BROADBAND REFLECTARRAYS MADE OF CELLS WITH THREE COPLANAR PARALLEL DIPOLES

Rafael Florencio, Rafael R. Boix, Eduardo Carrasco, José A. Encinar, Mariano Barba, and Gerardo Pérez-Palomino

ABSTRACT: A broadband reflectarray cell made of three parallel dipoles printed on a dielectric layer is presented. A 33% bandwidth is achieved for the cell made of dipoles, which is larger than that obtained for a reference cell consisting of three stacked square patches (26%). Using this cell, a 41-cm reflectarray antenna has been designed to produce a collimated beam at 9.5 GHz. The numerical results obtained for the reflectarray antenna made of parallel dipoles show a 1-dB bandwidth of 19%, a 65% efficiency, 0.2 dB of losses, and low levels of cross polarization (25 dB below the maximum). These results demonstrate a high performance for the proposed reflectarray antenna made of cells with three printed dipoles.

Key words: reflectarrays; broadband antennas; dipole arrays

1. INTRODUCTION

Printed reflectarrays are planar reflector antennas made of one or more layers of microstrip patch arrays [1]. Printed reflectarrays present several technological advantages when compared with conventional reflectors and phased arrays such as low cost, low weight, improved polarization performance [2], elimination of complex feed networks [2], possibility of use in dual-polarization applications with different beam shaping in each polarization [3], and so forth.

Some of the first prototypes of reflectarray antennas with elements of variable size were fabricated with one single layer of rectangular patches [2]. Unfortunately, the phase range achieved with the single layer of rectangular elements is usually lower than 330°, and the relation between the phase variation of the reflected field and the size of patches is strongly nonlinear and shows a high slope near resonance [4], which leads to narrow band behavior [4, 5]. A simple technique to improve the bandwidth is to reduce the period while using a single layer of varying size rectangular patches as proposed in Ref. [6]. However, this technique suffers from some drawbacks: first, the range of phase variation is limited to 300°; and second, it requires very tight photoetching tolerances to realize small gaps.
between adjacent patches. All of these drawbacks have been overcome by the use of multilayered substrates that host either two or three metallization levels of rectangular stacked patches [5, 7], or aperture-coupled patches [8], at the cost of a more complex manufacturing process derived from the bonding of different layers with printed elements.

In recent years, different broadband reflectarray elements made of multiresonant elements printed on a single dielectric layer have been proposed to improve the bandwidth, while keeping a simple manufacturing process at the same time. Some of these multiresonant elements on a single layer are parallel dipoles [9, 10] and concentric square or cross loops [11–14], where the relative lengths of the dipoles or loops are adjusted to improve the phase range and the bandwidth of the reflectarray element. The use of multiple resonances makes it possible to achieve a variation of phase shift in a range larger than 360°, which can be used as an additional degree of freedom for a further improvement of bandwidth, as demonstrated in Refs. [7] and 8. Different types of printed elements were investigated in Ref. [9], which provided a phase range larger than 600°. However, the novel single-layer reflectarray elements proposed in Ref. [9] lead to phase curves with sharp variations in the slope (which drastically reduces the bandwidth performance), and also, to a rather low antenna efficiency (less than 30% in the best case for 27 dBi of gain). The element made of three dipoles reported in Ref. [9] was further optimized in Ref. [10] to provide a linear phase response, which made it possible to obtain radiation patterns with a 3-dB bandwidth of 13% around 77 GHz (1-dB bandwidth was 7%) for a folded reflectarray antenna based on three closely placed printed dipoles [10]. However, the gain of this antenna was reduced 2 dB with respect to the conventional rectangular patch antenna because of the higher current density on the narrow strips [10]. Broadband reflectarray elements using double square loops have been proposed in Ref. [11]. Two reflectarray antennas based on these elements demonstrated radiation efficiency close to 52% and 1-dB gain bandwidth of 9%. However, bandwidth was limited by the nonlinear phase response that occurred for certain dimensions. A practically linear response was achieved by a new reflectarray element that combines rectangle and cross loop elements [12]. A reflectarray using this type of element showed a gain of 33 dB (that corresponds to 60% efficiency), a 1-dB gain bandwidth of 24% and a level of cross polarization 25 dB below the maximum gain [12], but no information was provided on the losses. An increased 1-dB gain bandwidth of 30% was obtained for a reflectarray made of concentric cross loops [13] by using an optimization technique for bandwidth enhancement of the type described in Ref. [7]. A single-layer reflectarray cell, which combines a square patch concentric with a square aperture and a varying size concentric loop, called Phoenix cell [14], demonstrated a phase range larger than 600°. However, the phase range is reduced to 360° to ensure practically parallel phase curves from 15 to 18 GHz (18% bandwidth) and very low losses (around 0.05 dB). In addition, no information is provided in Ref. [14] on the cross polarization produced by the Phoenix element on the antenna performance.

In all previous references dealing with novel single-layer reflectarray elements, the work is focused on bandwidth improvement, but there is not a complete information on other antenna characteristics, such as losses and cross polarization. In a real application, the reflectarray performance has to be compliant with the requirements of low losses, low cross polarization, high efficiency, and bandwidth. Several reflectarrays made of three layers of varying-size patches have provided very good performance in terms of bandwidth, losses, and cross polarization for real applications [3, 15]. The goal of the this article is to demonstrate that a simple reflectarray element made of three parallel dipoles can provide a performance similar to that of the well-known element made of three stacked patches in terms of bandwidth, losses, and cross polarization. It should be pointed out that the reflectarrays made of parallel dipoles have the additional advantage that their manufacturing process is simpler than that of reflectarrays made of stacked patches, which obviously implies a reduction in the production costs.

2. EXPERIMENTAL VALIDATION OF THE NUMERICAL CODE FOR THE ANALYSIS OF PERIODIC ARRAYS OF THREE PARALLEL DIPOLES

The unit cell considered in this work is made of three parallel dipoles printed on a dielectric layer above a ground plane. When choosing the sizes of the dipoles of the reflectarray that lead to the appropriate reflection phases, we will assume that each element comprising three dipoles is immersed in an infinite periodic array of elements of the same size [2]. This is known as local periodicity assumption [1], and it makes it possible to design reflectarray antennas within reasonable CPU times [2, 3, 5]. The validity of the local periodicity assumption is based on the fact that it leads to numerical results that show good agreement with experimental results [2, 3, 5, 15]. Figure 1 shows the side and top views of four identical reflectarray cells. The parallel dipoles are printed on a substrate comprising two layers of
relates the complex amplitudes of the tangential components of plane wave impinging on the periodic structure in the upper half space of Figure 1, and let \(E^{\text{inc}}(x,y,z=0^+) \) be the electric field of the plane wave impinging on the periodic structure in the upper half space of Figure 1, and let \(E^{\text{ref}}(x,y,z=0^-) \) be the electric field of the reflected wave. Let us define a scattering matrix \(S_{XY} \) that relates the complex amplitudes of the tangential components of the electric field of the reflected wave to those of the incident wave in the upper half space of the periodic structure.

The phase of the diagonal coefficient \(S_{yy} \) is the key parameter in the design of a reflectarray antenna. A numerical code has been implemented which makes it possible to compute the scattering matrix \(S_{YY} \). This numerical code makes use of the method of moments in the spectral domain (MoM-SD) based on multilayered Green’s function (MGF) [16]. In this section, the results obtained with the numerical code are validated by comparing with measurements carried out in a waveguide simulator (WGS) [17], and with results provided by the commercial software CST® [18]. The photograph of Figure 2 shows the experimental setup used in the WGS measurements. Two periodic cells of parallel dipoles (see Fig. 1) are printed on 0.508 mm thick an Arlon® layer \((\varepsilon_r = 2.38; \tan \delta_2 = 0.005)\), placed on top of a 3 mm thick, Rohacell® layer \((\varepsilon_r = 1.067; \tan \delta_1 = 0.0002)\), and the whole two-layered structure with two periodic cells is enclosed within a WR-90 waveguide for measurements in the X-band. The reflection coefficient of the short-circuited waveguide section shown in Figure 2 is measured using a network analyzer. Then, taking into account the relationship between frequency and angle of incidence in the WGS, the corresponding reflection coefficients are generated with our numerical code and with CST®.

Figure 3 shows the simulated and measured results for the magnitude and phase of \(S_{yy} \). Note there is an excellent agreement between our numerical results and the numerical results provided by CST®. It should be pointed out that our home-made software is roughly 500 times faster than CST® [16], which makes it possible to design reflectarray antennas under the local periodicity condition with our software within reasonable CPU times (the design of a reflectarray antenna involving optimization at different frequencies may require the analysis of hundreds of thousands of periodic structures [3]). The agreement between the measured and simulated phase shift is excellent, except at very low frequencies where the effect of the equivalent dipoles in a real reflectarray would be practically negligible. There are also some discrepancies between measured and simulated losses [see Fig. 3(a)]. These discrepancies are attributed to small tolerances in the complex dielectric constant of the materials, and also to the moisture present in the Rohacell® samples, which may have increased the losses above the expected level.

3. BANDWIDTH FOR THE ELEMENT WITH THREE PARALLEL DIPOLES

In this section, we carry out a comparison between the reflectarray element containing three parallel dipoles and the reflectarray element containing three stacked square patches. The comparison focuses on the bandwidth performance of both elements.

The authors of Ref. [4] define the bandwidth of a reflectarray element as the frequency interval where the phase of the reflection coefficient does not differ from the phase at the center frequency \(f_0 \) more than 45° for any value of the geometrical parameter used for the phase variation. In this article, we are going to use an alternative definition which is based on the ideal reflectarray element concept. According to Ref. [1] (p. 95), the ideal reflectarray element should produce a phase shift in the reflected electric field which varies linearly with frequency \(f \).
4. DESIGN OF REFLECTARRAY ANTENNAS BASED ON THE ELEMENT WITH THREE PARALLEL DIPOLES

In Section 3 we demonstrated that the bandwidth performance of the reflectarray element based on three parallel dipoles is slightly better than that of the element based on three stacked square patches. To check if the bandwidth performance of the elements also applies to the bandwidth performance of the reflectarrays, we have designed two collimated beam reflectarrays using the reflectarray elements defined in the previous section, one made of parallel dipoles and one made of stacked square patches. The reflectarrays have been designed to radiate a main beam in the direction \(\theta_0 = 18.9^\circ \) and \(\phi_0 = 90^\circ \) at 9.5 GHz, where \(\theta_0 \) and \(\phi_0 \) are the conventional spherical coordinates defined in Ref. [5]. The reflectarrays are circular and consist of 489 elements arranged in a 25 \(\times \) 25 grid with cell size 16.5 \(\times \) 16.5 mm\(^2\). In both reflectarrays, the phase center of the feed is assumed to be located at the point of coordinates \(x = 0 \) mm, \(y = -116 \) mm, and \(z = 340 \) mm with respect to the center of the reflectarrays. The radiation pattern of the feed is modeled as a function \(\cos^2(\omega t) \), which provides an illumination level at the reflectarray edges 12 dB below the maximum. In the design of the two collimated beam reflectarrays, the geometrical dimensions of the elements that produce the required phase shift in each reflectarray cell are adjusted by iteratively calling
the analysis routine while considering the real angles of incidence [5]. Once all the element dimensions have been determined, each reflectarray cell is analyzed by the MoM-SD software. Then, the radiation patterns and the antenna gain are obtained from the matrix S_{XT} computed for each element as described in Ref. [1] (pp. 68–72). Figure 5 shows the results obtained for the variation of the gain of the two reflectarray antennas as a function of frequency. Note that the antenna made of parallel dipoles presents a bandwidth of 19.0% when the gain variation is limited to 1 dB below the maximum gain. The antenna made of stacked patches shows a bandwidth of 16.4% for a gain variation of 1 dB, which is slightly smaller than the bandwidth of the antenna made of parallel dipoles. Note that the antenna bandwidth is smaller than the bandwidth obtained for the reflectarray element in both configurations. The reasons are: first, because the definition of 1-dB bandwidth for the antenna is more stringent than the 45° definition used in the phase of the reflectarray element; and second, because whereas the element bandwidth is only evaluated at normal incidence, the antenna bandwidth is obtained by considering the real angle of incidence on each reflectarray element. Note that the bandwidth is larger for the antenna made of dipoles in accordance with the results obtained for the element made of dipoles in Section 3. The 1-dB bandwidth obtained for the reflectarray made of parallel dipoles is 19.0%, which is similar to the bandwidths obtained for other single-layer reflectarray elements proposed for broadband operation without optimization [12, 14]. Note that in this work the antenna was designed only at the center frequency as in Refs. [12] and [14], and therefore, a further improvement can be achieved by optimizing the dipole lengths with an optimization tool that enforces the phase requirements at different frequencies as in Refs. [3, 7, 13], and [15]. The simulated antenna gain at the center frequency (9.5 GHz) is 30.4 dB, which represents a 65% efficiency. Note that this efficiency is comparable to those obtained in reflector antennas, and it is higher than the efficiency obtained by other single-layer reflectarrays [10–12]. The losses on the reflectarray antenna are computed as the difference between the simulated gain considering dielectric losses and the gain resulting from the ideal phase distribution. The antenna losses turn out to be 0.2 dB.

Figures 6 and 7 show the copolar (CP) radiation patterns in the principal planes for the two designed collimated beam reflectarrays at the center frequency 9.5 GHz, and at the limits of the frequency interval for which the antenna gain is 1 dB below the maximum gain. It can be seen that the main beam of the radiation patterns is reasonably well preserved. In the case of the reflectarray made of dipoles, the side lobes are kept at 20 dB below the maximum in the elevation plane, and 25 dB below the maximum in the azimuth plane. Figures 6(b) and 7(b) show that the maximum cross-polar (XP) radiation in the azimuth plane at 9.5 GHz is 25 dB below the main beam CP radiation in the case of the reflectarray made of dipoles, and 34 dB below the main beam CP radiation in the case of the reflectarray made of stacked patches.
of stacked patches [similar cross-polarizations levels have been found in the azimuth plane at the limits of the frequency band for a gain variation of 1 dB, but they are not shown in Figs. 6(b) and 7(b)]. The cross-polarization radiation in the elevation plane [see Figs. 6(a) and 7(a)] is lower than −30 dB because the elevation plane is a symmetry plane. These results show low levels of cross polarization for both reflectarrays.

5. CONCLUSION

WGS measurements and the commercial software CST® have been used to validate a MoM-SD home-made software for the analysis of a multilayered periodic structure containing three parallel dipoles in the unit cell. The MoM-SD software has been used to prove that the bandwidth of the reflectarray element based on three parallel dipoles is larger than that of the reflectarray element based on three stacked square patches. Also, the bandwidth and cross-polarization performance of a reflectarray antenna made of parallel dipoles have been compared to that of a reflectarray antenna made of stacked square patches. The results obtained show that the antenna made of dipoles provides a high performance in terms of bandwidth, losses, and efficiency, while the manufacturing costs are smaller than those of the antenna made of stacked patches. Although the reflectarray based on dipoles was designed for one single polarization, this design can be extended to dual-polarization applications by printing a second array of orthogonal dipoles at the opposite side of the layer containing the original dipoles. These orthogonal dipoles would make it possible to adjust the phasing for the orthogonal polarization. The antenna bandwidth for either single or dual polarization can be further improved if the dipole dimensions are adjusted by means of an optimization tool that enforces the phase requirements at different frequencies.

ACKNOWLEDGMENT

This work has been supported by “Junta de Andalucía” (project P09-TIC-4595) and by the Spanish Ministry of Science and Innovation (projects CICYT TEC2010-17567 and CONSOLIDER CSD2008-68).

REFERENCES