Struggling with Riordan involutions formula.

Ana Luzón*

Departament of Applied Mathematics.
Universidad Politécnica de Madrid. Spain.

Third Symposium of Riordan Arrays and Related Topics.
Bloomington(IL) USA. June 20-23, 2016.

*joint work with Manuel A. Morón and Felipe Prieto-Martinez.
Outline

1 Previous results:
 - A brief history.
 - Arithmetical triangles.
 - Finite vs infinite Riordan matrices.
 - Riordan involutions formula.

\[T(f \mid g) = \left(\frac{f}{g}, \frac{g}{f} \right) \]
Outline

1. Previous results:
 - A brief history.
 - Arithmetical triangles.
 - Finite vs infinite Riordan matrices.
 - Riordan involutions formula.

2. Examples of involution formula application
 - Approximations of solutions of Babbage equation.
 - Computation of the A-sequence
 - Self-dual involutions
 - Pseudo-involutions.
1 Previous results:
 - A brief history.
 - Arithmetical triangles.
 - Finite vs infinite Riordan matrices.
 - Riordan involutions formula.

2 Examples of involution formula application
 - Approximations of solutions of Babbage equation.
 - Computation of the A-sequence
 - Self-dual involutions
 - Pseudo-involutions.

3 The group generated by involutions.
 - Products of involutions. Reversible elements.
 - The Ω_0 subgroup.
 - The commutator of the Riordan group.
 - The group generated by Riordan involutions.
A BRIEF HISTORY

THE MASKED RIORDAN GROUP AND SUBGROUPS.

- Jabotinsky matrices and Faber polynomials. (1953)
- Appell polynomials and generalized Appell polynomials. (1880, 1964)
- Sheffer polynomials and Umbral Calculus. Rota (70’s and 80’s)
- Convolution polynomials. Knuth (1992)
- Recursive matrices and Umbral Calculus (1982)
- Self-inverse Sheffer sequences (1976)
- Denh-Sommerville equations (1905-1927)
- and much more....

\[T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right) \]
A BRIEF HISTORY

\[
\begin{pmatrix}
1 & & & & \\
2 & 1 & & & \\
5 & 4 & 1 & & \\
14 & 14 & 6 & 1 & \\
42 & 48 & 27 & 8 & 1 \\
132 & 165 & 110 & 44 & 10 & 1 \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & &
\end{pmatrix},
\]

In page 89 he asked "(5) Is there a theory of arithmetic triangles where a simple function of the generating function of the first column yield the generation function of the nth column?"

\[
T(f \mid g) = \left(\frac{f}{g}, \frac{g}{g} \right)
\]
A BRIEF HISTORY

RENEWAL ARRAYS AND THE A-SEQUENCE

\[b_{n,m} = [x^n](B(x))^m, \quad m \geq 1 \quad \text{and} \quad b_{n,0} = [x^n]B(x) \]

\[b_{n,m} = \sum_{r \leq 0} a_r b_{n-1,m-1+r} \]

with \(b_0 = 1 \) and \(a_0 = 1 \).
A BRIEF HISTORY

THE RIORDAN GROUP (1991)

\[M = (m_{i,j})_{i,j \geq 0} \]

such the jth column is

\[C_j = g(x)[f(x)]^j \]

where

\[g(x) = 1 + g_1 x + g_2 x^2 + g_3 x^3 + \cdots \]
\[f(x) = x + f_2 x^2 + f_3 x^3 + \cdots , \]

\[M = (g(x), f(x)) \] is a Riordan matrix.

\[Pascal = \left(\frac{1}{1-x}, \frac{x}{1-x} \right) \]

\[T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right) \]
A BRIEF HISTORY

PROPER RIORDAN ARRAYS (1994)

\[d_{n,k} = [t^n]d(t)(th(t))^k \]

where \(d_0 \neq 0\) and \(h_0 \neq 0\).

\[\text{Pascal} = \left(\frac{1}{1-t}, \frac{1}{1-t} \right) \]
Our first triangle

El círculo Mágico

Katherine Neville

Un triángulo mágico:

\[
\begin{aligned}
1 \\
2 & -1 \\
3 & -4 & 1 \\
4 & -1 & 6 & -1 \\
5 & -26 & 23 & -8 & 1 \\
& & & & & \\
& & & & & & Y más
\end{aligned}
\]

Felicitades Mary.

Con cariño.

\[
T(f | g) = \left(\frac{f}{g}, \frac{\bar{g}}{g} \right)
\]
Arithmetical triangles

Our first triangle (1998)

\[
S = \begin{pmatrix}
1 \\
2 & -1 \\
3 & -4 & 1 \\
4 & -11 & 6 & -1 \\
5 & -26 & 23 & -8 & 1 \\
6 & -57 & 72 & -39 & 10 & -1 \\
7 & -120 & 201 & -150 & 59 & -12 & 1 \\
\vdots & \ddots
\end{pmatrix}
\]

\[
S = T \left(\frac{2x - 1}{(1 - x)^2} \right| 2x - 1 \right) \equiv \left(\frac{2x - 1}{(1 - x)^2(2x - 1)}, \frac{x}{2x - 1} \right)
\]

\[
T(f \mid g) = \left(\frac{f}{g}, \frac{g}{g} \right)
\]
Arithmetical triangles (2008)

We find a group, $A(\mathbb{K}[[x]])$ of arithmetical triangles such that

$$T(f \mid g) = (d_{i,j})_{i,j \geq 0} \in A(\mathbb{K}[[x]])$$

where

$$d_{i,j} = [x^i] \frac{x^j f(x)}{g^{j+1}(x)} \quad \text{where} \quad f_0 \neq 0, \quad g_0 \neq 0$$

$$Pascal = T(1 \mid 1 - x)$$

Remark

$$d_{i,j} = [x^i] \frac{f(x)}{g(x)} \left(\frac{x}{g(x)} \right)^j \iff T(f \mid g) = \left(\frac{f(x)}{g(x)}, \frac{x}{g(x)} \right)$$

$$T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right)$$
Notation

\[f \equiv f(x) = \sum_{n \geq 0} f_n x^n, \quad fl \left(\frac{x}{g} \right) \equiv f(x) \cdot l \left(\frac{x}{g(x)} \right) \]

\[
T(f \mid g)T(l \mid m) = T \left(fl \left(\frac{x}{g} \right) \mid gm \left(\frac{x}{g} \right) \right)
\]

\[
T^{-1}(f \mid g) = T \left(\frac{1}{f \left(\left(\frac{x}{g} \right)^{-1} \right)} \left| \left(\frac{1}{g \left(\left(\frac{x}{g} \right)^{-1} \right)} \right) \right. \right)
\]

Elements in some subgroups

\[
T(f \mid 1), \quad T(1 \mid g), \quad T(g \mid g), \quad T(g - xg' \mid g),
\]

\[
T \left(\frac{g - xg'}{g} \mid g \right), \quad T \left(\frac{\alpha g}{\alpha \left(\frac{x}{g} \right)} \mid g \right), \quad T \left(\frac{g - x}{1 - x} \mid g \right)
\]
A NEW PROOF OF THE EXISTENCE OF A-SEQUENCE I

Observation

The subgroup $\{T(f \mid g) \mid g = 1\}$ is commutative and normal in the Riordan group. If $T(s \mid 1) = (b_{i,j})_{i,j \in \mathbb{N}}$ then $b_{i,j} = s_{i-j}$ for $i \geq j$.

\[
T(f \mid g) = T(f \mid 1)T(1 \mid g)
\]

\[
T(f \mid g) = T\left(\frac{1}{g} \mid 1\right)T(fg \mid g) = T(fg \mid g)T(s \mid 1)
\]

If $T(f \mid g) = (d_{i,j})_{i,j \in \mathbb{N}}$, then $T(fg \mid g) = (c_{i,j})_{i,j \in \mathbb{N}}$ with $c_{n,0} = f_n$ and $c_{i,j} = d_{i-1,j-1}$ for $i, j \geq 1$. So

\[
d_{i,j} = \sum_{k=j}^{i} c_{i,k}b_{k,j} = \sum_{k=j}^{i} s_{k-j}d_{i-1,k-1}
\]

$T(f \mid g) = \left(\frac{f}{g}, \frac{g}{g} \right)$
A NEW PROOF OF THE EXISTENCE OF A-SEQUENCE II

In fact, $s \equiv A$ is the A-sequence of $T(f \mid g)$. Then

$$T(A \mid 1) = T^{-1}(f g \mid g) T \left(\frac{1}{g} \mid 1 \right) T(f g \mid g) =$$

$$T^{-1}(1 \mid g) T \left(\frac{1}{f g} \mid 1 \right) T \left(\frac{1}{g} \mid 1 \right) T(f g \mid 1) T(1 \mid g) =$$

$$T \left(\begin{array}{c|c} 1 & \frac{1}{g \left(\left(\frac{x}{g} \right)^{-1} \right)} \\ \hline g \left(\left(\frac{x}{g} \right)^{-1} \right) & \end{array} \right) T \left(\frac{1}{g} \mid g \right) = T \left(\begin{array}{c|c} 1 & g \left(\left(\frac{x}{g} \right)^{-1} \right) \left(\frac{x g}{g} \right) \left(\left(\frac{x}{g} \right)^{-1} \right) \right) \left(\begin{array}{c} \frac{1}{g \left(\left(\frac{x}{g} \right)^{-1} \right)} \\ \hline \end{array} \right) \right),$$

then

$$g \left(\frac{x g \left(\left(\frac{x}{g} \right)^{-1} \right)}{g \left(\left(\frac{x}{g} \right)^{-1} \right)} \right) = 1, \quad \Leftrightarrow \quad g \left(\frac{x g \left(\left(\frac{x}{g} \right)^{-1} \right)}{g \left(\left(\frac{x}{g} \right)^{-1} \right)} \right) = g \left(\left(\frac{x}{g} \right)^{-1} \right)$$

$$T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right).$$
A new proof of the existence of A-sequence III

and

$$A = \frac{1}{g \left(\left(\frac{x}{g} \right)^{-1} \right)}, \iff A \left(\frac{x}{g} \right) = \frac{1}{g}, \iff xA \left(\frac{x}{g} \right) = \frac{x}{g}, \iff \left(\frac{x}{g} \right)^{-1} = \frac{x}{A}.$$

Observation

$$T^{-1}(1 \mid g) = T(1 \mid A) \iff T^{-1}(1 \mid A) = T(1 \mid g)$$

So, if $T(f \mid g)$ is an involution $A = g$
Finite versus infinite matrices I

For every $n \in \mathbb{N}$ consider the general linear group $GL(n + 1, \mathbb{K})$ formed by all $(n + 1) \times (n + 1)$ invertible matrices with coefficients in \mathbb{K}. Let \mathcal{R} be the Riordan group. Since every Riordan matrix is lower triangular, we can define a natural homomorphism $\Pi_n : \mathcal{R} \to GL(n + 1, \mathbb{K})$ given by

$$\Pi_n((d_{i,j})_{i,j \in \mathbb{N}}) = (d_{i,j})_{i,j=0,\ldots,n}.$$

$$\mathcal{R}_n = \Pi_n(\mathcal{R})$$

Let $D = (d_{i,j})_{i,j=0,\ldots,n+1} \in \mathcal{R}_{n+1}$. We define $P_n : \mathcal{R}_{n+1} \to \mathcal{R}_n$ by

$$P_n((d_{i,j})_{i,j=0,1,\ldots,n+1}) = (d_{i,j})_{i,j=0,\ldots,n}.$$
Finite versus infinite matrices II

R as inverse limit

The Riordan group \mathcal{R} is isomorphic to $\varprojlim \{(\mathcal{R}_n)_{n \in \mathbb{N}}, (P_n)_{n \in \mathbb{N}}\}$.

Groups of finite Riordan matrices $\mathcal{R}_0, \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$

$\mathcal{R}_0 = \mathbb{K} \setminus \{0\} \equiv \mathbb{K}^*$

$\mathcal{R}_1 = \left\{ \begin{pmatrix} \alpha & 0 \\ \beta & \gamma \end{pmatrix} \mid \alpha \neq 0 \text{ and } \beta \neq 0 \right\}$

$\mathcal{R}_2 = \left\{ \begin{pmatrix} r_0 & 0 & 0 \\ \alpha & r_0 r & 0 \\ \beta & \gamma & r_0 r^2 \end{pmatrix} \mid r_0, r \neq 0 \text{ and } \alpha, \beta, \gamma \in \mathbb{K} \right\}$

$\mathcal{R}_3 = \left\{ \begin{pmatrix} r_0 & 0 & 0 & 0 \\ d_0 & r_0 r & 0 & 0 \\ \alpha & r(d_0 + d) & r_0 r^2 & 0 \\ \beta & \gamma & r^2(d_0 + 2d) & r_0 r^3 \end{pmatrix} \mid r_0, r \neq 0 \text{ and } d_0, d, \alpha, \beta, \gamma \in \mathbb{K} \right\}$

$T(f \mid g) = \left(\frac{f}{g}, \frac{\alpha}{g} \right)$
Riordan involutions formula

Suppose \(n \geq 2 \). Let \(D = (d_{i,j}) \in \mathcal{R}_{n-1} \) be an involution and take \(\hat{D} = (d_{i,j}) \in \mathcal{R}_n \) such that \(P_{n-1}(\hat{D}) = D \).

(i) If \(n \) is even, \(\hat{D} \) is an involution if and only if

\[
d_{n,1} \text{ is arbitrary and } d_{n,0} = -\frac{1}{2d_{0,0}} \sum_{k=1}^{n-1} d_{k,0}d_{n,k}
\]

(ii) If \(n \) is odd, \(\hat{D} \) is an involution if and only if

\[
d_{n,0} \text{ is arbitrary and } d_{n,1} = -\frac{1}{2d_{1,1}} \sum_{k=2}^{n-1} d_{k,1}d_{n,k}
\]

Moreover,

\[
a_{n-1} = \frac{1}{d_{n-1,n-1}} \left(d_{n,1} - \sum_{j=0}^{n-2} a_{j}d_{n-1,j} \right)
\]

\([j \mid g] = \left(\frac{g}{j}, \frac{\tilde{g}}{j} \right)\)
General forms of non trivial involutions in the lower sizes: I

Involutions in \mathcal{R}_0

$$(d_{0,0}) \in \mathcal{R}_0 \quad \text{with} \quad d_{0,0} = \pm 1$$

Involutions in \mathcal{R}_1

$$\begin{pmatrix} d_{0,0} & -d_{0,0} \\ d_{1,0} & -d_{0,0} \end{pmatrix} \quad \text{with} \quad d_{0,0} = \pm 1, \quad \text{and} \quad d_{1,0} \in \mathbb{K}$$

Involutions in \mathcal{R}_2

$$\begin{pmatrix} d_{0,0} & -d_{0,0} & -d_{1,0}d_{2,1} \\ d_{1,0} & -d_{0,0} & d_{2,1} \\ -\frac{d_{1,0}d_{2,1}}{2d_{0,0}} & d_{2,1} & d_{0,0} \end{pmatrix} \quad d_{0,0} = \pm 1, \quad d_{1,0}, d_{2,1} \in \mathbb{K}$$

$$T(f \ | \ g) = \left(\frac{f}{g}, \frac{g}{f} \right)$$
General forms of non trivial involutions in the lower sizes: II

Involutions in \mathcal{R}_3

\[
\begin{pmatrix}
 d_{0,0} & d_{1,0} & -d_{0,0} \\
 d_{1,0} & -\frac{d_{1,0}d_{2,1}}{2d_{0,0}} & d_{2,1} \\
 -\frac{d_{1,0}d_{2,1}}{2d_{0,0}} & -\frac{d_{1,0}d_{2,1}+2d_{2,1}^2}{2d_{0,0}} & -(d_{1,0} + 2d_{2,1}) \\
 d_{3,0} & -\frac{d_{1,0}d_{2,1}+2d_{2,1}^2}{2d_{0,0}} & -d_{0,0}
\end{pmatrix}
\]

$d_{0,0} = \pm 1, \quad d_{1,0}, d_{2,1}, d_{3,0} \in \mathbb{K}$

Corollary

Any Riordan involution $D_n \in \mathcal{R}_n$ can be extended to a Riordan involution $D_{n+1} \in \mathcal{R}_{n+1}$, i.e. $P_n(D_{n+1}) = D_n$.

Equivalently,

For any finite Riordan involution $D_n \in \mathcal{R}_n$ there is an infinite Riordan involution $D \in \mathcal{R}$ such that $\Pi_n(D) = D_n$.

$T(f \mid g) = \left(\frac{f}{g}, \frac{f}{g} \right)$
CONSEQUENCES OF INVOLUTIONS FORMULA

Corollary

Let $\alpha = \sum_{i \in \mathbb{N}} \alpha_i x^i$ be an arbitrary formal power series then

1. There is an unique nontrivial involution $D = (d_{i,j})_{i,j \in \mathbb{N}}$ such that

 $$d_{0,0} = 1, \quad d_{2i+1,0} = \alpha_{2i} \quad \text{and} \quad d_{2i+2,1} = \alpha_{2i+1} \quad \text{for} \quad i = 0, 1, \ldots$$

 we denote it by I_+^α.

2. There is an unique nontrivial involution $D = (d_{i,j})_{i,j \in \mathbb{N}}$ such that

 $$d_{0,0} = -1, \quad d_{2i+1,0} = \alpha_{2i} \quad \text{and} \quad d_{2i+2,1} = \alpha_{2i+1} \quad \text{for} \quad i = 0, 1, \ldots$$

 we denote it by I_-^α.

Moreover, any nontrivial Riordan involution can be constructed by this way.

Corollary

We can construct nontrivial involutions $D = (d_{i,j})_{i,j \in \mathbb{N}}$ with A-sequence $A = \sum_{i \in \mathbb{N}} a_i x^i$ such that

$$d_{2i+1,0} \quad \text{and} \quad a_{2i+1} \quad \text{are arbitrary.}$$
Non trivial involutions \mathcal{I}_α^+ and \mathcal{I}_α^-

$$\mathcal{I}_\alpha^+ = \begin{pmatrix}
1 \\
\alpha_0 & -1 \\
d_{2,0} & \alpha_1 & 1 \\
\alpha_2 & d_{3,1} & d_{3,2} & -1 \\
d_{4,0} & \alpha_3 & d_{4,2} & d_{4,3} & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

$$\mathcal{I}_\alpha^- = \begin{pmatrix}
-1 \\
\alpha_0 & 1 \\
d_{2,0} & \alpha_1 & -1 \\
\alpha_2 & d_{3,1} & d_{3,2} & 1 \\
d_{4,0} & \alpha_3 & d_{4,2} & d_{4,3} & -1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

$T(f \mid g) = \left(\frac{f}{g}, \frac{g}{g} \right)$
Non trivial diagonal involutions

\[\mathcal{I}^+_0 = (1, -x) = T(-1 | -1) \quad \text{and} \quad \mathcal{I}^-_0 = (-1, -x) = T(1 | -1) \]

\[\mathcal{I}^-_0 = -\mathcal{I}^+_0 \]

But, in general

\[-\mathcal{I}^+_\alpha = \mathcal{I}^-_{-\alpha} \]

Proposition

\[\mathcal{I}^\pm_\alpha = \mathcal{I}^+_0 \mathcal{I}^\mp_\alpha \mathcal{I}^-_0 \]

Consequently,

If \[\mathcal{I}^+_\alpha = T(f \mid g) \quad \Rightarrow \quad \mathcal{I}^-_\alpha = T(-f(-x) \mid g(-x)) \]

If \[\mathcal{I}^+_\alpha = (d, h) \quad \Rightarrow \quad \mathcal{I}^-_\alpha = (-d(-x), -h(-x)) \]
Finite Riordan involutions: \((D^2 = I)\)

\[
\begin{pmatrix}
1 & -1 \\
1 & 1 \\
-\frac{1}{2} & 1 \\
1 & -\frac{3}{2} \\
-\frac{9}{8} & \frac{15}{2} \\
1 & \frac{17}{8} \\
\end{pmatrix}
\]

\(T_+^{\frac{1}{1-x}}, \ g_1(x) = A_1(x) = -1 - 2x + 0x^2 + x^3 - 2x^4\)

\[
\begin{pmatrix}
1 & -2 & 1 \\
0 & 4 & -1 \\
0 & 12 & -1 \\
0 & 32 & 1 \\
0 & 8 & -1 \\
\end{pmatrix}
\]

\(T_+^{\frac{-2x}{1-4x^2}}, \ g_2(x) = A_2(x) = -1 + 2x + 0x^2 + 0x^3 + 0x^4\)

\[T(f \mid g) = \left(\frac{f}{g}, \frac{f^2}{g^2} \right)\]
Finite Riordan involutions: \((D^2 = I)\)

\[
\begin{pmatrix}
1 & -1 \\
0 & 1 \\
-1 & 1 \\
1 & -3 \\
-9 & 1 \\
2 & 1 \\
1 & -4 \\
1 & -8 \\
1 & -16
\end{pmatrix}
\]

\(\mathcal{T}^+_{\frac{1}{1-x}}\), \(g_1(x) = A_1(x) = -1 - 2x + 0x^2 + x^3 - 2x^4\)

\[
\begin{pmatrix}
1 & -1 \\
0 & 2 \\
0 & -4 \\
0 & 12 \\
0 & 32 \\
0 & -6 \\
0 & 8 \\
0 & -24 \\
0 & 8
\end{pmatrix}
\]

\(\mathcal{T}^+_{\frac{1}{(1-x)^2}}\), \(g_2(x) = A_2(x) = -1 + 2x + 0x^2 + 0x^3 + 0x^4\)

\[
\begin{pmatrix}
1 & -1 \\
-\frac{1}{2} & 1 \\
2 & -3 \\
-45 & 5 \\
12 & -131 \\
0 & 1 \\
0 & -3 \\
0 & 5 \\
0 & -7
\end{pmatrix}
\]

\(\mathcal{T}^+_{\frac{1}{1-4x^2}}\), \(g_3(x) = A_3(x) = -1 - 3x + 0x^2 + 8x^3 - 24x^4\)

\[
\begin{pmatrix}
1 & -1 \\
0 & 2 \\
0 & -5 \\
0 & 3 \\
0 & 1 \\
0 & 8 \\
0 & 20 \\
0 & 24 \\
0 & 8
\end{pmatrix}
\]

\(\mathcal{T}^+_{\frac{1}{C(x)}}\), \(g_4(x) = A_4(x) = -1 - 2x + 0x^2 - 4x^3 + 8x^4\)

\[
T(f \mid g) = \left(\frac{f}{g}, \frac{f}{g} \right)
\]
Solutions of Babbage’s equations. I

An approximation of solution of Babbage’s equation.

The Taylor polynomial of order 10 of any nontrivial solution, \(\omega \in K[[x]] \), of Babbage’s equation is

\[
T_{10}(\omega) = -x + \beta_0 x^2 - \beta_0^2 x^3 + \beta_1 x^4 + (2\beta_0^4 - 3\beta_0 \beta_1) x^5 + \beta_2 x^6 + \\
(-13\beta_0^6 + 18\beta_0^3 \beta_1 - 4\beta_0 \beta_2 - 2\beta_1^2) x^7 + \beta_3 x^8 + \\
(145\beta_0^8 - 221\beta_0^5 \beta_1 + 35\beta_0^3 \beta_2 + 50\beta_0^2 \beta_1^2 - 5\beta_0 \beta_3 - 5\beta_1 \beta_2) x^9 + \beta_4 x^{10}
\]

where \(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4 \in K \).
Solutions of Babbage’s equations. II

Taking α an odd formal power series and $\alpha_{2i+1} = \beta_i$,

$$
I_\alpha^+ = \begin{pmatrix}
1 & 0 & 0 & 0 & \beta_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -\beta_0^2 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta_0 & 1 & 0 & -2\beta_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3\beta_0^2 & 1 & 3\beta_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2\beta_0^4 - 3\beta_0\beta_1 & -2\beta_0^3 - 2\beta_1 & -6\beta_0^2 & -4\beta_0 & -1 & 0 & 0 & 0 & 0 \\
0 & \beta_2 & -3\beta_0^4 + 8\beta_0\beta_1 & 7\beta_0^3 + 3\beta_1 & 10\beta_0^2 & 5\beta_0 & 1 & 0 & 0 & 0 \\
\vdots & \vdots \\
\end{pmatrix}
$$

$$
\{I_\alpha^+, \alpha \in \mathbb{K}[x] \text{ odd}\} = \{T(g \mid g) \in \mathcal{R} \mid g_0 = -1, g(x)g\left(\frac{x}{g}\right) = 1\}
$$

If $\omega = \frac{x}{g}$, $I_\alpha^+ = T\left(\frac{x}{\omega} \mid \frac{x}{\omega}\right)$ and

$$
g(x)g\left(\frac{x}{g}\right) = 1 \iff \omega(\omega(x)) = x
$$

so

$$
\omega = \sum_{n \geq 1} d_{n,1} x^n
$$

$$
T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g}\right)
$$
Computing the A-sequence

Let α be an even formal power series and $I^{-\alpha} = (d_{i,j})_{i,j \in \mathbb{N}}$. Then

$$A(x) = \sum_{n=0}^{\infty} d_{n,0} x^n$$

is the A-sequence of the involution $I^{-\alpha}$.

If α is even $d_{2i+1,1} = \alpha_{2i+1} = 0$, then $d_{n,1} = 0$ for all $n \geq 2$. By induction for $n = 2$

$$a_1 = \frac{1}{d_{11}} (d_{2,1} - a_0 d_{1,0}) = d_{1,0}$$

Suppose true to n. What happens in $n + 1$? Taking into account that $d_{n+1,1} = 0$, by induction hypothesis $a_k = d_{k,0}$ for all $k \leq n - 1$ and using again the formula

$$a_n = \frac{1}{d_{n,n}} \left(d_{n+1,1} - \sum_{j=0}^{n-1} a_j d_{n,j} \right) = \frac{1}{d_{n,n}} \left(- \sum_{j=0}^{n-1} d_{n,j} d_{j,0} \right)$$

$$r(f \mid g) = \left(\frac{f}{g}, \frac{g}{g} \right)$$
As I^-_{α} is an involution, the product of its n-row by its 0-column is 0, then

$$
\sum_{j=0}^{n} d_{n,j} d_{j,0} = 0 \iff - \sum_{j=0}^{n-1} d_{n,j} d_{j,0} = d_{n,n} d_{n,0}.
$$

so

$$
a_n = \frac{1}{d_{n,n}} \left(- \sum_{j=0}^{n-1} d_{n,j} d_{j,0} \right) = \frac{1}{d_{n,n}} (d_{n,n} d_{n,0}) = d_{n,0}
$$
Self-dual involutions. I

In *Some inverse limit approaches to the Riordan group*. Linear Algebra Appl. 491 (2016) 239-262.

Self-dual Riordan matrices.

For $\mathbb{K} = \mathbb{R}, \mathbb{C}$, the solutions of $D = D^\diamond$ are the Riordan matrices $T(f \mid g)$ such that

$$A(x) = g(x), \quad f(x) = \lambda \sqrt{g(x)(g(x) - xg'(x))} e^{\phi(x, \frac{x}{g(x)})}$$

with $\lambda \in \mathbb{K}^*$ and $\phi(x, z)$ is a symmetric bivariate power series with $\phi(0, 0) = 0$. If in addition $g(0) = 1$, then $T(f \mid g)$ is a Toeplitz matrix.

In other words, the Riordan array $R(d(x), h(x))$ is self-dual if and only if h is self inverse for the composition operation, $h(h(x)) = x$ and

$$d(x) = \lambda \sqrt{x \frac{h'(x)}{h(x)}} e^{\phi(x, h(x))}$$

for λ, and ϕ as above. Moreover, if $h'(0) = 1$ then $h(x) = x$.

$$T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right)$$
Self-dual involutions. II

Example

Take $g(x) = 2x - 1$ and $\phi(x, z) = 0$. $B(\sqrt{1 - 2x} \mid 2x - 1)$ is then odd-symmetric. Below we write

$$\gamma_3(B(\sqrt{1 - 2x} \mid 2x - 1)) = B_3(\sqrt{1 - 2x} \mid 2x - 1) = T_6(\sqrt{1 - 2x}(2x - 1)^3 \mid 2x - 1)$$

$$D = D^\diamond = D^{-1}$$

$$T(f \mid g) = \left(\frac{f}{g}, \frac{g}{g} \right)$$
Suppose $T(f \mid g) \in \mathcal{R}$ and consider $h = \frac{x}{g}$. Then, $T(f \mid g)$ is a self-dual involution if and only if

$$h(h(x)) = x \quad \text{and} \quad f(x) = \pm \sqrt{g(x)(g(x) - xg'(x))}$$

If \checkmark

Now, if $T(f \mid g)$ is self-dual involution then, from the above Theorem, we get $h(h(x)) = x$ and

$$f(x) = \lambda \sqrt{g(x)(g(x) - xg'(x))} e^{\phi(x, \frac{x}{g(x)})}$$

where ϕ is a symmetric bivariate formal power series. Since $T(f \mid g)$ is an involution then $f(x)f\left(\frac{x}{g}\right) = 1$. Consequently, $\lambda^2 e^{2\phi(x, \frac{x}{g(x)})} = 1$. So we can choose $\lambda = \pm 1$ and $\phi \equiv 0$ to get all of them.

$$T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g}\right)$$
Self-dual involutions. IV

Constructing a self-dual involution.

\[d_{0,0} = -1, \quad \begin{pmatrix} 1 & \gamma_0 & -1 \\ \gamma_0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ d_{1,-1} & \gamma_0 & 1 \\ d_{0,-2} & \gamma_0 & -1 \\ \gamma_1 & d_{1,-1} & \gamma_0 & -1 \\ d_{2,-2} & \gamma_1 & d_{2,0} & d_{2,1} & -1 \end{pmatrix} \]

\[\begin{pmatrix} 1 \\ d_{-2,-3} & \gamma_1 & d_{1,-1} & \gamma_0 & -1 \\ d_{-1,-3} & d_{1,-2} & \gamma_0 & 1 \\ d_{0,-3} & d_{0,-2} & \gamma_0 & -1 \\ d_{1,-3} & \gamma_1 & d_{1,-1} & \gamma_0 & 1 \\ \gamma_2 & d_{2,-2} & \gamma_1 & d_{2,0} & d_{2,1} & -1 \\ d_{3,-3} & \gamma_2 & d_{1,3} & d_{3,0} & d_{3,1} & d_{3,2} & 1 \end{pmatrix} \]

with \(d_{-j,-i} = d_{i,j} \) and \(\gamma_i \in \mathbb{K} \) arbitrary.

\[T(f \mid g) = \begin{pmatrix} f \\ g \end{pmatrix} \]
Pseudo-involutions. I

Pseudo-involutions

$D \in \mathcal{R}$ is a pseudo-involution if and only if $D I_0^+$ is an involution.

Remark

Note that once obtained an involution using the formula, to get the corresponding pseudo-involution we have only to change signs suitably.

Pseudo-involutions in the Appell subgroup (\mathcal{R}_A).

Let α a formal power series such that $\alpha_{2i+1} = -\alpha_{2i}$. Then $I_\alpha^+ I_0^+$ and $I_\alpha^- I_0^+$ are pseudo-involutions in the Appell subgroup. Moreover, any pseudo-involution in the Appell subgroup can be obtained by this way.

For $n = 2$ we get

$$I_\alpha^+ I_0^+ = \begin{pmatrix} 1 & -1 \\ \alpha_0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ \alpha_0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ d_{2,0} & \alpha_0 \end{pmatrix} \in \mathcal{R}_A$$

$t(f \mid g) = \left(\frac{f}{g}, \frac{\overline{g}}{g} \right)$
PSEUDO-INVERSIONS. II

By induction, we suppose that is true for every \(k \leq n \), this means that \(a_0 = -1 \) and \(a_k = 0 \) for \(1 \leq k \leq n - 1 \), then, en particular \(d_{k+1,1} = -d_{k,0} \) for \(1 \leq k \leq n - 1 \). Once again by Riordan involution formula

\[
a_n = (-1)^n(d_{n+1,1} + d_{n,0}) = 0
\]

The product

\[
\begin{pmatrix}
1 & -1 & 0 & 0 & \cdots & 0 \\
\alpha_0 & -\alpha_0 & \alpha_0 & 0 & \cdots & 0 \\
\frac{1}{2}\alpha_0 & -\frac{1}{2}\alpha_0^2 & -\alpha_2 & \alpha_0 & \cdots & 0 \\
\alpha_2 & -\alpha_2 & -\frac{1}{2}\alpha_0^2 & \alpha_0 & \cdots & 0 \\
\alpha_0\alpha_2 - \frac{1}{8}\alpha_0^4 & -\alpha_2 & \frac{1}{2}\alpha_0^2 & -\alpha_0 & \cdots & 0 \\
\alpha_4 & -\frac{1}{8}\alpha_0^4 + \alpha_0\alpha_2 & -\frac{1}{2}\alpha_0^2 & \alpha_0 & \cdots & 1
\end{pmatrix} I_0^+ \in \mathcal{R}_A
\]

In Riordan group involutions. Linear Algebra Appl. 428 (2008) 941-952. G.-S. Cheon, H. Kim, L.W. Shapiro treat, from a different point of view, this kind of involutions.
If M is an involution then $M = M^{-1}$.

A generalization can be $M = PM^{-1}P^{-1}$, that is, M is not equal to M^{-1} but M is similar to M^{-1}.

Reversible elements

If an element M of a group is the product of two involutions then is similar to M^{-1}. These kind of elements are called *reversible elements*.

If $M = I_1I_2$, then $I_1M_1 = I_2$, $I_1MI_1 = I_2I_1$ and $M^{-1} = I_2I_1$, so $M^{-1} = I_1MI_1$.

$$T(f | g) = \left(\frac{f}{g}, \frac{g}{g} \right)$$
Remark

The pseudo-involutions are a particular case of reversible elements.

Manuel’s talk.

Theorem Gustafson-Halmos-Radjavi (1976) LAA 13, 157-162

Every square matrix over a field, with determinant ±1, is the product of not more than four involutions.
THE SUBGROUP Ω_0. I

Proposition

If $T(f \mid g)$ is a Riordan involution then $g_2 = 0$, where $g = \sum_{n \geq 0} g_n x^n$.

Let $T(f \mid g)$ be a non-trivial Riordan involution, then $g = A$. Where A is the A-sequence of $T(f \mid g)$.

Hence $a_0 = -1$, using the involutions formula and the construction of Riordan matrices we get,

$$a_1 = -\frac{d_{1,0} + d_{2,1}}{d_{0,0}}, \quad d_{2,0} = -\frac{d_{1,0}d_{2,1}}{2d_{0,0}}, \quad d_{3,2} = -d_{1,0} - 2d_{2,1},$$

$$d_{3,1} = -\frac{(d_{1,0} + 2d_{2,1})d_{2,1}}{2d_{0,0}}$$

then

$$a_2 = \frac{1}{d_{2,2}} \left(d_{3,1} - a_0d_{2,0} - a_1d_{2,1} \right) =$$

$$T(f \mid g) = \left(\frac{f}{g}, \frac{a}{g} \right)$$
The subgroup Ω_0. II

$$\frac{1}{d_{0,0}} \left(\frac{(d_{1,0} + 2d_{2,1})d_{2,1}}{2d_{0,0}} - \frac{d_{1,0}d_{2,1}}{2d_{0,0}} + \frac{d_{1,0} + d_{2,1}}{d_{0,0}}d_{2,1} \right) = 0$$

In fact, all Riordan matrices with this condition form a subgroup.

The subgroup Ω_0

If $\Omega_0 = \{ T(f \mid g) \in \mathcal{R}, \mid g_2 = 0 \}$, then Ω_0 is a subgroup of \mathcal{R}.

Consider $T(f \mid g) \in \Omega_0$, thus if $g = \sum_{n \geq 0} g_n x^n$, then $g_2 = 0$. If $A = \sum_{n \geq 0} a_n x^n$ is the A-sequence of $T(f \mid g)$, we get.

$$T^{-1}(f \mid g)T \left(\frac{1}{f \left(\frac{x}{A} \right)|A} \right) = T(1 \mid 1)$$

then

$$g(x)A \left(\frac{x}{g(x)} \right) = 1$$

$$g(x)A \left(\frac{x}{g(x)} \right) = g(x) \left(a_0 + a_1 \frac{x}{g(x)} + a_2 \left(\frac{x}{g(x)} \right)^2 + O(x^3) \right) = T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right)$$
The subgroup Ω_0. III

$$a_0 g(x) + a_1 x + a_2 \frac{x^2}{g(x)} + O(x^3)$$

then

$$[x^2]g(x)A \left(\frac{x}{g(x)} \right) = \frac{a_2}{g_0}$$

so $a_2 = 0$ and then $T^{-1}(f \mid g) \in \Omega_0$. Suppose that $T(f \mid g), T(l \mid m) \in \Omega_0$. If $g = \sum_{n \geq 0} g_n x^n$ and $m = \sum_{n \geq 0} m_n x^n$, then $g_2 = m_2 = 0$. Since

$$T(f \mid g)T(l \mid m) = T \left(fl \left(\frac{x}{g} \right) \mid gm \left(\frac{x}{g} \right) \right)$$

$$g(x)m \left(\frac{x}{g(x)} \right) = g(x)(m_0 + m_1 \frac{x}{g(x)} + O(x^3)) = m_0 g(x) + m_1 x + O(x^3)$$

then $[x^2]g(x)m \left(\frac{x}{g(x)} \right) = 0$ and $T(f \mid g)T(l \mid m) \in \Omega_0$.

$$T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right)$$
The subgroup Ω_0. IV

Remarks

The group Ω_0 above can be described as the set of Riordan matrices whose A-sequences have null quadratic coefficient.

In the usual notation for a Riordan matrix (d, h) with $d_0 \neq 0$, $h_0 = 0$, and $h_1 \neq 0$, the condition $g_2 = 0$ is equivalent to the equality

$$h_2^2 = h_1 h_3$$

where $h = \sum_{n \geq 1} h_n x^n$.

Ω_0 is not a normal subgroup.
Other subgroups.

Proposition

- The set \(\{ T(f \mid g) \in \mathcal{R} \mid g_1 = 0 \} \) is a subgroup. \((g_1 = 0 = a_1)\)
- Given \(m \geq 3, \ m \in \mathbb{N} \), the set \(\{ T(f \mid g) \in \mathcal{R} \mid g_m = 0 \} \) is not a subgroup.
- Given \(k \in \mathbb{N}, \ k \geq 1 \), the set \(\{ T(f \mid g) \in \mathcal{R} \mid g_1 = g_2 = \cdots g_k = 0 \} \) is a normal subgroup.

The group \(\mathcal{K} \)

\[\mathcal{K} = \{ I, -I, \mathcal{I}_0^+, \mathcal{I}_0^- \} \]
The commutator of Riordan group I

Observation

\[(d, h) \in \mathcal{R}, \quad (d, h) = \left(\frac{d}{d_0}, \frac{h}{h_1} \right) (d_0, h_1x)\]

The commutator of Riordan group

\[\mathcal{R}, \mathcal{R} = \{(d, h) \in \mathcal{R}, \ / \ d_0 = 1, \ h_1 = 1\}\]

Moreover, every element in \[\mathcal{R}, \mathcal{R}\] is a commutator.

An alternating Lecco’s proof.

\[C = \{(d, h) \in \mathcal{R}, \ / \ d_0 = 1, \ h_1 = 1\}\]

\[\mathcal{R}, \mathcal{R} \subseteq C?\]

\[T(f \mid g) = \left(\frac{f}{g}, \frac{g}{g} \right)\]
If $D \in [\mathcal{R}, \mathcal{R}] \Rightarrow \exists C_1, C_2, \ldots, C_k$ commutators such that

$$D = C_1C_2 \cdots C_k.$$

But C_i commutator and triangular then $C_i \in C$ so $D \in C$. Consequently $[\mathcal{R}, \mathcal{R}] \subseteq C$.

$C \subseteq [\mathcal{R}, \mathcal{R}]$? If $D \in C$ then $D = (d, h)$ with $d_0 = 1$ and $h_1 = 1$. Let $r \in \mathbb{K}$ such that $r \neq 0, r^n \neq 1, \forall n \geq 1$. Exist $(l, m) \in \mathcal{R}$ such that

$$(d, h) = (1, rx)(l, m) \left(1, \frac{x}{r}\right) \left(\frac{1}{l(m^{-1})}, m^{-1}\right)$$

$$(d, h) = \left(\frac{l(rx)}{l \left(m^{-1} \left(\frac{m(rx)}{r}\right)\right)}, m^{-1} \left(\frac{m(rx)}{r}\right)\right)$$

$$h = m^{-1} \left(\frac{m(rx)}{r}\right) \iff m(h) = \frac{m(rx)}{r} \iff (1, h)m = \left(\frac{1}{r}, rx\right)m$$

$$T(f \mid g) = \left(\frac{f}{g}, \frac{f}{g}\right)$$
The commutator of Riordan group III

Consequently for $n \geq 2$

$$m_n = \frac{1}{rn-1 - 1} \sum_{k=1}^{n-1} [x^n] h^k m_k$$

with $m_1 \neq 0$ arbitrary

$$d = \frac{l(rx)}{l\left(\frac{m(rx)}{r}\right)} \quad \Leftrightarrow \quad d = \frac{l(rx)}{l(h)} \quad \Leftrightarrow$$

$$\Leftrightarrow dl(h) = l(rx) \quad \Leftrightarrow \quad (d, h)l = (1, rx)l$$

then

$$l_n = \frac{1}{rn-1} \sum_{k=0}^{n-1} d_{n,k} l_k$$

Hence

$$D \in [\mathcal{R}, \mathcal{R}]$$

Moreover D is a commutator.
Remark

The group generated by involutions in any group is a normal subgroup of such group.

The group $[\mathcal{R}, \mathcal{R}]_0$ is defined as $[\mathcal{R}, \mathcal{R}]_0 = \Omega_0 \cap [\mathcal{R}, \mathcal{R}]$.

$\mathcal{I} \equiv$ the set of all Riordan involutions.

$< \mathcal{I} > \equiv$ the group generated by Riordan involutions.

$T(f \mid g) = \left(\frac{f}{g}, \frac{g}{f} \right)$
The group generated by Riordan involutions II

Main Theorem

Every element in the group generated by Riordan involutions is the product of not more than four Riordan involutions.

Note that if

\[\tilde{D} \in \langle \mathcal{J} \rangle \quad \Rightarrow \quad \tilde{D} = DK \]

where \(D \in [\mathcal{R}, \mathcal{R}]_0 \) and \(K \in \mathcal{K} \).

Suppose now that

\[D = I_\alpha^+ I_\beta^+ I_\gamma^+ I_0^+ \quad \Rightarrow \quad \tilde{D} = I_\alpha^+ I_\beta^+ I_\gamma^+ \tilde{K} \]

where \(\tilde{K} = I_0^+ K \in \mathcal{K} \).

\[T(f \mid g) = \left(\frac{f}{g}, \frac{a}{g} \right) \]
The group generated by Riordan involutions

III

In fact,

Theorem. Actually, lemma

If \(D \in [\mathcal{R}, \mathcal{R}]_0 \), there are three Riordan involutions, \(I_\alpha^+, I_\beta^+, I_\gamma^+ \) such that

\[
D = I_\alpha^+ I_\beta^+ I_\gamma^+ I_0^+
\]

\[
D = I_\alpha^+ I_\beta^+ I_\gamma^+ I_0^+ \iff DI_0^+ = I_\alpha^+ I_\beta^+ I_\gamma^+
\]

If

\[
DI_0^+ = (d, h), \quad I_\alpha^+ = (\delta_1, \omega_1) \quad I_\beta^+ = (\delta_2, \omega_2) \quad I_\gamma^+ = (\delta_3, \omega_3)
\]

where \(d_0 = 1 \) and \(h_1 = -1 \).

\[
DI_0^+ = I_\alpha^+ I_\beta^+ I_\gamma^+ \iff (d, h) = (\delta_1, \omega_1)(\delta_2, \omega_2)(\delta_3, \omega_3)
\]

\[
T(f \mid g) = \left(\frac{f}{g}, \frac{\omega}{g}\right)
\]
The group generated by Riordan involutions IV

The problem is, given \(d\) and \(h\), are there three involutions such that
\[(d, h) = (\delta_1, \omega_1)(\delta_2, \omega_2)(\delta_3, \omega_3)?\]
\[(d, h) = (\delta_1, \omega_1)(\delta_2, \omega_2)(\delta_3, \omega_3) \iff \begin{cases}
\delta_1(x)\delta_2(\omega_1(x))\delta_3(\omega_2(\omega_1(x))) = d(x) \\
\omega_3(\omega_2(\omega_1(x))) = h(x)
\end{cases}\]

First, we solve \(\omega_3(\omega_2(\omega_1(x))) = h(x),\)

Note that if \((\delta_i, \omega_i)\) is an involution, \((1, \omega_i)\) too.
The group generated by Riordan involutions V

\[\omega_3(\omega_2(\omega_1(x))) = h(x) \iff (1, \omega_1)(1, \omega_2)(1, \omega_3) = h(x) \]
\[(1, \omega_1)(1, h) = (1, \omega_2)(1, \omega_3) \iff (1, \omega_1)h = (1, \omega_2)\omega_3 \]

Suppose now

\[(1, \omega_1) = (a_{i,j})_{i,j \in \mathbb{N}}, \quad (1, \omega_2) = (b_{i,j})_{i,j \in \mathbb{N}}, \quad (1, \omega_3) = (c_{i,j})_{i,j \in \mathbb{N}} \]

then \(\omega_3 = \sum_{n \geq 1} c_{n,1}x^n \).

In \(\mathcal{R}_2 \) is

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & a_{2,1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
-1 \\
h_2 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & b_{2,1} & 1 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
-1 \\
c_{2,1} \\
\end{pmatrix}
\]

Equivalently, \(a_{2,1} - b_{2,1} + c_{2,1} = h_2 \) that has solutions.

\[T(f \mid g) = (\frac{f}{g}, \frac{a}{g}) \]
The group generated by Riordan involutions

The equation in \mathcal{R}_3 is

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & a_{2,1} & 1 & 0 \\
0 & -a_{2,1}^2 & -2a_{2,1} & -1
\end{pmatrix}
\begin{pmatrix}
0 \\
-1 \\
h_2 \\
h_3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & b_{2,1} & 1 & 0 \\
0 & -b_{2,1}^2 & -2b_{2,1} & -1
\end{pmatrix}
\begin{pmatrix}
0 \\
-1 \\
c_{2,1} \\
-c_{2,1}^2
\end{pmatrix}
\]

The above equality is equivalent to the system

\[
\begin{cases}
a_{2,1} - h_2 = b_{2,1} - c_{2,1} \\
a_{2,1}^2 - 2h_2a_{2,1} - h_3 = (b_{2,1} - c_{2,1})^2.
\end{cases}
\]

Since $(1, h) \in \Omega_0$ and $h_1 = -1$ $h_2^2 = h_1h_3 = -h_3$ the system above reduces to unique linear equation

\[a_{2,1} - b_{2,1} + c_{2,1} = h_2\]

which, obviously, has solutions.

\[T(f \mid g) = \left(\frac{f}{g}, \frac{a}{g} \right)\]
THE GROUP GENERATED BY RIORDAN INVOLUTIONS

VII

By induction, suppose now that the equation in \(R_n \) has solution. In \(R_{n+1} \) only a new equation appears

\[
\sum_{k=1}^{n+1} a_{n+1,k} h_k = \sum_{k=1}^{n+1} b_{n+1,k} c_{k,1}
\]

(2)

In the case of \(n \) is odd (2) can be written as

\[
a_{n+1,1} - b_{n+1,1} + c_{n+1,1} = h_{n+1} + \sum_{k=2}^{n} (a_{n+1,k} h_k - b_{n+1,k} c_{k,1})
\]

(3)

By induction hypothesis we have solutions for the case \(n \). Once we fix one of them and using the construction by rows of a Riordan matrix, the right side of equation (3) is known. Moreover, by Involutions Formula \(a_{n+1,1}, b_{n+1,1}, c_{n+1,1} \) are arbitrary to construct the involutions, so (3) has solutions.

In the case of \(n \) is even, to construct the involutions the coefficients \(a_{n+1,1}, b_{n+1,1}, c_{n+1,1} \) are not arbitrary, they depend, in particular, on \(a_{n,1}, b_{n,1} \) and \(c_{n,1} \).

\[
T(f \mid g) = \left(\frac{f}{g}, \frac{g}{f} \right)
\]
So, to be sure of the existence of solutions for \(\mathcal{R}_{n+1} \), assuming that in \(\mathcal{R}_n \), we have to study the compatibility of the system

\[
\begin{align*}
\left\{ \begin{array}{l}
a_{n,1} - b_{n,1} + c_{n,1} = h_n + \sum_{k=2}^{n-1} (a_{n,k} h_k - b_{n,k} c_{k,1}) \\
\sum_{k=1}^{n+1} a_{n+1,k} h_k = \sum_{k=1}^{n+1} b_{n+1,k} c_{k,1}
\end{array} \right.
\end{align*}
\]

where the unknown variables are \(a_{n,1}, b_{n,1} \) and \(c_{n,1} \).

We can reduce the last expression to

\[
\left(2h_2 - \left(\frac{n}{2} + 1 \right) a_{2,1} \right) a_{n,1} + \left(\left(\frac{n}{2} + 1 \right) b_{2,1} - 2c_{2,1} \right) b_{n,1} + \left(\left(\frac{n}{2} + 1 \right) c_{2,1} - nb_{2,1} \right) c_{n,1} = K
\]

together all equations the system has solution if

\[
a_{2,1} - b_{2,1} + c_{2,1} = h_2 \quad \text{and} \quad a_{2,1} \neq b_{2,1}
\]

Finally, to finish the proof we must find solutions to

\[
\delta_1(x) \delta_2(\omega_1(x)) \delta_3(\omega_2(\omega_1(x))) = d(x)
\]

\[
T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g} \right)
\]
The group generated by Riordan involutions IX

First, some observations: The A-sequence of \((1, \omega_i)\) is the same that \((\delta_i, \omega_i)\). We use that we have solved the above problem and it means that we have \(\omega_1, \omega_2\) and \(\omega_3\) fixed. Moreover, after intensive inspection we conclude that we can choose \(\delta_3 \equiv 1\), so we are going to prove that we can find \(\delta_1\) and \(\delta_2\) such that

\[
\delta_1(x)\delta_2(\omega_1(x)) = d(x)
\]

has solutions. But this equation is equivalent to

\[
(\delta_1, \omega_1)(\delta_2, \omega_2)(1, \omega_3) = d(x) \iff (\delta_2, \omega_2)(1, \omega_3) = (\delta_1, \omega_1)d(x)
\]

Let \((\delta_1, \omega_1) = (u_{i,j})\) and \((\delta_2, \omega_2) = (v_{i,j})\)

To determine \(\delta_i\) it is enough to solve the system for the 0-column. So in \(R_1\) we have

\[
\begin{pmatrix}
1 & 0 \\
u_{1,0} & -1
\end{pmatrix}
\begin{pmatrix}
1 \\
d_{1,0}
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
v_{1,0} & -1
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\]

\[
u_{1,0} - v_{1,0} = d_{1,0}
\]

\[
T(f | g) = \left(\frac{f}{g}, \frac{\omega}{g}\right)
\]
The group generated by Riordan involutions X

has solutions. As in an involution the entry $(2,0)$ is given by the formula, in R_2 we must check that the following system has solutions. Using the formula and that the A-sequences are the same we get

$$
\begin{pmatrix}
\frac{1}{u_{1,0}} & -1 & 1 \\
\frac{v_{1,0}^2 - a_{2,1} u_{1,0}}{2} & a_{2,1} - u_{1,0} & 1 \\
\end{pmatrix}
\begin{pmatrix}
\frac{1}{d_{1,0}} \\
\frac{v_{1,0}^2 - b_{2,1} v_{1,0}}{2} & b_{2,1} - v_{1,0} & 1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
$$

this is equivalent to

$$
\begin{cases}
u_{1,0} - v_{1,0} = d_{1,0} \\
-b_{2,1} u_{1,0} + (2b_{2,1} - a_{2,1})v_{1,0} = 2d_{2,0} - d_{1,0}^2
\end{cases}
$$

that has solution if $a_{2,1} \neq b_{2,1}$.

Then by induction, if n is even the entries in the place $(n + 1, 0)$ is arbitrary so

$$u_{n+1,0} - v_{n+1,0} = -\sum_{k=1}^{n} u_{n+1,k} d_{k,0} - d_{n+1,0}$$

$T(f \mid g) = \left(\frac{f}{g}, \frac{x}{g}\right)$
The group generated by Riordan involutions

XI

has solutions.
If \(n \) is odd, in a similar development than before, we get solutions.

Remark

\([\mathcal{R}, \mathcal{R}]_0\) is normal in the group generated by involutions.

Corollary

\(\langle \mathcal{I} \rangle \simeq [\mathcal{R}, \mathcal{R}]_0 \rtimes \mathcal{K} \)
Thank you!

See you in Madrid next RART!