Texto completo
|
PDF (Document Portable Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa |
Serrano Fernández, Emilio; Pozo Jiménez, Pedro del; Suárez-Figueroa, Mari Carmen; González Pachón, Jacinto; Bajo Pérez, Javier y Gómez Pérez, Asunción (2017). A Multi-agent architecture for labeling data and generating prediction models in the field of social services. En: "International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2017)", 21-23 Jun 2017, Oporto, Portugal. ISBN 978-3-319-60285-1. pp. 177-184. https://doi.org/10.1007/978-3-319-60285-1_15.
Título: | A Multi-agent architecture for labeling data and generating prediction models in the field of social services |
---|---|
Autor/es: |
|
Tipo de Documento: | Ponencia en Congreso o Jornada (Artículo) |
Título del Evento: | International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2017) |
Fechas del Evento: | 21-23 Jun 2017 |
Lugar del Evento: | Oporto, Portugal |
Título del Libro: | Highlights of Practical Applications of Cyber-Physical Multi-Agent Systems |
Fecha: | 2017 |
ISBN: | 978-3-319-60285-1 |
Volumen: | 722 |
Materias: | |
Palabras Clave Informales: | Multi-agent systems; Human-agent societies; Social services; Machine learnin |
Escuela: | E.T.S. de Ingenieros Informáticos (UPM) |
Departamento: | Inteligencia Artificial |
Licencias Creative Commons: | Reconocimiento - Sin obra derivada - No comercial |
|
PDF (Document Portable Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa |
Prediction models are widely used in insurance companies and health services. Even when 120 million people are at risk of suffering poverty or social exclusion in the EU, this kind of models are surprisingly unusual in the field of social services. A fundamental reason for this gap is the difficulty in labeling and annotating social services data. Conditions such as social exclusion require a case-by-case debate. This paper presents a multi-agent architecture that combines semantic web technologies, exploratory data analysis techniques, and supervised machine learning methods. The architecture oers a holistic view of the main challenges involved in labeling data and generating prediction models for social services. Moreover, the proposal discusses to what extent these tasks may be automated by intelligent agents.
Tipo | Código | Acrónimo | Responsable | Título |
---|---|---|---|---|
Gobierno de España | TIN2016-78011-C4-4-R | Sin especificar | Universidad Politécnica de Madrid | Datos 4.0: retos y soluciones |
ID de Registro: | 50227 |
---|---|
Identificador DC: | http://oa.upm.es/50227/ |
Identificador OAI: | oai:oa.upm.es:50227 |
Identificador DOI: | 10.1007/978-3-319-60285-1_15 |
URL Oficial: | https://link.springer.com/chapter/10.1007/978-3-319-60285-1_15 |
Depositado por: | Memoria Investigacion |
Depositado el: | 06 Feb 2019 10:32 |
Ultima Modificación: | 06 Feb 2019 10:32 |