A hybrid recommendation model for learningo object repositories

Gordillo Méndez, Aldo; Barra Arias, Enrique y Quemada Vives, Juan (2017). A hybrid recommendation model for learningo object repositories. "IEEE Latin America Transactions", v. 15 (n. 3); pp. 462-473. ISSN 1548-0992. https://doi.org/10.1109/TLA.2017.7867596.

Descripción

Título: A hybrid recommendation model for learningo object repositories
Autor/es:
  • Gordillo Méndez, Aldo
  • Barra Arias, Enrique
  • Quemada Vives, Juan
Tipo de Documento: Artículo
Título de Revista/Publicación: IEEE Latin America Transactions
Fecha: Marzo 2017
Volumen: 15
Materias:
Palabras Clave Informales: Hybrid Recommender Systems, Recommender model, Learning Objects, Learning Object Repositories
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Ingeniería de Sistemas Telemáticos [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa

Resumen

Learning Objects (LOs) have emerged as a cornerstone approach for the development and distribution of educational content. These resources are distributed by Learning Object Repositories (LORs), which can make it easier for users to find suitable LOs by using Recommender Systems (RSs). This paper presents a hybrid recommendation model for LORs that combines content-based, demographic and context-aware techniques, along with the use of quality and popularity metrics. This article also describes how the model has been used to implement two RSs for two real LORs: ViSH and Europeana. Each of these RSs was evaluated in terms of accuracy, utility,usability and satisfaction perceived by end users. Besides, an A/B testing was performed in ViSH to compare the recommendations of the RS with random suggestions. The results showed that the RSs had a high user acceptance in terms of utility, usability and satisfaction, and that the RSs significantly exceeded the performance achieved by the random recommendations.

Más información

ID de Registro: 49772
Identificador DC: http://oa.upm.es/49772/
Identificador OAI: oai:oa.upm.es:49772
Identificador DOI: 10.1109/TLA.2017.7867596
URL Oficial: https://ieeexplore.ieee.org/document/7867596/
Depositado por: Memoria Investigacion
Depositado el: 17 Abr 2018 18:01
Ultima Modificación: 17 Abr 2018 18:01
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM