Spectral binning for energy production calculations and multijunction solar cell design

García Vara, Iván; McMahon, William E.; Habte, Aron; Geisz, John F.; Steiner, Myles A.; Sengupta, Manajit y Friedman, Daniel J. (2017). Spectral binning for energy production calculations and multijunction solar cell design. "Progress in Photovoltaics: Research and Applications", v. N/A (n. N/A); pp. 1-7. ISSN 1099-159X. https://doi.org/10.1002/pip.2943.

Descripción

Título: Spectral binning for energy production calculations and multijunction solar cell design
Autor/es:
  • García Vara, Iván
  • McMahon, William E.
  • Habte, Aron
  • Geisz, John F.
  • Steiner, Myles A.
  • Sengupta, Manajit
  • Friedman, Daniel J.
Tipo de Documento: Artículo
Título de Revista/Publicación: Progress in Photovoltaics: Research and Applications
Fecha: Septiembre 2017
Volumen: N/A
Materias:
Palabras Clave Informales: energy harvesting efficiency multijunction solar cells spectral binning
Escuela: Instituto de Energía Solar (IES) (UPM)
Departamento: Electrónica Física
Grupo Investigación UPM: Semiconductores III-V
Licencias Creative Commons: Ninguna

Texto completo

[img] PDF (Document Portable Format) - Acceso permitido solamente a usuarios en el campus de la UPM hasta 1 Octubre 2018 - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB)

Resumen

Currently, most solar cells are designed for and evaluated under standard spectra intended to represent typical spectral conditions. However, no single spectrum can capture the spectral variability needed for annual energy production (AEP) calculations, and this shortcoming becomes more significant for series-connected multijunction cells as the number of junctions increases. For this reason, AEP calculations are often performed on very detailed yearlong sets of data, but these pose 2 inherent challenges: (1) These data sets comprise thousands of data points, which appear as a scattered cloud of data when plotted against typical parameters and are hence cumbersome to classify and compare, and (2) large sets of spectra bring with them a corresponding increase in computation or measurement time. Here, we show how a large spectral set can be reduced to just a few “proxy” spectra, which still retain the spectral variability information needed for AEP design and evaluation. The basic “spectral binning” methods should be extensible to a variety of multijunction device architectures. In this study, as a demonstration, the AEP of a 4-junction device is computed for both a full set of spectra and a reduced proxy set, and the results show excellent agreement for as few as 3 proxy spectra. This enables much faster (and thereby more detailed) calculations and indoor measurements and provides a manageable way to parameterize a spectral set, essentially creating a “spectral fingerprint,” which should facilitate the understanding and comparison of different sites. (C) John Wiley & Sons Ltd

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
FP7299878Sin especificarSin especificarFP7 People: Marie‐Curie Actions, Grant/Award Number: REA grant agreement No. 299878
Gobierno de EspañaRYC‐2014‐15621Sin especificarSin especificarSin especificar

Más información

ID de Registro: 47860
Identificador DC: http://oa.upm.es/47860/
Identificador OAI: oai:oa.upm.es:47860
Identificador DOI: 10.1002/pip.2943
URL Oficial: http://onlinelibrary.wiley.com/doi/10.1002/pip.2943/full
Depositado por: Dr. Iván García
Depositado el: 26 Sep 2017 08:34
Ultima Modificación: 26 Sep 2017 08:34
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM