Stability of an Isorotating Liquid Bridges between Equal Disks under Zero-gravity Conditions

Slobozhanin, L.A. y Perales Perales, José Manuel (1996). Stability of an Isorotating Liquid Bridges between Equal Disks under Zero-gravity Conditions. "Physics of Fluids", v. 8 (n. 9); pp. 2307-2318. ISSN 1070-6631.

Descripción

Título: Stability of an Isorotating Liquid Bridges between Equal Disks under Zero-gravity Conditions
Autor/es:
  • Slobozhanin, L.A.
  • Perales Perales, José Manuel
Tipo de Documento: Artículo
Título de Revista/Publicación: Physics of Fluids
Fecha: Agosto 1996
Volumen: 8
Materias:
Escuela: E.U.I.T. Aeronáutica (UPM) [antigua denominación]
Departamento: Vehículos Aeroespaciales [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (683kB) | Vista Previa

Resumen

The stability of the relative equilibrium of an isorotating axisymmetric liquid bridge between two equal‐radius coaxial disks under zero‐gravity conditions has been investigated in detail. The free surface is assumed to be pinned to the edges of the disks and in equilibrium and only perturbations compatible with this pinning are considered. In the plane of the dimensionless variables characterizing the liquid bridge length and the liquid bridge volume, the stability regions for a set of values of the Weber number have been calculated. The stability region structure and the nature of critical perturbations change when the Weber number, W, passes through the values W0 (2.05<W0<2.06) and W1 (2.44<W1<2.45). It has been found that, for W<W0, the stability region is connected, and the neutral stability may take place with respect to nonaxisymmetric perturbations as well as to axisymmetric ones. In the latter case, it has been established whether the critical axisymmetric perturbations are reflectively symmetric or reflectively antisymmetric about the equatorial plane. When the increasing Weber number passes through the value W0, the stability region breaks into two disconnected parts. The first exists for all Weber numbers larger than W0. For the states belonging to the boundary of this part, only nonaxisymmetric perturbations are critical. The second part exists only for Weber numbers between W0 and W1. Its boundary is determined by the states that may be neutrally stable to nonaxisymmetric perturbations or to axisymmetric ones. The characteristics of the shape of the neutrally stable surfaces have been calculated for a wide range of the Weber number

Más información

ID de Registro: 4843
Identificador DC: http://oa.upm.es/4843/
Identificador OAI: oai:oa.upm.es:4843
Depositado por: Memoria Investigacion
Depositado el: 05 Nov 2010 12:23
Ultima Modificación: 17 Ene 2017 12:08
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM