Rupture risk in abdominal aortic aneurysms: A realistic assessment of the explicit GPU approach

Strbac, V.; Pierce, David M.; Rodríguez Vila, Borja; Vander Sloten, Jos y Famaey, N. (2017). Rupture risk in abdominal aortic aneurysms: A realistic assessment of the explicit GPU approach. "Journal of Biomechanics" (n. 56); pp. 1-9. ISSN 0021-9290. https://doi.org/10.1016/j.jbiomech.2017.02.019.

Descripción

Título: Rupture risk in abdominal aortic aneurysms: A realistic assessment of the explicit GPU approach
Autor/es:
  • Strbac, V.
  • Pierce, David M.
  • Rodríguez Vila, Borja
  • Vander Sloten, Jos
  • Famaey, N.
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Biomechanics
Fecha: Mayo 2017
Materias:
Palabras Clave Informales: Abdominal aortic aneurysmFinite element analysisGraphics processing unitClinical care
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Tecnología Fotónica y Bioingeniería
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img] PDF (Document Portable Format) - Acceso permitido solamente a usuarios en el campus de la UPM hasta Mayo 2018 - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (5MB)

Resumen

Accurate estimation of peak wall stress (PWS) is the crux of biomechanically motivated rupture risk assessment for abdominal aortic aneurysms aimed to improve clinical outcomes. Such assessments often use the finite element (FE) method to obtain PWS, albeit at a high computational cost, motivating simplifications in material or element formulations. These simplifications, while useful, come at a cost of reliability and accuracy. We achieve research-standard accuracy and maintain clinically applicable speeds by using novel computational technologies. We present a solution using our custom finite element code based on graphics processing unit (GPU) technology that is able to account for added complexities involved with more physiologically relevant solutions, e.g. strong anisotropy and heterogeneity. We present solutions up to 17 faster relative to an established finite element code using state-of-the-art nonlinear, anisotropic and nearly-incompressible material descriptions. We show a realistic assessment of the explicit GPU FE approach by using complex problem geometry, biofidelic material law, double-precision floating point computation and full element integration. Due to the increased solution speed without loss of accuracy, shown on five clinical cases of abdominal aortic aneurysms, the method shows promise for clinical use in determining rupture risk of abdominal aortic aneurysms.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
FP7601021Sin especificarSin especificarSin especificar

Más información

ID de Registro: 49770
Identificador DC: http://oa.upm.es/49770/
Identificador OAI: oai:oa.upm.es:49770
Identificador DOI: 10.1016/j.jbiomech.2017.02.019
URL Oficial: https://www.sciencedirect.com/science/article/pii/S0021929017301197?via%3Dihub
Depositado por: Memoria Investigacion
Depositado el: 17 Abr 2018 16:51
Ultima Modificación: 17 Abr 2018 16:51
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM