Homomorphic signatures with sublinear public keys via asymmetric programmable hash functions

Catalano, Dario; Fiore, Dario y Nizzardo, Luca (2017). Homomorphic signatures with sublinear public keys via asymmetric programmable hash functions. "Design Codes and Cryptography" ; pp. 1-50. ISSN 0925-1022. https://doi.org//10.1007/s10623-017-04.

Descripción

Título: Homomorphic signatures with sublinear public keys via asymmetric programmable hash functions
Autor/es:
  • Catalano, Dario
  • Fiore, Dario
  • Nizzardo, Luca
Tipo de Documento: Artículo
Título de Revista/Publicación: Design Codes and Cryptography
Fecha: Diciembre 2017
Materias:
Palabras Clave Informales: Public-Key Cryptography; Programmable Hash Functions; Digital Signatures; Homomorphic Signatures
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (909kB) | Vista Previa

Resumen

We introduce the notion of asymmetric programmable hash functions (APHFs, for short), which adapts Programmable hash functions, introduced by Hofheinz and Kiltz (Crypto 2008, Springer, 2008), with two main differences. First, an APHF works over bilinear groups, and it is asymmetric in the sense that, while only secretly computable, it admits an isomorphic copy which is publicly computable. Second, in addition to the usual programmability, APHFs may have an alternative property that we call programmable pseudorandomness. In a nutshell, this property states that it is possible to embed a pseudorandom value as part of the function?s output, akin to a random oracle. In spite of the apparent limitation of being only secretly computable, APHFs turn out to be surprisingly powerful objects. We show that they can be used to generically implement both regular and linearly-homomorphic signature schemes in a simple and elegant way. More importantly, when instantiating these generic constructions with our concrete realizations of APHFs, we obtain: (1) the first linearly-homomorphic signature (in the standard model) whose public key is sub-linear in both the dataset size and the dimension of the signed vectors; (2) short signatures (in the standard model) whose public key is shorter than those by Hofheinz?Jager?Kiltz (Asiacrypt 2011, Springer, 2011) and essentially the same as those by Yamada et al. (CT-RSA 2012, Springer, 2012).

Más información

ID de Registro: 49519
Identificador DC: http://oa.upm.es/49519/
Identificador OAI: oai:oa.upm.es:49519
Identificador DOI: /10.1007/s10623-017-04
URL Oficial: https://link.springer.com/article/10.1007/s10623-017-0444-3
Depositado por: Memoria Investigacion
Depositado el: 16 Mar 2018 09:38
Ultima Modificación: 16 Mar 2018 09:38
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM