On-line identification of seeds in mandarins with magnetic resonance imaging

Hernández Sánchez, Natalia; Barreiro Elorza, Pilar y Ruiz Cabello Osuna, Jesus Maria (2006). On-line identification of seeds in mandarins with magnetic resonance imaging. "Biosystems Engineering", v. 95 (n. 4); pp. 529-536. ISSN 1537-5110. https://doi.org/10.1016/j.biosystemseng.2006.08.011.

Descripción

Título: On-line identification of seeds in mandarins with magnetic resonance imaging
Autor/es:
  • Hernández Sánchez, Natalia
  • Barreiro Elorza, Pilar
  • Ruiz Cabello Osuna, Jesus Maria
Tipo de Documento: Artículo
Título de Revista/Publicación: Biosystems Engineering
Fecha: Diciembre 2006
Volumen: 95
Materias:
Escuela: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Departamento: Ingeniería Rural [hasta 2014]
Grupo Investigación UPM: LPF-TAGRALIA
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (452kB) | Vista Previa

Resumen

Mandarins have been inspected using magnetic resonance imaging (MRI) in order to detect the presence of seeds. To enhance contrast between seeds and pulp, effective transverse relaxation time-weighted fast low angle shot images (703 ms acquisition time) were acquired. Stationary fruits were imaged and then the images were segmented to extract several features. The maximum radius of the region containing the seeds and the central axis rmax, and the perimeter of this region P were the most powerful features for discrimination between seedless and seed-containing fruits. Such features were the most robust since they showed the lowest noise-to-signal ratios (N/S). The proportions of correct classification were 88.9% and 86.7% for seedless and seed-containing fruits, respectively, under MRI stationary conditions. The performance under on-line conditions was evaluated by imaging the fruits while conveyed at 54 mm/s. An analysis of variance with the features extracted from the static images and the motion-corrected dynamic images showed that there were statistically indistinguishable. The proportions of correct classification were 92.5% and 79.5% for the seedless and seed-containing category, respectively, under MRI dynamic conditions. Reduction in the distance between categories for rmax was addressed as the main cause for the decrease in discrimination performance. The robustness of the motion correction procedure was highlighted by the low differences in the N/S ratio and the noise-to-measured range ratios between static and dynamic features.

Más información

ID de Registro: 5016
Identificador DC: http://oa.upm.es/5016/
Identificador OAI: oai:oa.upm.es:5016
Identificador DOI: 10.1016/j.biosystemseng.2006.08.011
URL Oficial: http://www.sciencedirect.com/science/journal/15375110
Depositado por: Memoria Investigacion
Depositado el: 18 Nov 2010 11:18
Ultima Modificación: 20 Abr 2016 14:00
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM