Predicting the risk of fault-induced water inrush using the adaptive neuro-fuzzy inference system

Zhou, Qinglong; Herrera Herbert, Juan y Hidalgo Lopez, Arturo (2017). Predicting the risk of fault-induced water inrush using the adaptive neuro-fuzzy inference system. "Minerals", v. 7(4) (n. 55); pp. 1-15. ISSN 2075-163X.

Descripción

Título: Predicting the risk of fault-induced water inrush using the adaptive neuro-fuzzy inference system
Autor/es:
  • Zhou, Qinglong
  • Herrera Herbert, Juan
  • Hidalgo Lopez, Arturo
Tipo de Documento: Artículo
Título de Revista/Publicación: Minerals
Fecha: Abril 2017
Volumen: 7(4)
Materias:
Escuela: E.T.S.I. de Minas y Energía (UPM)
Departamento: Ingeniería Geológica y Minera
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Sudden water inrush has been a deadly killer in underground engineering for decades. Currently, especially in developing countries, frequent water inrush accidents still kill a large number of miners every year. In this study, an approach for predicting the probability of fault-induced water inrush in underground engineering using the adaptive neuro-fuzzy inference system (ANFIS) was developed. Six parameters related to the aquifer, the water-resisting properties of the aquifuge and the mining-induced stresses were extracted as the major parameters to construct the ANFIS model. The constructed ANFIS was trained with twenty reported real fault-induced water inrush cases, and another five new cases were used to test the prediction performance of the trained ANFIS. The final results showed that the prediction results of the five cases were completely consistent with the actual situations. This indicates that the ANFIS is highly accurate in the prediction of fault-induced water inrush and suggests that quantitative assessment of fault-induced water inrush using the ANFIS is possible.

Más información

ID de Registro: 50169
Identificador DC: http://oa.upm.es/50169/
Identificador OAI: oai:oa.upm.es:50169
URL Oficial: http://www.mdpi.com/2075-163X/7/4/55
Depositado por: Memoria Investigacion
Depositado el: 13 Abr 2018 06:56
Ultima Modificación: 25 Abr 2018 09:11
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM