Abstract
Modeling and prediction in continuous domains are one of the most
important and studied problems in Mathematics and Computer Science.
Models that can not only solve regression tasks, but also expose the
interdependencies inside the domain are of high value for researchers in
many fields. One of the most popular methods for learning the relations
between variables in a continuous domain are Gaussian Networks. In
this thesis we present a new model that can learn a Gaussian Network.
This model can later be used for regression or analysis of the relations
in the domain, with a particular interest in its application in the field of
Neuroscience.---RESUMEN---Modelar y predecir en dominios continuos es uno de los problemas más estudiados
en el campo de las Matemáticas y la Ciencia de la Computación.
Modelos que no solamente puedan resolver problemas de regresión, si no
también exponer las relaciones entre las variables de un dominio son de
gran valor para los investigadores de muchos campos científicos. Uno de
los modelos más populares usados para resolver estos problemas son las
Redes Gaussianas. En esta tesis se presenta un nuevo modelo basado en
Redes Gaussianas que puede ser ajustado a partir de datos para luego
ser utilizado en tareas de regresión y análisis, con un especial interés en
su aplicación al campo de la Neurociencia.