Programmable Hash Functions go Private: constructions and applications to (Homomorphic) signatures with shorter public keys

Catalano, Dario; Fiore, Dario y Nizzardo, Luca (2015). Programmable Hash Functions go Private: constructions and applications to (Homomorphic) signatures with shorter public keys. En: "35th Annual Cryptology Conference, CRYPTO 2015", 16-20 Aug 2015, Santa Barbara, CA, Estados Unidos. ISBN 978-3-662-47989-6. pp. 254-274. https://doi.org/10.1007/978-3-662-48000-7_13.

Descripción

Título: Programmable Hash Functions go Private: constructions and applications to (Homomorphic) signatures with shorter public keys
Autor/es:
  • Catalano, Dario
  • Fiore, Dario
  • Nizzardo, Luca
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 35th Annual Cryptology Conference, CRYPTO 2015
Fechas del Evento: 16-20 Aug 2015
Lugar del Evento: Santa Barbara, CA, Estados Unidos
Título del Libro: Advances in Cryptology -- CRYPTO 2015
Fecha: 2015
ISBN: 978-3-662-47989-6
Volumen: 9215
Materias:
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (611kB) | Vista Previa

Resumen

We introduce the notion of asymmetric programmable hash functions (APHFs, for short), which adapts Programmable Hash Functions, introduced by Hofheinz and Kiltz at Crypto 2008, with two main differences. First, an APHF works over bilinear groups, and it is asymmetric in the sense that, while only {em secretly} computable, it admits an isomorphic copy which is publicly computable. Second, in addition to the usual programmability, APHFs may have an alternative property that we call programmable pseudorandomness. In a nutshell, this property states that it is possible to embed a pseudorandom value as part of the function's output, akin to a random oracle. In spite of the apparent limitation of being only secretly computable, APHFs turn out to be surprisingly powerful objects. We show that they can be used to generically implement both regular and linearly-homomorphic signature schemes in a simple and elegant way. More importantly, when instantiating these generic constructions with our concrete realizations of APHFs, we obtain: (1) the first linearly-homomorphic signature (in the standard model) whose public key is sub-linear in both the dataset size and the dimension of the signed vectors; (2) short signatures (in the standard model) whose public key is shorter than those by Hofheinz-Jager-Kiltz from Asiacrypt 2011, and essentially the same as those by Yamada, Hannoka, Kunihiro, (CT-RSA 2012).

Más información

ID de Registro: 49538
Identificador DC: http://oa.upm.es/49538/
Identificador OAI: oai:oa.upm.es:49538
Identificador DOI: 10.1007/978-3-662-48000-7_13
URL Oficial: https://link.springer.com/chapter/10.1007/978-3-662-48000-7_13
Depositado por: Memoria Investigacion
Depositado el: 21 Mar 2018 18:18
Ultima Modificación: 21 Mar 2018 18:18
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM