = A \cdot x_{k-1} + B \cdot u_k + w_{k-1} \]

Ecuación 3.1

Con una medición z:

\[z_k = H \cdot x_k + v_k \]

Ecuación 3.2

Donde:

- \(x_k \): Estado del sistema en el instante de tiempo k
- \(z_k \): Valor observado en instante k
- \(u_k \): Entrada del sistema en instante k
- \(w_{k-1} \): Ruido en el proceso
- \(v_k \): Ruido en la medición
- \(A, B, H \)= matrices deterministas que definen la dinámica del sistema

La matriz A de dimensiones n x n en la ecuación 3.1 describe la relación que existe entre el estado en el momento k-1 con el estado actual del instante k. La matriz B de dimensiones m x l relaciona la entrada de control u con el estado x. La matriz H de dimensiones m x n en la ecuación 3.2 relaciona el estado x con la observación \(z_k \).

Tanto la matriz A como la matriz H pueden variar en el tiempo, aunque también es válido que permanezcan constantes en las ecuaciones todo el tiempo.

Los vectores v y w son independientes y representan el ruido gaussiano blanco con media cero presente en las observaciones y en el proceso respectivamente.
Además traen consigo asociadas las matrices de covarianza Q y R que en general son diagonales, pudiendo también no serlo.

\[p(\nu) \sim N(0, R) \] \hspace{1cm} \text{Ecuación 3.3} \hspace{1cm} \[p(w) \sim N(0, Q) \] \hspace{1cm} \text{Ecuación 3.4}

La matriz de covarianza de perturbación en el proceso Q y la matriz de covarianza de perturbación de la observación R pueden variar en el tiempo, pero en general y para simplificar pueden ser consideradas como constantes.

3.3. ALGORITMO

El algoritmo se divide en dos grupos de ecuaciones, el primer grupo corresponde a las ecuaciones que se actualizan en el tiempo o también llamadas de predicción y el segundo grupo se refiere a las ecuaciones de actualización mediante observaciones conocidas como de corrección.

Las ecuaciones de predicción son las encargadas de obtener la estimación a priori de la matriz de covarianza del error, así como del estado actual en el tiempo K en base al estado anterior en el tiempo K-1. Las ecuaciones de corrección en cambio tienen como objetivo realizar una retroalimentación, es decir, la incorporación de nuevas mediciones en la estimación a priori del estado, con el fin de conseguir una estimación a posteriori mejorada.

Por esto, para conseguir una estimación final del estado, es necesario la etapa de predicción y la de corrección en el algoritmo del filtro de Kalman.

Ecuaciones de predicción para el filtro discreto de Kalman:

\[x_k^- = A * x_{k-1} + B * u_k \] \hspace{1cm} \text{Ecuación 3.5} \hspace{1cm} \[P_k^- = A * P_{k-1} * A^T + Q \] \hspace{1cm} \text{Ecuación 3.6}

La matriz A y B son de la ecuación 3.1 mientras que Q es de la ecuación 3.4.
Ecuaciones de corrección para el filtro discreto de Kalman:

\[
K_k = P_{k|k-1}^- * H^T * (H * P_{k|k-1}^- * H^T + R)^{-1} \quad \text{Ecuación 3.7}
\]

\[
x_k = x_{k|k-1}^- + K_k * (z_k - H * x_{k|k-1}^-) \quad \text{Ecuación 3.8}
\]

\[
P_k = (I - K_k * H) * P_{k|k-1}^- \quad \text{Ecuación 3.9}
\]

En la ecuación 3.7 se calcula la ganancia de Kalman, es un factor de ponderación cuyo objetivo es minimizar la covarianza del error de la nueva estimación del estado. La siguiente tarea es tomar una medición del proceso, en el momento K y con esto se obtiene el valor de la variable \(z_k\), esta medida actualizada del proceso permite obtener una estimación a posteriori del estado en la ecuación 3.8. Como tarea final se procede al cálculo de la estimación a posteriori de la matriz de covarianza del error mediante la ecuación 3.9.

Después de cada par de actualizaciones (predicción y corrección), se puede apreciar claramente como una variable estimada con anterioridad puede ser mejorada por medio de una observación, y al mismo tiempo este nuevo estado estimado es usado para dar inicio una vez más a la etapa de predicción, y de esta manera el filtro de Kalman cumple con su característica claramente identificada de recursividad.
3.4. PARÁMETROS Y SINTONIZACIÓN

Existen dos parámetros con mucha repercusión a la hora de ejecutar el filtro de Kalman, la matriz de covarianza de las perturbaciones en el proceso y en la observación Q y R respectivamente.

En el caso del parámetro R se puede establecer antes de implementar el filtro, mediante toma de muestras de mediciones y así hallar la covarianza en el ruido o perturbación presente en las observaciones. A pesar de esto, también podemos calcularlo a modo de ensayo y error dependiendo de cómo responda el sistema.

Basta con seguir unas pautas a la hora de fijarlo, si las perturbaciones en las observaciones son grandes, entonces R debe ser grande. En este caso si se observa las ecuaciones de la ganancia de Kalman podremos ver que K es pequeña, lo cual significa que se dará poca credibilidad a la observación en el momento del cálculo del siguiente x_k.

Por otra parte, si en el momento de fijar el valor de R se le asigna un valor pequeño, estamos considerando que las perturbaciones en las observaciones son pequeñas, la ganancia K será grande lo cual significa que se dará mucha credibilidad a la observación en el momento del cálculo del siguiente x_k.

En el caso del parámetro Q no resulta tan trivial como el parámetro R, debido a que es la representación del ruido en el proceso y por lo general esto es muy difícil de conocer, ya que se necesitaría poder observar de manera directa el proceso que se está estimando.

3.5. INTEGRACIÓN DE SENsoRES

Una de las mayores aplicaciones que se le está dando al filtro de Kalman en la actualidad es en sistemas de navegación, donde se dispone de dispositivos como acelerómetros, giróscopos, GPS, etc. Cada uno de los cuales posee sus propias características que hacen que su información pueda ser o no confiable en ciertos momentos. El filtro de Kalman trabaja para utilizar las mejores características de cada uno de ellos en cada momento para obtener el mejor resultado posible.
4. MODELO MATEMÁTICO

Dados los ejes de rotación del vehículo representados en la ilustración 2.5 del bloque I, se utiliza los datos proporcionados por el giroscopio para evaluar tanto los giros de volante (guiñada), como la posible pendiente (cabeceo) que el vehículo encuentre a lo largo del recorrido tomado como test de prueba. Se tomará también la velocidad y el tiempo transcurrido entre cada toma de datos. Todos estos valores serán estandarizados al multiplicarse por los factores que se han indicado anteriormente y se realizan las conversiones necesarias para llevarlos al Sistema Internacional de Medidas. {Velocidad (m/s), ángulos (radianes), tiempo (seg)}.

4.1. ORIENTACIÓN INICIAL DEL VEHÍCULO

Especial atención requiere este punto ya que, de no ser calculada con precisión, la ruta presentará importantes errores. Inicialmente el vehículo tendrá una orientación determinada que podría ser calculada por ejemplo mediante una brújula o bien mediante el método que se describe a continuación. A partir de esta actitud absoluta del vehículo calculada respecto del sistema de referencia inercial, se irá sumando los giros que se vayan produciendo como consecuencia del uso del volante a lo largo del viaje realizado. Estos giros serán los realizados sobre el ángulo Z (guiñada).

Por otro lado, también se debe calcular la pendiente de la carretera que tiene la posición de partida, donde se encuentra el vehículo. Una vez calculada y como el en caso anterior, se irá sumando a este ángulo los incrementos o decrementos de pendiente que se producen en el recorrido y que son proporcionados por el giroscopio sobre el eje Y (cabeceo). Para el cálculo de la actitud inicial del vehículo con estas apreciaciones se entiende que es suficiente. Posteriormente en el cálculo matemático de la ruta se analizará con más detalle estos ángulos. Por último, parece lógico que se debería actuar de la misma manera con el tercer ángulo todavía no comentado, el alabeo. Las pruebas realizadas no han determinado ninguna contribución apreciable al incorporarlo al modelo.

¿Cómo se calcula la orientación y pendiente inicial del vehículo? Se parte de posiciones donde la cobertura de GPS sea buena; esto podría ser allí donde se dispone de si no todos los satélites casi todos. La orientación inicial del vehículo podría ser cualquiera.
Si se toma como ejemplo alguna de las representadas en la ilustración 4.1, se puede extrapolar que leídas las coordenadas Norte y Este del GPS en la posición B y dadas las coordenadas del GPS en una posición anterior A, se puede dibujar un vector que representa la trayectoria seguida por el vehículo desde A hasta B y por tanto la orientación que tendría este en la posición B.

Teniendo como referencia la ilustración 4.2, el ángulo que interesa calcular es φ_Z, y por tanto se puede llegar a la conclusión que φ_Z, medido respecto del eje X Norte sería:

$$
\varphi_Z = \tan^{-1}\left(\frac{\text{Este}_B - \text{Este}_A}{\text{Norte}_B - \text{Norte}_A}\right)
$$

Ecuación 4.1

Tras determinar la fórmula a aplicar, solo queda que fijar qué diferencia de posiciones (lecturas) debería haber entre la posición B y la posición A.

En posición de parado se recogen las posiciones que el GPS proporciona, se puede observar que difícilmente coincidirían dos o tres posiciones consecutivas ya que todas estarían incluidas en un círculo cuyo radio dependería de la bondad o exactitud del equipo utilizado.

Por otro lado, se debe tener en cuenta el tiempo de refresco del GPS, en este caso es de 20MHz; las lecturas tomadas de la IMU tienen una frecuencia mucho más alta que la frecuencia de refresco del GPS por lo que se toma una posición para el punto A que diste al menos un segundo de la posición B.

En este caso, si el punto B es la posición i, se toma i e i-10, puesto que las iteraciones de tiempo están tomadas cada 0,1 segundos.

El cálculo de la pendiente corresponde con el movimiento de rotación conocido como cabeceo; el giro sobre el ángulo Y. En la ilustración 4.4 se puede ver el desplazamiento del vehículo con una pendiente negativa.

Si se observa la ilustración 4.5, el ángulo β es el que se busca; se puede obtener según el triángulo detallado en función del incremento al que da lugar la nueva posición alcanzada por el vehículo.

Por tanto, β sería:

$$
\beta = \tan^{-1}\left(\frac{Z' - Z}{\sqrt{(X' - X)^2 + (Y' - Y)^2}}\right)
$$

Ecuación 4.2
4.2. DISTANCIA RECORRIDA

Par el cálculo de la distancia recorrida, se toma en cada posición del vehículo los datos proporcionados por el sensor de velocidad que en este caso aporta la velocidad y el tiempo que ha transcurrido desde la última lectura.
La distancia recorrida será:

\[
\text{DistRecorrida} = \text{Velocidad} \times \text{Tiempo}
\]

Ecuación 4.3

Como en la trayectoria del vehículo puede existir pendiente, la distancia recorrida real será:

\[
\text{DistRecorridaReal} = \text{DistRecorrida} \times \cos(\beta)
\]

Ecuación 4.4

Siendo \(\beta\) el ángulo de la pendiente.

4.3. CÁLCULO POSICIÓN DEL VEHÍCULO

Una vez calculada la distancia recorrida y conociendo la posición actual del vehículo, la nueva posición queda determinada como se indica. Ver ilustración 4.2 para identificar Coseno y Seno de \(\varphi_z\).

\[
\text{NorteMatemat} = \text{NorteMatematAnterior} + \text{DistRecorridaReal} \times \cos(\text{ Orientacion})
\]

\[
\text{EsteMatemat} = \text{EsteMatematAnterior} + \text{DistRecorridaReal} \times \sin(\text{ Orientacion})
\]

Ecuación 1

4.4. INTEGRÁNDOLO TODO

Hasta ahora se ha descrito básicamente la primera iteración del programa realizada con el cálculo de orientación y pendiente inicial, distancia recorrida tanto teórica como real y el cálculo de la nueva posición a la que estos parámetros dan lugar.

En sucesivos cálculos de posición del vehículo, se tomarán las entradas del Excel utilizado como punto de partida. Este Excel es el resultado de haber tratado los datos proporcionados por los sensores, y en caso particular de la IMU, se han reconvertido a ángulos. Estos ángulos que tenemos sobre los ejes indicados son absolutos, quiere decir que es una foto de lo que está marcando el giroscopio en cada momento.

Una vez realizado el primer posicionamiento del vehículo llega el momento de una segunda lectura de los datos facilitados por los sensores y se actúa de la siguiente manera.
La nueva orientación del vehículo, el ángulo que marca su dirección, resultará de sumar al ángulo utilizado en la posición anterior como orientación de vehículo, con la diferencia entre el ángulo sobre el eje Z que facilita la IMU en esta lectura y el que indicaba en la lectura anterior. Como los ángulos que aparecen en el fichero de partida son absolutos, implica que si la guiñada (el giro de volante), en la lectura actual de la IMU es de 70° y en la lectura anterior marcaba 60° entonces, lo que ha ocurrido es que, desde la lectura anterior hasta ahora, se ha producido un giro de volante de 70° - 60° = 10°.

Para el cálculo del ángulo de la pendiente se razona de forma equivalente. Si la lectura anterior marcaba un cabeceo de 5° y en la lectura actual marca un cabeceo de 8°, lo que ha ocurrido es que la pendiente ha aumentado entre estas dos lecturas 3°. Estos tres grados serán sumados a la pendiente que fue utilizada en el cálculo de la posición anterior.

Al final se trata de llevar tanto en la orientación del vehículo como en la pendiente, el acumulado de giros y pendientes producidas entre una posición n y la posición anterior n-1.

4.5. DIAGRAMA DE FLUJO

En la ilustración 4.7, se detalla el diagrama de flujo seguido para el cálculo de la ruta matemática.
5. FILTRO DE KALMAN

El filtro de Kalman es una herramienta que permite obtener las coordenadas del vehículo sin los errores inherentes a las características propias tanto del GPS como del sensor de velocidad y del giróscopo. A continuación, se presenta la manera cómo estos sensores trabajan de forma conjunta para entregar un valor de posición que no responda únicamente a datos individuales sino a una integración de dichos sensores, consiguiendo un mejor resultado.

5.1. SENSOR DE VELOCIDAD Y GIRÓSCOPO

Cómo se indicó en capítulos anteriores para el cálculo de la posición se utilizan los datos que provienen del sensor de velocidad y del giróscopo.

Según el modelo matemático al que se llega en la ecuación 4.5, que puede ser considerado lineal, se concluye el siguiente sistema:

\[\text{Norte}_k = \text{Norte}_{k-1} + u_k \cdot T \cdot \cos(p_k) \cdot \cos(g_k) \]
\[\text{Este}_k = \text{Este}_{k-1} + u_k \cdot T \cdot \cos(p_k) \cdot \sin(g_k) \]

Siendo:

\(T \) \hspace{1cm} Tiempo de muestreo
\(\text{Norte}_k \) y \(\text{Este}_k \) \hspace{1cm} Estados estimados en T=k
\(\text{Norte}_{k-1} \) y \(\text{Este}_{k-1} \) \hspace{1cm} Estados anteriores
\(u_k \) \hspace{1cm} Señal acondicionada del sensor de velocidad
\(g_k \) \hspace{1cm} Señal acondicionada del giróscopo, correspondiente al giro del volante
\(p_k \) \hspace{1cm} Señal acondicionada del giróscopo, correspondiente a la pendiente

También se dispone de un GPS que se comporta como un observador del sistema, la medida entregada por el GPS se utiliza para calcular el error suscitado entre la posición estimada y la observación realizada en un instante de tiempo k. Teniendo esto presente, se tiene el modelo para el observador ya presentado en la ecuación 5.2.

\[z_k = H \cdot x_k + v_k \]

Se puede apreciar que la medida entregada por el observador presenta un margen de error \((v_k) \) con respecto al valor estimado en base al giróscopo y sensor de velocidad.
Con estos antecedentes se presenta el siguiente modelo para el cálculo del filtro de Kalman.

\[
\begin{pmatrix}
Norte_k \\
Este_k
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
Norte_{k-1} \\
Este_{k-1}
\end{pmatrix} + \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
u_k \cdot T \cdot \cos(p_k) \cdot \cos(g_k) \\
u_k \cdot T \cdot \cos(p_k) \cdot \sin(g_k)
\end{pmatrix}
\]

\text{Ecuación 5.3}

De donde se desprende que la matriz A de la ecuación 5.3 tiene que ser \(A = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \) y la matriz B dependiendo de como se ordenaran los términos también podría ser la identidad. No tiene mucha importancia como queda diseñada la matriz B puesto que no interviene en el cálculo de otros parámetros.

El estado del sistema en cada instante de tiempo \(T=k \) debe ser \(X_k = \begin{pmatrix}
Norte \\
Este
\end{pmatrix}_k \).

A continuación, se detalla el modelo para el observador:

\[
z_k = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
Norte \\
Este
\end{pmatrix}_k + v_k
\]

\text{Ecuación 5.4}

Donde siendo \(z_k \) la posición entregada por el GPS Norting y Easting expresadas en metros, se deduce que la matriz H tiene que ser \(H = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \).

\(v_k \) corresponde al error asociado a la medida GPS expresado en metros, ligado directamente al número de satélites que el GPS tenga disponible en cada medición.

A pesar de trabajar con un solo observador puesto que las medidas provienen de un dispositivo en nuestro caso el GPS, se considera la medida Norting independiente de la medida Easting y viceversa.

\textbf{5.2. IMPLEMENTACIÓN DEL FILTRO DE KALMAN}

\textbf{5.2.1. ETAPA DE PREDICCIÓN}

Una vez que se dispone del modelo del sistema y del observador, en el siguiente paso se deben calcular las ecuaciones de la etapa de predicción que provienen en exclusiva de los sensores montados en el vehículo.

\textbf{Posición estimada del vehículo:}

\[
\begin{pmatrix}
Norte^- \\
Este^-
\end{pmatrix}_k = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
Norte_{k-1}^- \\
Este_{k-1}^-
\end{pmatrix} + \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
u_k \cdot T \cdot \cos(p_k) \cdot \cos(g_k) \\
u_k \cdot T \cdot \cos(p_k) \cdot \sin(g_k)
\end{pmatrix}
\]

Operando se llega a:

\[
Norte^-_k = \begin{pmatrix}
Norte_{k-1}^- + u_k \cdot T \cdot \cos(p_k) \cdot \cos(g_k)
\end{pmatrix}
Este^-_k = \begin{pmatrix}
Este_{k-1}^- + u_k \cdot T \cdot \cos(p_k) \cdot \sin(g_k)
\end{pmatrix}
\]

\text{Ecuación 5.5}
Matriz de covarianza del error estimada:

\[P_k^- = A \cdot P_{k-1} \cdot A^t + Q \]

Ecución 5.6

Se sustituyen los valores de A y se descomponen las matrices en sus términos según fila y columnas:

\[
P_k^- = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} P_{k-1}[0][0] & P_{k-1}[0][1] \\ P_{k-1}[1][0] & P_{k-1}[1][1] \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} Q[0][0] & Q[0][1] \\ Q[1][0] & Q[1][1] \end{pmatrix}
\]

\[
P_k^- = \begin{pmatrix} P_{k-1}[0][0] & P_{k-1}[0][1] \\ P_{k-1}[1][0] & P_{k-1}[1][1] \end{pmatrix} + \begin{pmatrix} Q[0][0] & Q[0][1] \\ Q[1][0] & Q[1][1] \end{pmatrix}
\]

Quedando la covarianza estimada al separar cada uno de los términos, como se detalla a continuación:

\[P_k^-[0][0] = P_{k-1}[0][0] + Q[0][0] \quad P_k^-[1][0] = P_{k-1}[1][0] + Q[1][0] \]

\[P_k^-[0][1] = P_{k-1}[0][1] + Q[0][1] \quad P_k^-[1][1] = P_{k-1}[1][1] + Q[1][1] \]

Ecución 5.7

Se debe establecer ahora unos valores para la matriz Q. Matriz de covarianza de perturbación en el proceso.

\[Q[0][0] = Norte^2 = V^2 \cdot T^2 \]
\[Q[0][1] = 0 \]
\[Q[1][0] = 0 \]
\[Q[1][1] = Este^2 = V^2 \cdot T^2 \]

Tanto para calcular el Norting como el Easting se utilizan los mismos dispositivos y las fórmulas empleadas son muy similares, por tanto, para simplificarlo lo máximo posible se ha tenido en cuenta únicamente el error asociado al sensor de velocidad.

Como se puede ver la señal acondicionada del sensor de velocidad va multiplicada por el tiempo T. Cada iteración se realiza a los 0.1 segundos, por tanto, se realizan 10 mediciones por segundo o lo que es lo mismo T=0.1 seg.

Por otro lado, en las características técnicas del sensor de velocidad detallan que la deriva asociada a este dispositivo es de 0,1%, esto quiere decir que es variable en el tiempo y no siempre tiene un valor fijo de deriva. Es por esto, por lo que se decide asignar el valor máximo de error asociado a una velocidad de 120km/h que, en nuestro caso de estudio, nunca se llega a superar. De esta manera se concluyen los siguientes valores:
BLOQUE II: SISTEMAS DE POSICIONAMIENTO

$Q[0][0] = (120 \text{ km/h})^2 \times (0.1\%)^2 \times (0.1 \text{ seg})^2 = 1.11 \times 10^{-5}$ Expresado en metros

$Q[0][1] = 0$

$Q[1][0] = 0$

$Q[1][1] = (120 \text{ km/h})^2 \times (0.1\%)^2 \times (0.1 \text{ seg})^2 = 1.11 \times 10^{-5}$ Expresado en metros

Dando como resultado la siguiente matriz:

$$Q = \begin{pmatrix} 1.1 \times 10^{-5} & 0 \\ 0 & 1.1 \times 10^{-5} \end{pmatrix}$$

Y además se fijan unos valores iniciales para la covarianza. En este caso se utilizan los siguientes:

$P[0][0]=1$ $P[1][0]=0$

$P[0][1]=0$ $P[1][1]=1$

5.2.2. ETAPA DE CORRECCIÓN

Dada la ecuación 5.8,

$$K_k = P_k^- * H^T * (H * P_k^- * H^T + R)^{-1}$$

Para calcular la ganancia de Kalman se necesita la matriz H, los valores de P calculados en la etapa de predicción y R.

En este caso de estudio, R va a ser variable pues el error del observador varía según los factores externos que le rodeen. Como se mencionó anteriormente el GPS necesita un mínimo de 4 satélites para determinar una posición con un error inferior a 20 metros, en este caso $R = 20^2 = 400$. Si la señal la recibe de 5 satélites es posible reducir este error a un valor inferior a dos centímetros, por tanto, $R = 0.02^2 = 0.0004$. Para situaciones intermedias se asigna $R=0.5$ en base a pruebas realizadas por ensayo y error.

$$K_k = \frac{\begin{pmatrix} P_k^-[0][0] & P_k^-[0][1] \\ P_k^-[1][0] & P_k^-[1][1] \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} P_k^-[0][0] & P_k^-[0][1] \\ P_k^-[1][0] & P_k^-[1][1] \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + R} = \frac{\begin{pmatrix} P_k^-[0][0] & P_k^-[0][1] \\ P_k^-[1][0] & P_k^-[1][1] \end{pmatrix}}{\begin{pmatrix} P_k^-[0][0] & P_k^-[0][1] \\ P_k^-[1][0] & P_k^-[1][1] \end{pmatrix} + R}$$

$$K_k[0][0] = \frac{P_k^-[0][0]}{P_k^-[0][0] + R}$$

$$K_k[0][1] = \frac{P_k^-[0][1]}{P_k^-[0][1] + R} = 0$$

35
\[K_k[1][0] = \frac{P_k^-[1][0]}{P_k^-[1][0] + R} = 0 \]
\[K_k[1][1] = \frac{P_k^-[1][1]}{P_k^-[1][1] + R} \]

Dando como resultado la siguiente matriz:
\[
K_k = \begin{pmatrix}
\frac{P_k^-[0][0]}{P_k^-[0][0] + R} & 0 \\
0 & \frac{P_k^-[1][1]}{P_k^-[1][1] + R}
\end{pmatrix}
\]

Dada la ecuación 5.9,
\[
x_k = x_k^- + K_k \cdot (z_k - H \cdot x_k^-)
\]

Se calcula la posición estimada a posteriori mejorada. Se sustituye y opera en la formula indicada la estimación a priori calculada en la etapa de predicción \(x_k^- \), la ganancia de Kalman que se ha calculado en esta etapa de corrección \(K_k \), el valor que proporciona el GPS en esta lectura \(z_k \) y por último la matriz \(H \).

\[
\begin{pmatrix}
\text{Norte} \\
\text{Este}
\end{pmatrix}_k = \begin{pmatrix}
\text{Norte}^- \\
\text{Este}^-
\end{pmatrix}_k + \begin{pmatrix}
K[0][0] & K[0][1] \\
K[1][0] & K[1][1]
\end{pmatrix}_k \cdot \left\{ z_k - \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix}
\text{Norte}^- \\
\text{Este}^-
\end{pmatrix}_k \right\}
\]

Operando:
\[
\begin{pmatrix}
\text{Norte} \\
\text{Este}
\end{pmatrix}_k = \begin{pmatrix}
\text{Norte}^- \\
\text{Este}^-
\end{pmatrix}_k + \begin{pmatrix}
K[0][0] & K[0][1] \\
K[1][0] & K[1][1]
\end{pmatrix}_k \cdot \left\{ \begin{pmatrix}
\text{NorteGPS} \\
\text{EsteGPS}
\end{pmatrix}_k - \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix}
\text{Norte}^- \\
\text{Este}^-
\end{pmatrix}_k \right\}
\]

Se opera y se extrae los términos de la matriz:

\[
\begin{pmatrix}
\text{Norte} \\
\text{Este}
\end{pmatrix}_k = \begin{pmatrix}
\text{Norte}^- \\
\text{Este}^-
\end{pmatrix}_k + \begin{pmatrix}
K[0][0] & K[0][1] \\
K[1][0] & K[1][1]
\end{pmatrix}_k \cdot \left\{ \begin{pmatrix}
\text{NorteGPS} - \text{Norte}^- \\
\text{EsteGPS} - \text{Este}^-
\end{pmatrix}_k \right\}
\]

\[
\text{Norte}_k = \text{Norte}^- + K[0][0] \cdot (\text{NorteGPS} - \text{Norte}^-) + K[0][1] \cdot (\text{EsteGPS} - \text{Este}^-)
\]
\[
\text{Este}_k = \text{Este}^- + K[1][0] \cdot (\text{NorteGPS} - \text{Norte}^-) + K[1][1] \cdot (\text{EsteGPS} - \text{Este}^-)
\]
Dado que $K[0][1]$ y $K[1][0]$ toman el valor de 0, el sistema anterior puede ser simplificado, obteniendo las posiciones Norte y Este para esta iteración:

\[
\text{Norte}_k = \text{Norte}_k^- + K[0][0] \times (\text{Norte}_{GPS} - \text{Norte}_k^-) \\
\text{Este}_k = \text{Este}_k^- + K[1][1] \times (\text{Este}_{GPS} - \text{Este}_k^-)
\]

Ecuación 5.10

En la ecuación 5.10 puede apreciarse como la posición estimada corregida Norte y Este, está en función de la posición estimada en la predicción (cálculo matemático) más la diferencia entre la posición dada por el GPS y la estimada en la predicción, multiplicada esta diferencia por la ganancia de Kalman. Por tanto, si la ganancia de Kalman (que fluctuará entre 0 y 1) está en valores altos, la posición estimada tendrá muy en cuenta la posición entregada por el GPS, mientras que si el valor de la ganancia es reducido tendiendo a cero, el valor de la posición estimada será muy parecido al obtenido en la predicción en base al cálculo matemático de la posición. Lo primero se dará cuando el número de satélites sea alto y lo segundo ocurrirá cuando el vehículo este circulando por zonas sin cobertura GPS como podría ser en túneles.

Por último, en esta etapa de corrección, quedaría el cálculo de la matriz de covarianza del error.

Dada la ecuación 5.11,

\[
P_k = (I - K_k \times H) \times P^{-}_k
\]

Sustituyendo valores y operando:

\[
P_k = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} - \begin{bmatrix}
K[0][0] & K[0][1] \\
K[1][0] & K[1][1]
\end{bmatrix}_k \times \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \times \begin{bmatrix}
P^{-}[0][0] & P^{-}[0][1] \\
P^{-}[1][0] & P^{-}[1][1]
\end{bmatrix}_k;
\]

\[
P_k = \begin{bmatrix}
1 - K[0][0] & -K[0][1] \\
-K[1][0] & 1 - K[1][1]
\end{bmatrix}_k \times \begin{bmatrix}
P^{-}[0][0] & P^{-}[0][1] \\
P^{-}[1][0] & P^{-}[1][1]
\end{bmatrix}_k;
\]

Operando y extrayendo cada término de la matriz:

\[
P_k[0][0] = P_k^-[0][0] - K_k[0][0] \times P_k^-[0][0] - K_k[0][1] \times P_k^-[1][0]
\]

\[
P_k[0][1] = P_k^-[0][1] - K_k[0][0] \times P_k^-[0][1] - K_k[0][1] \times P_k^-[1][1]
\]

\[
P_k[1][0] = -K_k[1][0] \times P_k^-[0][0] + P_k^-[1][0] - K_k[1][1] \times P_k^-[1][0]
\]

\[
P_k[1][1] = -K_k[1][0] \times P_k^-[0][1] + P_k^-[1][1] - K_k[1][1] \times P_k^-[1][1]
\]
Debido a que $K[0][1]$ y $K[1][0]$ toman el valor de 0, los términos anteriores pueden ser simplificados:

$$P_k[0][0] = P_k^- [0][0] - K[0][0] \times P_k^- [0][0]$$

$$P_k[0][1] = P_k^- [0][1] - K[0][0] \times P_k^- [0][1] = 0 \quad \text{Es cero por ser } P_k^- [0][1] = 0$$

$$P_k[1][0] = P_k^- [1][0] - K[1][1] \times P_k^- [1][0] = 0 \quad \text{Es cero por ser } P_k^- [1][0] = 0$$

$$P_k[1][1] = P_k^- [1][1] - K[1][1] \times P_k^- [1][1]$$
6. GPS VS MODELO MATEMÁTICO

En este apartado se van a detallar las rutas obtenidas con el cálculo matemático frente a la ruta proporcionada por el GPS. Inicialmente se muestra cómo varían estas trayectorias en función de la inicialización detallada en el apartado 4.1 del bloque II, viendo a continuación diferentes segmentos del recorrido calculando la desviación existente entre la ruta matemática y la ruta GPS.

6.1. INICIALIZACIÓN DE LA TRAYECTORIA

En la ilustración 6.1 se presentan diferentes recorridos entre la posición de partida 700 y la posición final 1200. En azul se muestra la ruta GPS que, en este recorrido, tiene una cobertura de satélites superior o igual a 6 por lo que toma como una trayectoria de muy buena precisión. Las tres trayectorias que acompañan al GPS se pueden identificar por su color (roja, blanca y amarilla) y varían en función de los puntos elegidos para el cálculo de la orientación inicial del vehículo. (Ver cálculo del arco tangente ecuación 4.1).

Para la ruta roja se han utilizado las posiciones 700 y 685 (i-15). El valor del ángulo Z en radianes es de 1,018.

La ruta blanca, muy pegada a la amarilla, pero más separada que esta del GPS, ha sido calculada con un i y un i-10 (Posiciones 700 y 690). El valor de Z en este caso es de es 0,986 radianes.

Por último, la ruta amarilla que es la que sigue más de cerca al GPS, corresponde con la posición 700 y 695. El valor de ángulo inicial Z es de 0,9816 radianes.
6.2. ANÁLISIS RUTAS MATEMÁTICAS VS GPS

En este apartado serán analizados diferentes segmentos de ruta con objeto de comparar la bondad del cálculo matemático realizado frente a la trayectoria GPS.

En todos los segmentos analizados, se calculará la orientación inicial con los valores de i que mejor resultado han dado en el apartado anterior (i e i-5).

En la fotografía presentada de Google Earth, el segmento de GPS es de color azul mientras que el segmento calculado matemáticamente estará pintado en color blanco.

Posteriormente será presentado en un Excel la ruta matemática, la ruta GPS y por último dos carriles en líneas discontinuas. Estos carriles están dispuestos a la izquierda y derecha de la ruta GPS con una anchura de ± 1,5 metros y vienen a representar el ancho estándar de un carril de carretera, con objeto de poder determinar si la posición de la ruta matemática se mantiene dentro del carril de la ruta GPS.

6.2.1. SEGMENTO DE RUTA ENTRE PUNTO 700 Y 1200

El primer segmento que se analiza es el primer tramo recto dentro de la ruta con origen en el punto 700 y con final en el punto 1200.

En concreto este tramo comprende una distancia total de 591,3 metros.

La orientación del vehículo y la pendiente son respectivamente de 56,24 grados y 3,27 grados.
Como se puede ver en la ilustración 6.2 la ruta matemática permanece en el carril muy próxima a la ruta GPS, aunque antes de llegar al punto 800 la distancia entre ellas es mayor a 1,5 metros.

Se puede apreciar como la ruta matemática va dentro de las dos líneas discontinuas que simulan el carril asignado al vehículo hasta llegar a la posición 65 aproximadamente, de las 100 lecturas representadas. Esto lleva a la conclusión de que, en línea recta, la ruta matemática podría tener una deriva asumible por debajo de una distancia aproximada de 75 metros recorridos.

A los pocos metros de la inicialización, se corrige de manera sutil la posición del vehículo en el carril y posteriormente, se realiza de nuevo otra corrección de la trayectoria siendo esta última más importante. Posteriormente se alcanza la posición 65.

En este segmento que es recto y que en principio no debería existir mucha dificultad para que ambas rutas fuesen parejas, todo parece indicar que uno de los motivos causantes podría ser “Saltos o interferencias del propio dispositivo GPS que, aun teniendo una cobertura excelente, realiza desplazamientos bruscos en su trayectoria”.

Por otro lado, si se extrapolan ambas rutas a partir de las primeras 20 posiciones (antes de la corrección del GPS mencionada), se puede apreciar que también existe deriva, por lo que otro de los motivos de la divergencia de ambas sería “una incorrecta inicialización de la orientación del vehículo”.

Ilustración 6.3: Segmento 1_Distancia Ruta Matemática vs GPS
A continuación se presenta tabla 6.1 a modo resumen del primer segmento.

<table>
<thead>
<tr>
<th>Segmento 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto Inicio</td>
<td>700</td>
</tr>
<tr>
<td>Punto Final</td>
<td>1200</td>
</tr>
<tr>
<td>Orientación volante (grados)</td>
<td>56,24</td>
</tr>
<tr>
<td>Pendiente (grados)</td>
<td>3,27</td>
</tr>
<tr>
<td>Distancia entre Inicio y Final (m)</td>
<td>590,5</td>
</tr>
<tr>
<td>Máximo punto dentro de carriles</td>
<td>765</td>
</tr>
<tr>
<td>Distancia recorrida dentro de carriles (m)</td>
<td>76,8</td>
</tr>
</tbody>
</table>

Tabla 6.1: Resumen Ruta Segmento 1
6.2.2 SEGMENTO DE RUTA ENTRE PUNTO 1350 Y 1600

El segundo tramo analizado y presentado en la ilustración 6.5, corresponde a la trayectoria recorrida de la segunda curva que es a derechas.

Parte de la posición 1350 y ha sido fijado el fin, en la lectura 1600.

La orientación inicial calculada (Z) es de -74 grados, el recorrido total de 243,3 metros y la pendiente en el punto de inicio de 1,1 grados.

Puede apreciarse que, ambas rutas transcurren separadas; la ruta matemática se mantiene en el carril, a excepción de algunos puntos entre el 1425 y el 1450.

Con objeto de poder analizar con más profundidad los resultados, se divide la ruta en dos tramos.
El primer gráfico (Ilustración 6.6) analiza el recorrido entre la posición 1350 y la posición 1500.

La ruta matemática permanece dentro de los carriles de 1,5 metros asignados a izquierda y derecha de la ruta GPS hasta la posición 1395 (Posición Y). Recorre 45 metros en curva y dentro de los márgenes asignados.

Cabe destacar que a pesar de que en todo el tramo recorrido, el GPS tiene una muy buena cobertura de satélites, este debe sufrir algún tipo de interferencia puesto que incorpora saltos o giros inesperados que distorsionan lo que podría ser una ruta más real como se puede ver en la ilustración 6.7.

De no ser por esta corrección del GPS (posiciones marcadas como X, Y, Z en la ilustración 6.6), la bondad del cálculo matemático hubiera sido muy superior a esos 45 metros.

El segundo gráfico (Ilustración 6.8), presenta el resto de la ruta hasta la posición 1600.
En esta segunda mitad del trayecto (Ilustración 6.8), descartadas las primeras 25 posiciones, la ruta matemática y la ruta GPS no se separan más allá de lo que representa el carril pintado de 1,5 metros. La distancia recorrida es de unos 75 metros.

En esta segunda mitad del trayecto puede apreciarse la corrección (salto), que hace la ruta del GPS. Podría decirse que vuelve al origen de la ruta marcada en la primera mitad (Ilustración 6.6). De ser así, la ruta matemática se hubiera mantenido dentro de límites casi todo el recorrido.

<table>
<thead>
<tr>
<th>Segmento 2</th>
<th>Tramo1</th>
<th>Tramo2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto Inicio</td>
<td>1350</td>
<td>1350</td>
</tr>
<tr>
<td>Punto Final</td>
<td>1600</td>
<td>1500</td>
</tr>
<tr>
<td>Orientación volante (grados)</td>
<td>-74</td>
<td></td>
</tr>
<tr>
<td>Pendiente (grados)</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>Distancia entre Inicio y Final (m)</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>Máximo punto dentro de carriles</td>
<td>1395</td>
<td>1600</td>
</tr>
<tr>
<td>Distancia recorrida dentro de carriles (m)</td>
<td>45</td>
<td>75</td>
</tr>
</tbody>
</table>

Tabla 6.2: Resumen Ruta Segmento2

6.2.3. SEGMENTO DE RUTA ENTRE PUNTO 3800 Y 4000

El tercer tramo analizado y presentado en la ilustración 6.9, corresponde a una de las primeras trayectorias recorrida donde se pierde totalmente la cobertura de satélites. En azul, puede apreciarse la ruta GPS y en paralelo la ruta matemática calculada. En esta ruta matemática se representa en blanco cuando la cobertura de satélites es mayor o igual a 6 satélites. En rojo cuando es menor de 2 y en amarillo cuando el número de satélites está entre 2 y 5.
Puede apreciarse que la ruta matemática se desarrolla de manera paralela y dentro del mismo carril que lleva la ruta GPS hasta el final del primer tramo sin cobertura de satélites (rojo).

Parte de la posición 3800 y recorre hasta la 4000.

La orientación inicial del vehículo es de -72,7 grados, el recorrido total es de 324,4 metros y la pendiente calculada para el punto de inicio 3800 es de 4,6 grados.

En la ilustración 6.10, se puede ver con más detalle cómo se desarrolla la trayectoria. Cuando existen lecturas de GPS distintas y de manera continua, estas se reflejan en la ruta señalada (azul más oscuro) y los carriles de 1,5 metros a ambos lados en azul más claro y discontinuo. Cuando el vehículo deja de tener cobertura satelital, la posición Norte y Este no varía, y se refleja en la gráfica como vacío.

Siendo el recorrido de la ruta de abajo a la derecha hacia arriba a la izquierda, la ruta matemática descrita se comporta de manera correcta hasta la posición 3890, permaneciendo dentro de los carriles de 1,5 metros a ambos lados de la ruta GPS. Puede intuirse que esto es así a pesar de no tener posicionamiento de GPS en las lecturas intermedias.

Si se extrapolan las trayectorias de GPS y matemática a partir de las primeras 20 lecturas, se puede afirmar que la inicialización de la trayectoria matemática es mejorable puesto que, ya nace sesgada. En este caso, podría argumentarse que el motivo de la divergencia de ambas trayectorias sería “una incorrecta inicialización de la orientación del vehículo”.

Ilustración 6.10: Distancia Ruta Matemática vs GPS

Ilustración 6.11: Segmento 3- GPS y matemática extrapolada
La tabla resumen del recorrido presentado quedaría como se describe a continuación:

<table>
<thead>
<tr>
<th>Segmento 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto Inicio</td>
</tr>
<tr>
<td>Punto Final</td>
</tr>
<tr>
<td>Orientación volante</td>
</tr>
<tr>
<td>Pendiente (grados)</td>
</tr>
<tr>
<td>Distancia entre Inicio y Final (m)</td>
</tr>
<tr>
<td>Máximo punto dentro de carriles</td>
</tr>
<tr>
<td>Distancia recorrida dentro de carriles (m)</td>
</tr>
</tbody>
</table>

Tabla 3.3: Resumen Ruta Segmento 3

6.2.4.SEGMENTO DE RUTA ENTRE PUNTO 4800 Y 5800

Por último, se presenta el tramo de ruta que transcurre bajo el túnel. En la ilustración 6.12, puede apreciarse la perdida de señal GPS entre unas posiciones posterior a la 4800 y su recuperación entre las posiciones 5600 y 5800.

En el intervalo descrito, Google Earth une la última posición con cobertura con la primera una vez pasado el túnel. Por esto se ve una línea recta.
La ruta matemática calculada, parece que presenta una buena orientación inicial y una deriva muy acotada ya que finaliza muy próxima a la reentrada de la señal GPS.

En los dos próximos gráficos de Excel se hace zoom al inicio y finalización de la ruta matemática, con objeto de apreciar más el detalle.

En la ilustración 6.13 puede apreciarse como la ruta matemática arranca y permanece dentro de los carriles de 1,5 metros asignados a la trayectoria GPS mientras que existe señal de GPS válida.

En la siguiente gráfica se presenta la salida del túnel y el final del segmento analizado.

Según puede apreciarse en la ilustración 6.14, la ruta matemática calculada e iniciada en la posición 4800, recorre kilómetro y medio, finalizando e interceptando con la señal GPS y sus carriles asociados, una vez que la señal GPS vuelve a estar disponible.

Puede intuirse que a pesar de no tener posicionamiento de GPS en 800 posiciones de las 1000 que abarca el segmento analizado, el recorrido de la ruta matemática calculada debe haber ido muy parejo al de un hipotético GPS bajo el túnel puesto que coinciden en sus trayectorias a la salida del túnel.
En la tabla 6.4 se puede ver el resumen del segmento 4.

<table>
<thead>
<tr>
<th>Segmento 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto Inicio</td>
<td>4800</td>
</tr>
<tr>
<td>Punto Final</td>
<td>5800</td>
</tr>
<tr>
<td>Orientación volante (grados)</td>
<td>-50,4</td>
</tr>
<tr>
<td>Pendiente (grados)</td>
<td>0,05</td>
</tr>
<tr>
<td>Distancia entre Inicio y Final (m)</td>
<td>1620</td>
</tr>
<tr>
<td>Máximo punto dentro de carriles</td>
<td>5743</td>
</tr>
<tr>
<td>Distancia recorrida dentro de carriles (m)</td>
<td>1527,7</td>
</tr>
</tbody>
</table>

Tabla 6.4: Resumen Ruta Segmento 4
A la vista de los resultados obtenidos en cada uno de los cuatro segmentos analizados, no parece que haya una única causa respecto a si el deterioro en la trayectoria calculada matemáticamente, viene dado por:

a) Deriva acumulada en el cálculo matemático
b) Una incorrecta inicialización de la orientación del vehículo
c) Saltos o interferencias del propio dispositivo GPS que, aun teniendo una cobertura excelente, realiza desplazamientos bruscos en su trayectoria.

En el caso del segmento 1 analizado (ilustración 6.2 y 6.3), parece claro que las causas de la divergencia tan temprana de la ruta matemática frente a los carriles de la ruta GPS viene dada por los puntos ‘b’ y ‘c’ anteriormente señalados.

En el caso del segmento 2 (ilustración 6.5, 6.6 y 6.8), están muy claras las correcciones de posición que hace el GPS. Qedaría como causa principal de las divergencias el apartado ‘c’.

En el caso del segmento 3 (ilustración 6.11) según la gráfica de extrapolación presentada de las primeras 20 posiciones leídas, queda claro el problema de inicialización. La causa tipificada, correspondería al apartado ‘b’.

Por último y para el segmento 4, (ilustración 6.13 y 6.14) donde la cobertura de satélites solo se da en un 20% del segmento analizado, queda patente el buen recorrido de la ruta matemática, saliendo del túnel y reencontrándose con las primeras posiciones leídas de la ruta GPS.

Tomando como mejor caso el segmento 4, se puede decir que la ruta matemática calculada podría llegar a tener una divergencia acotada frente a la señal GPS por debajo de las 900 lecturas de señal procesadas; siempre y cuando la inicialización de la trayectoria sea correcta y se obtienen saltos y correcciones bruscas de posicionamiento entregado por el GPS.
7. GPS VS KALMAN
7.1. DESCRIPCIÓN GENERAL

En la ilustración 7.1 se presenta una vista general del resultado obtenido cuando se aplica el filtro de Kalman a la ruta de partida. Cada 200 iteraciones de tiempo se marca un icono sobre la ruta para tener mejor referencia de cada posición. Para que sea más visual se utilizan tres colores diferentes en función del número de satélites que se disponen en cada instante. El color blanco se utiliza cuando se dispone de 6 o más satélites. El color rojo se utiliza cuando se dispone de 2 o menos satélites y el color amarillo para el resto de situaciones. En ilustraciones posteriores se utiliza el color azul para representar la ruta obtenida del dispositivo GPS.

7.2. INICIALIZACIÓN DE LA TRAYECTORIA

La ruta con el filtro de Kalman empieza en el punto 400, a fin de cuentas, se necesita establecer un mismo punto de partida para todas las pruebas. Se decide partir de este punto y no antes puesto que en puntos anteriores la señal dispone de mucho ruido y el vehículo hace varias maniobras fuera de la carretera, antes de iniciar la marcha. Es en dicho punto, donde el vehículo recibe buena señal de GPS y se encuentra bien situado sobre la calzada.

Para el cálculo de la orientación inicial se hacen varias pruebas, tomando diferentes puntos con el fin de homogeneizar todas las comparativas. Finalmente dado los resultados obtenidos se acuerda utilizar el punto 399 y 389 para el cálculo del giro inicial. Para el cálculo de la pendiente inicial se decide tomar el valor del ángulo Y del giróscopos en la posición 399.
7.3. SINTONIZACIÓN DEL PARÁMETRO R

Este parámetro marca el comportamiento del sistema significativamente, como se vio en el capítulo 3.4 del bloque I, fija el valor de la perturbación en el observador.

En un sistema que no varía su estado en el tiempo es posible establecer el valor de R como constante. Pero en este caso, cada iteración de tiempo es un estado totalmente diferente, por tanto, debe ser variable.

En una primera prueba se establece que el valor de R será 400 si el número de satélites es <=3. Si por el contrario se tiene 5 satélites o más R será 0.0004 y el tramo intermedio se asigna 0,5 a R. Los valores de corte para diferenciar los 3 estados se basan en el comportamiento general de un dispositivo GPS.

En la ilustración 7.2 se puede apreciar la proporción que ocupa cada uno de los 3 estados, dentro de un rango de 0 a 9 satélites. De 0 a 3 satélites se aplica el color rojo de la misma manera que se representa la ruta, amarillo sólo para 4 satélites y blanco para 5 o más. Lo más destacable es el poco protagonismo que toma el estado de color amarillo, dejando un sistema muy extremista pues el recorrido se representará como rojo o blanco y solo en alguna iteración concreta se utilizará el amarillo.

7.3.1 OPCIÓN A

A continuación, se muestra ciertos puntos de la ruta A, que es la que corresponde a los valores de R anteriormente citados. En líneas generales, el sistema funciona correctamente, pero hay ciertos puntos donde el comportamiento puede ser mejorado. Estos puntos se indican con un círculo verde.

El primer punto destacable se encuentra en la posición 3220 que se muestra en la ilustración 3.17. Donde la cobertura cambia de 3 a 4 satélites y en la posición 3221 cambia de 4 a 5 satélites. Se puede ver que la ruta pasa de un tramo rojo a uno blanco sin apenas transición entre ellas puesto que el tramo amarillo es muy corto, esto provoca ese giro inesperado.
En la ilustración 7.4 se muestra otro comportamiento similar. Si se observa el fichero de entrada, en la posición 3373 la cobertura cambia de 0 a 5 satélites. En base a la distribución de valores de R se pasa de un tramo rojo a uno blanco, sin pasar por el estado intermedio. Lo que hace pensar que el vehículo va a cambiar de carril, pero al final continúa por el mismo.

La ilustración 7.5 es un nuevo ejemplo, se sitúa en el punto 4487 donde pasa de tener 3 a 4 satélites hasta la posición 4490 donde consigue 5. Aparentemente el vehículo circula por su carril, pero se pronuncia un giro que no parece representar la realidad.
En la ilustración 7.6, se puede ver otro comportamiento extraño más aún que el del caso anterior. Desde el punto 4630 hasta el 4633 la cobertura dispone de 4 satélites, a partir de la 4634 tiene 5 e irá aumentando progresivamente. Aunque en este caso la transición de estados no es tan radical como en casos anteriores, el comportamiento refleja que necesita ser suavizaba aún más.

Por último, la ilustración 7.7 hace referencia al punto 5711 donde el vehículo ha recorrido el túnel más largo de toda la ruta. Al salir de éste circula durante bastantes metros con 4 satélites y en el punto 5711 consigue 5. De nuevo se plantea otra situación mejorable.
7.3.2. OPCIÓN B

Tras el resultado obtenido, se puede concluir que hay zonas que se están catalogando como rojas y quizá la señal tiene menos ruido del atribuido o como blancas y la señal tiene más ruido del atribuido. Por tanto, se decide modificar los límites de los 3 estados dándole más peso al estado amarillo para tratar que el sistema obtenga mejores resultados.

Como prueba final se establece el valor de R será 400 si el número de satélites es <=2. Si por el contrario se tiene 6 satélites o más R será 0.0004 y el tramo intermedio se asigna 0,5 a R, se visualiza mejor en la ilustración 3.22. El reparto de estados es ahora más equitativo.

El siguiente paso es comparar la opción A con la opción B, para ello se representan ambas en las mismas posiciones que en el caso anterior y se marca con una flecha verde la opción B para poder identificarla.

La ilustración 7.9 muestra el caso contemplado en la ilustración 7.3, cabe destacar que la opción B contiene un tramo amarillo que antes era casi despreciable. Esto hace que tarde más tiempo hasta situarse cerca de la señal GPS. La opción A en este punto es más radical y se pega al GPS inmediatamente.

La comparativa II se muestra en la ilustración 7.10 que hace referencia a la ilustración 7.4. La opción B evita ese comportamiento extraño de la opción A. Ahora sí el guiado del vehículo continúa por el carril correspondiente. Es un claro ejemplo de mejora en el reparto de valores de R, donde en la opción A se consideraba un tramo como blanco, cuando en realidad no debía serlo pues coincide con un tramo de señal GPS donde no es tan fiable como se esperaba.
La comparativa III se muestra en la ilustración 7.11, que representa el caso tratado en la ilustración 7.5. Además, se añade la ruta obtenida del dispositivo GPS en color azul para entender mejor el comportamiento. Como se puede ver la opción A presenta una desviación debido a que la señal GPS así lo indica. Por otro lado, la opción B continúa el guiado del vehículo sin que esa desviación tome demasiado peso evitando así giros innecesarios.

La comparativa IV se puede ver en la ilustración 7.12 que muestra el tramo tratado en la ilustración 7.6. De nuevo el GPS describe una trayectoria que no es correcta y la opción A sufre su influencia, por el contrario, la opción B continúa con el guiado de manera correcta sin dejarse influenciar por información errónea.
Por último, se muestra la parte de la ruta que más interés despierta. La ilustración 7.13 hace referencia al comportamiento observado en la ilustración 3.21. Se puede apreciar como a la salida del túnel ambas opciones acumulan la misma deriva. Queda claro como la opción A se une a la ruta GPS en la posición 5711, mientras que la opción B no lo hace hasta la posición 5767.
7.3.3. ELECCIÓN FINAL

Dadas estas comparativas y viendo los resultados obtenidos se decide tomar los valores de R de la opción B como definitivos. Es cierto que no existe una solución única, pues durante todo el recorrido que realiza el vehículo aparecen multitud de situaciones y no es posible ajustar el valor de R para que en todas ellas el comportamiento sea ideal.

En las comparativas I y V se puede ver como la opción B tarda más en acercarse a la señal GPS pura que la opción A, esto va ligado directamente con el aumento de la zona amarilla y por consiguiente lo que ocurre es que la opción B otorga más peso al INS en los puntos donde la opción A otorga más al GPS.

La opción B consigue mejorar el comportamiento de A en las comparativas II, III, y IV. Puesto que la versión A en estos casos es más susceptible a la información que recibe del GPS, por el contrario, la versión B otorga más peso en este caso a la información que procede del INS de manera que puede continuar con el guiado del vehículo correctamente.

En líneas generales la opción B amplía la zona amarilla en comparación con la A y por consiguiente reduce el peso que otorga al GPS en los momentos que se tiene una cobertura de entre 3 y 5 satélites, esto hace que haya situaciones donde este comportamiento favorezca el resultado y que existan otras donde no.

Para finalizar, se añade la tabla 7.1 que refleja el comportamiento general de la variable R durante todo el recorrido del vehículo. De esta forma se puede apreciar mejor todos los cambios de estado que se producen debido a la variación de satélites disponibles en función de las circunstancias que le rodean.

Tabla 7.1: Comportamiento de R
7.4. ANÁLISIS DE TRAMOS

En este apartado se van a detallar los tramos más relevantes que aparecen en la ruta descrita por el vehículo analizando los valores obtenidos por el conjunto del sistema y comparando su comportamiento frente al dispositivo GPS. Al representar las dos rutas simultáneamente los indicadores de posición aparecerán por duplicado. Ante una pérdida de señal GPS, el dispositivo se comporta siempre de la misma manera traza una línea recta con origen en el último punto que tuvo señal y con destino en el primer punto que recupera la señal.

En las tablas donde aparece R (azul) siempre se representa en función al eje principal y cuando aparece ganancia (naranja) y covarianza (rojo) se representa en función del eje secundario, puesto que R puede alcanzar valores mucho mayores.

7.4.1. TRAMO I
Descripción general

En la ilustración 7.14 se puede observar una vista general del tramo inicial de la ruta donde se dispone de buena señal de GPS en todo su recorrido. Debido a esto, ambas rutas aparecen superpuestas y apenas se aprecian diferencias entre una y otra. El tramo analizado comienza en el punto 400 y finaliza en el punto 1400.

Ganancia

![Ilustración 7.14: Tramo 400 → 1400](image)

<table>
<thead>
<tr>
<th>Tabla 7.2: R y Ganancia</th>
<th>0.00005</th>
<th>0.0004</th>
<th>0.0003</th>
<th>0.0002</th>
<th>0.0001</th>
<th>0</th>
<th>0.00005</th>
<th>0.0004</th>
<th>0.0003</th>
<th>0.0002</th>
<th>0.0001</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>436</td>
<td>472</td>
<td>508</td>
<td>544</td>
<td>580</td>
<td>616</td>
<td>652</td>
<td>688</td>
<td>724</td>
<td>760</td>
<td>796</td>
<td>832</td>
</tr>
<tr>
<td>R</td>
<td>Ganancia</td>
<td></td>
</tr>
</tbody>
</table>

Ilustración 7.14: Tramo 400 → 1400
En las tablas 7.2 y 7.3 se representan los valores de R, ganancia y covarianza. En este caso se divide en dos gráficas puesto que los valores son muy parejos. Al ser un tramo sin apenas cambios de estado, es decir, la señal GPS se mantiene más o menos constante los valores de R no varían, y se mantienen a 0,0004 por tanto el valor de la ganancia permanece constante al igual que el de la covarianza.

Bondad
Este tramo analizado corresponde con una distancia de unos 935 metros aproximadamente. Dada la buena recepción de satélites durante todo este recorrido se puede ver como claramente el sistema funciona bien pues otorga mayor peso a la información recibida por el observador. Ese es el motivo por el que ambas rutas se solapan y apenas muestran diferencias reseñables entre una y otra.

7.4.2.TRAMO II
Descripción general
En la ilustración 7.15 se puede ver el siguiente tramo a analizar, comienza en el punto 1400 y finaliza en el 3000. Lo más destacable que aparece es una leve pérdida de señal GPS después del punto 1600 y una de mayor importancia después del punto 2000.

En el punto 1600 es posible que la pérdida se deba al atravesar un panel que se encuentra encima de la vía. Este panel produce una nueva pérdida a partir del punto 3000 puesto que el vehículo hace un cambio de sentido y lo atraviesa más adelante.

Por otro lado, entre el punto 2000 y el 2200 el vehículo circula por un túnel, esto genera una pérdida de señal GPS más prolongada en el tiempo que la anterior.

Ganancia

![Gráfico de ganancia](#)

En la tabla 7.4 se puede ver los valores de R y de la ganancia, R permanece constante salvo en las dos ocasiones arriba mencionadas. Claramente se puede ver como R toma el valor 400 cuando la señal GPS se pierde, el segundo tramo es más señalado pues la pérdida es más prolongada.

En cuanto a la ganancia se puede ver que permanece constante, en torno a 0,15. Cuando el dispositivo pierde la señal GPS la ganancia toma el valor 0, hasta que la señal GPS se recupera. Una vez se recupera la señal, la ganancia incrementa su valor para terminar ajustándose a 0,15. Su valor máximo tras una pérdida de señal dependerá del tiempo que R tome el valor de 400, a mayor tiempo mayor será el máximo alcanzado, por eso se puede ver como alcanza mayor valor tras la segunda pérdida de señal y no con la primera. Esto ocurre en el punto 2164 y toma un valor de 0,759.
En la tabla 7.5, se puede observar el comportamiento de la covarianza frente a R. En este caso, la covarianza permanece constante con un valor de 0,0001. Al contrario que en el caso anterior ante una pérdida de señal GPS el valor de la covarianza se dispara directamente proporcional al tiempo que dure la pérdida. Es por eso que su valor máximo lo alcanza tras la segunda pérdida donde obtiene 0,0012 en la posición 2163. Al recuperar la señal perdida el valor de covarianza vuelve a estabilizarse.

Bondad

Este segundo tramo analizado, tiene una longitud de 1646 metros en total. Se caracteriza por 2 pérdidas de señal GPS. Todas las derivas se miden en el momento en el que la ruta pasa de color rojo a amarillo. Es cierto que al comparar ese punto con el representado por el GPS, éste no es la más fiable en ese momento. Pero es el único del que se dispone y todas las medidas están condicionadas bajo las mismas circunstancias.

Tras la primera pérdida de unos 26 metros, en el punto 1630 se mide una deriva de 3,3 metros. Tras la segunda pérdida el vehículo ha recorrido 115 metros sin cobertura, en el punto 2156 se mide una deriva de 2,98 metros.

7.4.3. TRAMO III

Descripción General
BLOQUE III: ANÁLISIS DE RESULTADOS

En la ilustración 7.16 se puede ver el tercer tramo analizado, desde el punto 3200 hasta el 3600. Se caracteriza por 4 pérdidas de señal GPS, el vehículo circula por una vía de servicio que cruza la vía de circunvalación M40 y sus accesos, cada vez que esto ocurre aparece una pérdida de señal.

Hasta este momento la representación de los puntos de referencia por parte tanto de la ruta GPS, como del filtro de Kalman, siempre habían coincidido. Analizando el fichero de partida, se puede observar que entre el punto 3190 y 3216 el dispositivo GPS dispone de 0 satélites, es por esto, por lo que el punto 3200 aparece representado por un icono de manera repetida.

Ganancia

La tabla 7.6 refleja el comportamiento de la ganancia frente a R para este tramo. Cabe destacar los cuatro momentos de pérdida de señal GPS pues coinciden con los cuatro momentos en los que R toma el valor 400. La ganancia por su parte se mantiene constante con un valor de 0,1534 hasta que aparece una pérdida. De las cuatro pérdidas analizadas en este tramo la segunda pérdida es la más prolongada en el tiempo, pues corresponde al momento en el que el vehículo atraviesa más carriles. Después de que esto ocurra la ganancia obtiene 0,7053 como valor máximo de este tramo en el punto 3377.

Covarianza

| Tabla 7.6: R y Ganancia |
| Tabla 7.7: R y Covarianza |
En la tabla 7.7 se puede ver el comportamiento de la covarianza en este tramo. Cabe destacar que su valor máximo es 0,0009 en el punto 3367. Una vez más consigue el valor máximo tras la mayor pérdida de señal GPS de las 4 analizadas en este tramo. De los 4 incrementos que se pueden observar el último es que menor valor toma pues corresponde a la pérdida con menos distancia recorrida.

Bondad

Este tramo consta de una distancia total de 735 metros. Aparecen cuatro pérdidas de señal GPS destacables por tanto se realizan cuatro mediciones de deriva. Aunque este tramo empieza en la posición 3200 la primera pérdida de señal ocurre antes de esta posición, por tanto, suma un total de 46 metros sin señal. Tras recuperarla en la posición 3215 se obtiene 2,99 metros de deriva. Después de la segunda pérdida que tiene una longitud de 126 metros, en la posición 3359 se obtiene 3,17 metros. Nuevamente aparece otra pérdida de unos 60 metros y en la posición 3476 se obtienen 3,3 metros. Para finalizar este tramo, tras la cuarta y última pérdida de señal de unos 38,5 metros, en la posición 3562 se obtiene 2,3 metros de deriva.

7.4.4. TRAMO IV

Descripción General

En la ilustración 3.31 se puede ver como el vehículo circula por una vía de servicio y atraviesa 2 calles. Esto provoca una pérdida bastante prolongada en el tiempo. Más adelante aparecen 2 paneles luminosos que provocan de nuevo pérdidas. Es un tramo en general con bastante inestabilidad en la señal, pues en poca distancia aparecen muchos factores que provocan esos comportamientos extraños en la señal del GPS.
En la tabla 7.8 se puede ver el comportamiento de la ganancia frente a R. A pesar de que la gráfica sólo muestra dos momentos de R con valor 400, se puede apreciar leves diferencias en el comportamiento de la ganancia.

El valor máximo de la ganancia en este tramo es 0,7971 y se consigue en la posición 4398. De todos los tramos analizamos hasta el momento, en este caso se puede ver como es aquí donde la ganancia tarda más en obtener su valor máximo. R alcanza el valor de 400 hasta la posición 4327, y de este punto al 4396, R es igual a 0,5. Este comportamiento es debido a que aparecen muchos tramos catalogados como amarillos, algo que antes no había ocurrido.

Se puede apreciar como la ganancia vuelve a representar un pico con valor máximo de 0,6628 en la posición 4494 como si se tratara de una nueva pérdida de señal GPS. Esto es debido a que entre las posiciones 4427 y 4493 aparece una zona amarilla, por tanto, la ganancia refleja un comportamiento similar.

Una vez más en este tramo encontramos otra situación similar, entre las posiciones 4665 y 4683 R toma el valor de 0,5. La ganancia alcanza un valor de 0,4138 en la posición 4684.

Todas estas variaciones en la ganancia son debidas a los constantes cambios del valor de R, debido a su vez, a las interferencias que sufre la señal GPS.
La tabla 7.9 recoge el comportamiento de la covarianza para este tramo. Al igual que ocurría con la ganancia, la covarianza alcanza su valor máximo después de la primera pérdida de señal GPS. En este caso la covarianza alcanza el valor 0,0016 en la posición 4396. Lo hace en esta posición y no antes por el comportamiento de R, igual que ocurría con la ganancia, es debido a que entre las posiciones 4328 y 4397, R es igual a 0,5.

En la posición 4491 la covarianza dibuja un nuevo aumento con un valor de 0,0008 debido a que entre las posiciones 4427 y 4493, R es igual a 0,5. Como se mencionó anteriormente corresponde a un tramo amarillo.

Para finalizar aparecen dos nuevos incrementos en el valor de la covarianza en las posiciones 4692 y 4683 de 0,0003.

Bondad
Este tramo tiene una distancia total de 1180 metros. Tras la primera pérdida, el vehículo recorre 106 metros sin cobertura y en el punto 4328 se miden 9,5 metros de deriva. Por último, en la posición 4629, tras una pérdida de señal donde el vehículo recorre 16,8 metros se vuelve a medir obteniendo 1,8 metros de deriva.
7.4.4. TRAMO V

Descripción General

En la ilustración 7.18 se puede ver el tramo de la ruta más conflictivo. Comienza en el punto 4800 y finaliza en el punto 5800. Es el tramo de la ruta donde aparece la mayor pérdida de señal GPS en cuanto a distancia se refiere. El vehículo atraviesa un túnel de la M30 que provoca la pérdida de satélites y la recupera unos metros después de su salida.

Al igual que ocurrió en el punto 3200, el GPS en este caso posiciona los puntos 4800, 5000, 5200 y 5400 en un mismo punto en el mapa. Esto es debido a que en todos esos puntos no dispone de cobertura de satélites y los representa sobre la última posición en la que sí tuvo cobertura.

Ganancia

Como se puede observar en la tabla 7.10, este tramo es el más significativo puesto que R toma el valor 400 desde la posición 4841 hasta 5649. Todas las pérdidas de señal GPS antes analizadas no han sido tan relevantes como ésta.
El valor máximo de ganancia en este tramo es alcanzado a la salida del túnel, pero no de manera inmediata puesto que la recuperación de cobertura GPS es algo lenta.

R toma el valor de 0,5 desde la posición 5650 hasta 5765. La ganancia por tanto alcanza su máximo en la posición 5766 con un valor de 0,8979. No sólo es el valor máximo de la ganancia en este tramo, lo es también de la ruta completa.

Tras la recuperación de la señal GPS, el sistema vuelve a sufrir una leve pérdida en la señal y el valor de R es de 0,5 entre las posiciones 5775 y 5795. Es por esto por lo que la ganancia dibuja un nuevo pico al final del tramo analizado con un valor de 0,4373 en la posición 5796.

Covarianza

En la tabla 3.16 se puede ver el comportamiento de la covarianza frente a R en el tramo 4800-5800. La covarianza alcanza su valor máximo del tramo en la posición 5648 con 0,0091. También corresponde al valor máximo en toda la ruta.

En los tramos analizados anteriormente, una vez alcanzaba su máximo volvía a su valor de 0,0001 inmediatamente, en este caso el descenso es muy progresivo. Esto se debe al comportamiento posterior de R, pues pasa de tener el valor de 0,5 a 0,0004 durante nueve posiciones.

A continuación, vuelve a tomar el valor de 0,5 desde la posición 5775 hasta la 5795 y de nuevo cambia a 0,0004 y así finaliza el tramo. Este último aumento de R provoca el aumento en la covarianza que sube hasta 0,0003 ya en el final de la gráfica.

Bondad
En este tramo el vehículo recorre un total de 1630 metros. Tras la pérdida de señal durante 1260 metros en el punto 5650 se mide una deriva de 26,80 metros. La mayor deriva acumulada en toda la ruta debido a que es directamente proporcional a la distancia recorrida sin señal GPS.
En el siguiente apartado se van a presentar una serie de conclusiones en función de los resultados obtenidos en este proyecto.

- Se dan por cumplidos los objetivos que se habían marcado para este estudio, es cierto que no existe una solución única y que todo depende del nivel de exactitud que se precise. Este sistema es capaz de continuar con el guiado del vehículo en circunstancias donde un dispositivo GPS por sí sólo no puede hacerlo.

- El filtro de Kalman ha sido la clave para poder combinar la información obtenida entre los diferentes dispositivos, pero si bien es cierto se pueden obtener multitud de resultados. De todos los obtenidos se han elegido los mejores posibles, puesto que la sintonización de sus parámetros es algo compleja. Se realizaron pruebas por ensayo y error, e incluso se utilizaron parámetros basados en proyectos similares, esto sirvió para entender mejor el comportamiento de cada uno de ellos. De la misma manera que todas las pruebas realizadas se basan en la misma ruta de partida, es muy posible que para otra ruta diferente los parámetros del filtro de Kalman deban ser modificados para conseguir un mejor ajuste.

- En el desarrollo matemático se decidió obviar el ángulo Roll del vehículo puesto que los resultados obtenidos no fueron muy diferentes. Es el único dato aportado en el fichero de partida que no se ha utilizado, corresponde al peralte de la carretera especialmente variable en las curvas y que afecta directamente a la distancia recorrida por el vehículo, quizá para futuras mejoras puede ser un área de mejora.

- Los resultados obtenidos dependen directamente de la deriva de los dispositivos utilizados, la cuál no puede eliminarse por completo.
REFERENCIAS BIBLIOGRÁFICAS

1. http://upcommons.upc.edu/bitstream/handle/2099.1/6930/memoriadef.pdf?sequence=1
11. http://home.wlu.edu/~levys/kalman_tutorial/
17. http://5hertz.com/tutoriales/?p=431
18. https://www.youtube.com/watch?v=7fsC2fCw-8