ALGORITMOS DE OPTIMIZACIÓN PARA LA ADQUISICIÓN Y PROCESAMIENTO DE IMÁGENES CAPTURADAS CON CÁMARAS CCD LINEALES. APLICACIÓN A LOS SISTEMAS DE MEDIDA DEL DESGASTE DEL HILO DE CONTACTO EN LAS LÍNEAS ELECTRIFICADAS DE FERROCARRIL

TESIS DOCTORAL

SUSANA BORROMEO LÓPEZ
Ingeniera Industrial por la Universidad Politécnica de Madrid

Para la obtención del Grado de Doctora Ingeniera Industrial

2004
DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

ALGORITMOS DE OPTIMIZACIÓN PARA LA ADQUISICIÓN Y PROCESAMIENTO DE IMÁGENES CAPTURADAS CON CÁMARAS CCD LINEALES. APLICACIÓN A LOS SISTEMAS DE MEDIDA DEL DESGASTE DEL HILO DE CONTACTO EN LAS LÍNEAS ELECTRIFICADAS DE FERROCARRIL

AUTOR: SUSANA BORROMEO LÓPEZ

Ingeniera Industrial por la Universidad Politécnica de Madrid

DIRECTOR:
JOSÉ LUIS APARICIO MARZO

Doctor Ingeniero Industrial por la Universidad Politécnica de Madrid
Tribunal

Presidente: Dr. Fernando Aldana Mayor
Vocales: Dr. Guillermo Ojea Merín
 Dr. Juan José Rodríguez Andina
 Dr. Emilio Olías Ruiz
Secretario: Dr. Carlos Vera Álvarez
Suplentes: Dr. Luis Pastor Pérez
 Dr. Antonio Lumbreras Azanza
Agradecimientos

Una tesis doctoral es un trabajo que no sólo es fruto del esfuerzo personal del doctorando, sino que necesita de la ayuda de muchas personas, tanto en lo profesional como en lo personal. Con estas líneas quisiera mostrar mi agradecimiento a todas ellas.

A Apa, que además de ser mi Director de Tesis y el “maquinista” de este tren es un amigo.

A Pedro Martínez, del que aprendí no sólo lo que es ser un INGENIERO con mayúsculas.

Al personal de RENFE, y en particular a Salvador García Molina, que han permitido que este proyecto se materialice.

A todos los miembros de la División de Ingeniería Electrónica con los que he compartido durante los últimos años mis ilusiones, trabajo y esfuerzo. Gracias por enseñarme y hacer que me divirtiera mientras descubría las alegrías y también los sinsabores de investigar.

A todos mis compañeros de doctorado, muchos de ellos amigos, que consiguieron darme el afecto necesario para disfrutar del día a día.

A mis compañeros de la Universidad Rey Juan Carlos que con su comprensión han hecho posible que este trabajo llegase “en hora”.

A mis amigos, especialmente a Ana, Cristóbal y Ana Belén, por escucharme, aguantarme y animarme a seguir adelante. Gracias por estar no sólo en los buenos momentos.

A mis padres, por su apoyo incondicional durante todos estos años. Gracias, con vuestra cariño todo ha sido mucho más fácil.

A Willi, por ser mi compañero en este largo trayecto, por comprender mis malos momentos y corresponderme con cariño y comprensión.
Índice

1 INTRODUCCIÓN .. 3
 1.1 Ámbito de la tesis ... 5
 1.2 Objetivos de la tesis ... 6
 1.3 Contenido de la tesis .. 8

2 INSPECCIÓN AUTOMÁTICA DEL DESGASTE DE LA CATENARIA 13
 2.1 Introducción: la electrificación de ferrocarriles ... 13
 2.1.1 La catenaria o línea aérea de contacto ... 15
 2.1.1.1 Criterios mecánicos de diseño de la catenaria 16
 2.1.1.1.1 Parámetros geométricos ... 16
 2.1.1.1.2 Parámetros mecánicos .. 23
 2.1.1.2 Dispositivos especiales de la catenaria 25
 2.1.1.2.1 Seccionamientos ... 25
 2.1.1.2.2 Agujas aéreas ... 26
 2.2 Definición del Problema ... 27

2.3 Fundamentos y Antecedentes .. 29

2.4 Descripción de los sistemas automáticos de medida del desgaste 31
 2.4.1 Sistema MEDES .. 32
 2.4.1.1 MEDES-F1 ... 38
 2.4.2 MEDES 2000 ... 39
 2.4.2.1 Nuevo sistema de adquisición ... 40
 2.4.2.2 Arquitectura del nuevo sistema de procesamiento 40
 2.4.3 ATON ... 41
 2.4.4 Sistema japonés ... 41
 2.4.5 WWS 101 ... 42
 2.4.6 Geocat .. 44
 2.4.7 Wire Check ... 44
 2.4.8 SURCAT: Sistema de medida del espesor del hilo de contacto 45
<table>
<thead>
<tr>
<th>Sección</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Conclusiones sobre la inspección automática del desgaste de los hilos de contacto</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>ADQUISICIÓN Y PROCESAMIENTO DE LAS IMÁGENES CAPTURADAS CON CCD LINEALES. MEDIDA DEL DESGASTE DEL HILO DE CONTACTO</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Principio de medida del sistema MEDES</td>
<td>52</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Sección circular</td>
<td>53</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Sección Oval</td>
<td>55</td>
</tr>
<tr>
<td>3.1.2.1</td>
<td>Ancho de huella mayor que el ancho circular (d > d<sub>c</sub>)</td>
<td>55</td>
</tr>
<tr>
<td>3.1.2.2</td>
<td>Ancho de huella menor que el ancho circular (d < d<sub>c</sub>)</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Estudio de la sensibilidad en la medida</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Sección Circular</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Cálculo de la sección</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Cálculo del espesor</td>
<td>59</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Sección Oval</td>
<td>60</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Cálculo de la sección</td>
<td>60</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Cálculo del espesor</td>
<td>61</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Cálculo del error máximo permitido en la medida del ancho de la huella</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Adquisición de imágenes</td>
<td>63</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Sistema de iluminación</td>
<td>63</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Sistema óptico de captación: parámetros de diseño</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Error máximo permitido expresado en píxeles</td>
<td>69</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>CCDs lineales</td>
<td>73</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Transmisión y digitalización de la imagen</td>
<td>74</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Sistema de Enfoque</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Imagen adquirida</td>
<td>76</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Imagen ideal</td>
<td>76</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Desenfoque</td>
<td>77</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Desplazamiento lateral del HC</td>
<td>77</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Huellas Inclinadas</td>
<td>79</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Bordes de la imagen</td>
<td>80</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Grasa en los bordes de la huella</td>
<td>80</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Gotas de agua</td>
<td>81</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Influencia del ángulo de ataque del pantógrafo</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Procesamiento de las imágenes</td>
<td>82</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Descomposición estructural del software del PC</td>
<td>83</td>
</tr>
</tbody>
</table>
Índice

3.5.2 Procesamiento hardware ... 84
3.5.2.1 Parámetros de procesamiento .. 85

3.6 Postprocesamiento ... 87
3.6.1 Algoritmo de asignación de canales .. 90
 3.6.1.1 Desarrollo del algoritmo ... 94
 3.6.1.1.1 Algoritmo_1HC ... 96
 3.6.1.1.2 Algoritmo_2HC ... 98
 3.6.1.1.3 Resultados .. 100
 3.6.1.1.4 Discusión de los resultados .. 102

3.7 Precisión en la medida ... 103
 3.7.1 Soluciones hardware .. 105
 3.7.1.1 Cambio de la fuente luminosa.. 105
 3.7.1.2 Cambio de la geometría del sistema .. 105
 3.7.1.3 Un único láser .. 107
 3.7.2 Control del tiempo de Integración ... 107

3.8 Conclusiones ... 108

4. ALGORITMO DE CONTROL DEL TIEMPO DE INTEGRACIÓN DE LOS CCDS
 BASADO EN EL HISTOGRAMA DE LA IMAGEN 113

4.1 Control del proceso de adquisición ... 114

4.2 ¿Cómo afecta el tiempo de integración a la calidad de la imagen? 117
 4.2.1 Efectos en la imagen de un tiempo de integración inadecuado 119
 4.2.2 Variación del ancho de la huella con el tiempo de integración 122

4.3 El uso del histograma para determinar el tiempo de integración óptimo .. 123
 4.3.1 Caracterización de las imágenes mediante el histograma 125

4.4 Diseño del algoritmo de control del tiempo de integración.................. 128
 4.4.1 Parámetros de control ... 130
 4.4.2 Medidas en estático ... 132
 4.4.2.1 Descripción de las muestras utilizadas 132
 4.4.2.2 Resultados .. 134
 4.4.3 Medidas en vía ... 140
 4.4.3.1 Conclusiones de los análisis realizados con imágenes adquiridas en vía
 ... 141
 4.4.4 Evaluación del algoritmo ... 143
 4.4.4.1 Discusión de los resultados .. 146
Índice

4.4.4.2 Comparativa con los resultados obtenidos con un tiempo de integración fijo ... 147
4.4.5 Cálculo de los coeficientes α del algoritmo ... 149

4.5 Implementación del sistema de control .. 150

4.6 Formulación del control en términos de lógica difusa ... 153
4.6.1 Control borroso del tiempo de integración ... 157
4.6.2 Comparativa entre el diseño clásico y la lógica difusa ... 163

4.7 Conclusiones ... 164

5. RESULTADOS EXPERIMENTALES EN VÍA .. 169
5.1 Valor de referencia del ancho de la huella .. 170
5.2 Método de evaluación .. 173

5.3 Auscultación en vía .. 174
5.3.1 Pozuelo- Las Rozas: 400 μs ... 175

5.4 Medidas manuales .. 183
5.4.1 Medidas manuales: perfiles 160-158 ... 188

5.5 Dinámica del algoritmo .. 191
5.5.1 Tramo en recta: Perfil 156-Perfil 162 ... 192
5.5.2 Tramo en curva: Perfil 328-Perfil 318 ... 193

5.6 Conclusiones ... 195

6. CONCLUSIONES Y LÍNEAS FUTURAS ... 197
Índice

ANEXO I .. I-3

I ESTUDIO DE LA SENSIBILIDAD...I-3

I.1 Sección circular ... I-3
 I.1.1 Cálculo de la sección efectiva y el espesor I-3
 I.1.1.1 Cálculo de la sección... I-3
 I.1.1.2 Cálculo del espesor ... I-3
 I.1.2 Cálculo de la sensibilidad ... I-4
 I.1.2.1 Sensibilidad en el cálculo de la sección I-4
 I.1.2.2 Error en el cálculo de la sección .. I-4
 I.1.2.3 Sensibilidad en el cálculo del espesor I-4
 I.1.3 Resultados ... I-4
 I.1.3.1 Circular 107 mm² ... I-4
 I.1.3.2 Circular 120 mm² ... I-6
 I.1.3.3 Circular 150 mm² ... I-7

I.2 Sección Oval ... I-9
 I.2.1 Cálculo de la sección efectiva y el espesor I-9
 I.2.1.1 Cálculo de la sección ... I-9
 I.2.1.2 Cálculo del espesor ... I-10
 I.2.2 Cálculo de la sensibilidad ... I-10
 I.2.2.1 Sensibilidad en el cálculo de la sección I-10
 I.2.2.2 Error en el cálculo de la sección .. I-11
 I.2.2.3 Sensibilidad en el cálculo del espesor I-11
 I.2.3 Resultados ... I-12
 I.2.3.1 Oval 107 mm² .. I-12
 I.2.3.2 Oval 150 mm² .. I-14

ANEXO II ...I-17

II ALGORITMO DE CONTROL DEL TIEMPO DE INTEGRACIÓN. ESTUDIO DE
LAS MEDIDAS REALIZADAS EN ESTÁTICO..II-17

II.1 Catenaria 10-1 ... II-17
 II.1.1 Ancho de la huella ... II-17
 II.1.2 Resultados del algoritmo .. II-18

II.2 Catenaria 10-2 ... II-20
 II.2.1 Ancho de la huella ... II-20
Índice

II.2.2 Resultados del algoritmo .. II-21

II.3 Catenaria 10-4-1 ... II-23
 II.3.1 Ancho de la huella ... II-23
 II.3.2 Resultados del algoritmo .. II-24

II.4 Catenaria 10-4-2 ... II-26
 II.4.1 Ancho de la huella ... II-26
 II.4.2 Resultados del algoritmo .. II-27
Índice de Figuras

Figura 2-1. Esquema de un sistema eléctrico ferroviario.. 14
Figura 2-2. Línea aérea de contacto ... 16
Figura 2-3. Altura del hilo de contacto.. 17
Figura 2-4. Desplazamiento del hilo de contacto debido al efecto del viento.............. 19
Figura 2-5. Descentramiento del hilo de contacto en recta... 20
Figura 2-6. Montaje del hilo de contacto en curvas de radio pequeño 20
Figura 2-7. Montaje del hilo de contacto en curvas de radio grande 21
Figura 2-8. Características del brazo de atirantado ... 22
Figura 2-9. Geometría del hilo de contacto... 23
Figura 2-10. Comportamiento del sistema pantógrafo-catenaria 24
Figura 2-11. Línea aérea de contacto: Seccionamientos .. 25
Figura 2-12. Aparatos de vía: Desvío y Cruce .. 26
Figura 2-13. Hilo de contacto.. 27
Figura 2-14. Distribución del espesor.. 29
Figura 2-15. Coche auscultador de catenaria nº 1002. RENFE 32
Figura 2-16. Principio de medida del sistema MEDES ... 33
Figura 2-17. Diagrama de bloques del sistema MEDES .. 33
Figura 2-18. Mesa óptica del sistema MEDES ... 34
Figura 2-19. Armario de control del sistema MEDES .. 34
Figura 2-20. Radiación solar ... 35
Figura 2-21. Salida gráfica del sistema MEDES ... 37
Figura 2-22. Coche laboratorio IEE 142.9. SNCF .. 38
Figura 2-23. Mesa óptica del sistema MEDES-F1 ... 39
Figura 2-24. Arquitectura del sistema de procesamiento en tiempo real 40
Figura 2-25. Coche laboratorio empleado por la NS y donde se encuentra instalado el sistema ATON ... 41
Figura 2-26. Sistema japonés de medida del desgaste del hilo de contacto 42
Figura 2-27. WWS101: Sistema de iluminación... 43
Figura 2-28.WireCheck: Principio de medida ... 44
Figura 2-29. Sistema de medida del espesor del hilo de contacto 45
Figura 3-1. Diagrama de bloques de un sistema de visión por computador particularizado para el sistema MEDES... 52
Figura 3-2. Sección del hilo de contacto .. 53
Figura 3-3. Sección oval... 55
Figura 3-4. Sección oval: caso en el que el ancho de huella es mayor que el ancho circular .. 55
Índice de Figuras

Figura 3-5. Sensibilidad en la medida del espesor y de la sección. Hilo de sección circular 107 mm²... 59
Figura 3-6. Disposición de los diodos láser y de los CCDs en la mesa óptica........... 64
Figura 3-7. Distribución de la iluminación... 65
Figura 3-8. Modelo de lente delgada.. 65
Figura 3-9. Responsividad de la cámara Piranha2 de DALSA en función del tamaño del pixel... 67
Figura 3-10. Correspondencia ancho de huella, dimensión en milímetros y píxeles . 69
Figura 3-11. Gráficas de la ecuación óptica y la resolución................................. 75
Figura 3-12. Sistema de enfoque: mesa de posicionamiento de los CCDs............. 76
Figura 3-13. Imagen ideal ... 76
Figura 3-14. Imagen desenfocada ... 77
Figura 3-15. Imagen enfocada ... 77
Figura 3-16. Ángulo de desviación lateral.. 78
Figura 3-17. Huellas inclinadas... 79
Figura 3-18. Huella con grasa ... 80
Figura 3-19. Ángulo de ataque del pantógrafo ... 81
Figura 3-20. Influencia del ángulo de ataque pantógrafo-catenaria 81
Figura 3-21. Diagrama funcional del sistema MEDES... 82
Figura 3-23. Parámetros de procesamiento... 85
Figura 3-24.Influencia del nivel de corte .. 86
Figura 3-25. Nivel de corte primario y secundario .. 87
Figura 3-26. Imagen en el solape de las cámaras 2 y 3.. 88
Figura 3-27. Imagen en cámara 2.. 89
Figura 3-28. Imagen en cámara 3.. 89
Figura 3-29. Parámetros ópticos del sistema MEDES... 90
Figura 3-30. Hilos de contacto con dos superficies de desgaste......................... 92
Figura 3-31. Inversión de hilos dentro de una sección provocada por pérdidas de imagen.. 93
Figura 3-32. Sistema desarrollado por SELECTRA. Presentación de resultados...... 94
Figura 3-33. Flujo de asignación de canales para un hilo de contacto.................. 97
Figura 3-34. Flujo de asignación de canales para dos hilos de contacto............... 100
Figura 3-35. Inversión de hilos y aparición de nuevos hilos dentro de un catón...... 101
Figura 3-36. Fichero de la Figura 3-35 al que se le ha aplicado el algoritmo de asignación de canales ... 101
Figura 3-37. Sistema de iluminación del sistema WireCheck............................... 106
Figura 3-38. Sistema de detección del sistema WireCheck................................. 107
Figura 4-1. Cámara CCD del sistema MEDES ... 115
Figura 4-2. Imagen adquirida con un tiempo de integración óptimo.................... 119

VIII
Índice de Figuras

Figura 4-3. Imagen adquirida con tiempo de integración alto .. 120
Figura 4-4. Saturación de la imagen ... 120
Figura 4-5. Tiempo de integración alto: bordes de la imagen ... 121
Figura 4-6. Imagen adquirida con tiempo de integración bajo 121
Figura 4-7. Variación del ancho de la huella con el tiempo de integración (I) 122
Figura 4-8. Variación del ancho con el tiempo de integración (II) 123
Figura 4-9. Histograma de la imagen de la Figura 4-2. (Tiempo de integración óptimo) ... 124
Figura 4-10. Histograma de la imagen de la Figura 4-6. (Tiempo de integración bajo) ... 124
Figura 4-11. Histograma de la imagen de la Figura 4-3. (Tiempo de integración alto) ... 124
Figura 4-12. Histograma de una imagen ideal ... 125
Figura 4-13. Histogramas de imágenes con tiempo de integración alto y bajo 126
Figura 4-14. Imagen con nivel de ruido .. 127
Figura 4-15. Imagen con tiempo de integración óptimo en la que no todos los píxeles están saturados .. 128
Figura 4-16. Entrada y salida del algoritmo de control .. 129
Figura 4-17. Catenaria 10-1 ... 132
Figura 4-18. Catenaria 10-2 ... 132
Figura 4-19. Catenaria 10-4-1 .. 132
Figura 4-20. Catenaria 10-4-2 .. 132
Figura 4-21. Bastidor utilizado en las pruebas en estático ... 133
Figura 4-22. Medidas manuales: estimación del algoritmo de control 139
Figura 4-23. Flujo de datos de integración óptimo ... 141
Figura 4-24. Medidas en vía: “efecto cola” .. 142
Figura 4-25. Error en la medida del ancho de la huella ... 145
Figura 4-26. Comparativa de los resultados con tiempo de integración fijo 148
Figura 4-27. Diferencia en píxeles en el campo de medida al aplicar el algoritmo y al mantener fijo el tiempo de integración .. 148
Figura 4-28. Catenaria 10-1. Altura mínima. Dispensión .. 150
Figura 4-29. Catenaria 10-1. Altura nominal. Dispensión .. 150
Figura 4-30. Catenaria 10-4-1. Altura mínima. Dispensión .. 150
Figura 4-31. Catenaria 10-4-1. Altura nominal. Dispensión .. 150
Figura 4-32. Controlador borroso .. 154
Figura 4-33. Funciones de pertenencia .. 155
Figura 4-34. Lógica borrosa: definición de los operadores lógicos AND, OR, NOT 156
Figura 4-35. Lógica borrosa: implicación ... 156
Figura 4-36. Controlador borroso .. 157
Figura 4-37. Entorno de trabajo del Fuzzy Logic Toolbox de Matlab® 158
Figura 4-38. Controlador borroso del tiempo de integración: esquema general 159
Figura 4-39. Variables de entrada: funciones de pertenencia 160
Índice de Figuras

Figura 4-40. Variable de salida: funciones de pertenencia ... 161
Figura 4-41. Control borroso del tiempo de integración: proceso completo 162
Figura 4-42. Esquema del proceso de evaluación del algoritmo 163
Figura 4-43. Comparativa enfoque clásico y fuzzy. Catenaria 10-1 164
Figura 4-44. Comparativa enfoque clásico y fuzzy. Catenaria 10-4-1 164
Figura 5-1. Medidas manuales: proceso de cálculo del ancho de la huella 171
Figura 5-2. Método de evaluación .. 173
Figura 5-3. Láseres en cabeza .. 175
Figura 5-4. Láseres en cola ... 175
Figura 5-5. Tramo G auscultado con tiempo de integración fijo 181
Figura 5-6. Tramo G auscultado con el tiempo de integración determinado por el algoritmo .. 181
Figura 5-7. Tramo J auscultado con tiempo de integración fijo 182
Figura 5-8. Tramo J auscultado con el tiempo de integración determinado por el algoritmo .. 182
Figura 5-9. Medidas manuales: Carretilla de RENFE .. 183
Figura 5-10. Perfiles 306-296: espesor medido manualmente 184
Figura 5-12. Perfiles 144-116: espesor medido manualmente. Hilo izquierdo 184
Índice de Tablas

Tabla 2-1. Altura del hilo de contacto según UIC 799 .. 17
Tabla 2-2. Alturas máximas y mínimas del hilo de contacto... 18
Tabla 2-3. Valores recomendados por la UIC 799 para la altura de la catenaria para sistemas ferroviarios de corriente alterna ... 19
Tabla 2-4. Valores recomendados por la UIC 799 para el descentramiento en el apoyo ... 21
Tabla 2-5. Valores recomendados por la UIC 799 para el descentramiento en el centro del vano ... 21
Tabla 2-6. Variación lateral en horizontal según UIC 799 ... 21
Tabla 2-7. Elevación máxima del hilo de contacto según UIC 794 .. 22
Tabla 2-8. Campo de auscultación de las líneas ferroviarias española y francesa 38
Tabla 3-1. Hilo de contacto de sección circular: sección y espesor 54
Tabla 3-2. Hilo de contacto de sección oval: sección y espesor .. 58
Tabla 3-3. Sección Circular: error máximo permitido en la medida del ancho de la huella ... 62
Tabla 3-4. Sección Oval: error máximo permitido en la medida del ancho de la huella ... 62
Tabla 3-5. Sección circular 107 mm2. Error máximo permitido en la medida del ancho de la huella ... 70
Tabla 3-6. Sección circular 120 mm2. Error máximo permitido en la medida del ancho de la huella ... 70
Tabla 3-7. Sección circular 150 mm2. Error máximo permitido en la medida del ancho de la huella ... 71
Tabla 3-8. Sección oval 107 mm2. Error máximo permitido en la medida del ancho de la huella ... 71
Tabla 3-9. Sección oval 150 mm2. Error máximo permitido en la medida del ancho de la huella ... 72
Tabla 3-10. Precisión en la sección y el espesor para hilos de contacto con superficie efectiva del 70% a altura máxima. Caso en el que el error en la medida de la huella es de ±2 píxeles .. 73
Tabla 3-11. Variación del ancho de la huella según el nivel de corte 86
Tabla 3-12. Aparición de huellas muy pequeñas .. 95
Tabla 3-13. Asignación de las medidas al aparecer huellas pequeñas. Sin aplicar el algoritmo ... 95
Tabla 3-14. Asignación de las huellas al aplicar el algoritmo .. 96
Tabla 3-15. Resultados al aplicar el algoritmo de asignación de canales 101
<table>
<thead>
<tr>
<th>Índice de Tablas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 3-16. Detección de seccionamientos</td>
</tr>
<tr>
<td>Tabla 3-17. Tiempo de integración óptimo para distintos tipos de catenarias</td>
</tr>
<tr>
<td>Tabla 3-18. Dispersión del ancho de la huella en el campo de medida</td>
</tr>
<tr>
<td>Tabla 4-1. Clases del histograma</td>
</tr>
<tr>
<td>Tabla 4-2. Medidas en estático: catenarias objeto de estudio</td>
</tr>
<tr>
<td>Tabla 4-3. Relación de los niveles de iluminación en los ejes de las cámaras</td>
</tr>
<tr>
<td>Tabla 4-4. Medidas en estático: altura nominal. Catenarias 10-1 y 10-4-1</td>
</tr>
<tr>
<td>Tabla 4-5. Algoritmo de control: codificación</td>
</tr>
<tr>
<td>Tabla 4-6. Resultados del algoritmo: catenaria 10-1</td>
</tr>
<tr>
<td>Tabla 4-7. Resultados del algoritmo: catenaria 10-2</td>
</tr>
<tr>
<td>Tabla 4-8. Resultados del algoritmo: catenaria 10-4-1</td>
</tr>
<tr>
<td>Tabla 4-9. Resultados del algoritmo: catenaria 10-4-2</td>
</tr>
<tr>
<td>Tabla 4-10. Resultados del algoritmo: ancho, espesor y sección útil</td>
</tr>
<tr>
<td>Tabla 4-11. Resultados del algoritmo: errores</td>
</tr>
<tr>
<td>Tabla 4-12. Resultados del algoritmo: estadísticas</td>
</tr>
<tr>
<td>Tabla 4-13. Errores con tiempo de integración fijo</td>
</tr>
<tr>
<td>Tabla 4-14. Coeficientes α del algoritmo</td>
</tr>
<tr>
<td>Tabla 4-15. Control fuzzy del tiempo de integración: conjuntos borrosos</td>
</tr>
<tr>
<td>Tabla 5-1. Expresión del ancho de la huella [mm] en función del espesor del hilo</td>
</tr>
<tr>
<td>Tabla 5-2. Valores nominales del radio del hilo de contacto con sección circular</td>
</tr>
<tr>
<td>Tabla 5-3. Valores nominales del radio del hilo de contacto con sección oval</td>
</tr>
<tr>
<td>Tabla 5-4. Sección circular: diferencia en el ancho de la huella al considerar las tolerancias de fabricación</td>
</tr>
<tr>
<td>Tabla 5-5. Sección oval: diferencia en el ancho de la huella al considerar las tolerancias de fabricación</td>
</tr>
<tr>
<td>Tabla 5-6. Auscultación en vía</td>
</tr>
<tr>
<td>Tabla 5-15. Auscultación en vía: tramos del trayecto Pozuelo – Las Rozas</td>
</tr>
<tr>
<td>Tabla 5-16. Postes 328-314. Espesor del hilo de contacto: medidas manuales y del sistema MEDES</td>
</tr>
<tr>
<td>Tabla 5-17. Postes 306-296.Espesor del hilo de contacto: medidas manuales y MEDES</td>
</tr>
<tr>
<td>Tabla 5-18. Postes 124-116. Espesor del hilo de contacto: medidas manuales y MEDES</td>
</tr>
</tbody>
</table>
Índice de Tablas

Tabla 5-19. Postes 144-130. Espesor del hilo de contacto: medidas manuales y MEDES ... 187
Tabla 5-20. Error [%] en la medida del espesor, comparando las medidas del sistema MEDES con las medidas manuales en vía .. 188
Tabla 5-21. Postes 160-158. Ancho de la huella [píxeles] medido por el sistema MEDES y el calculado a partir del espesor medido manualmente 189
Tabla 5-22. Diferencia [pixels] entre el valor manual y el medido por MEDES 190
Tabla 5-23. Diferencia [pixels] entre el valor manual y el medido por MEDES. Media en cada zona de la cámara ... 191
Tabla 5-24. Resultados de aplicar el algoritmo a ficheros obtenidos con distintos tiempos de integración. Perfil 156-162 ... 192
Tabla 5-27. Valor del espesor. Postes 156-158. ½ Vano. Hilo izquierdo 193
Tabla 5-29. Resultados de aplicar el algoritmo a ficheros obtenidos con distintos tiempos de integración. Perfil 328-318 ... 194
Tabla 5-30. Valor del espesor. Postes 328-326. ½ Vano. Hilo derecho 194
Tabla 5-34. Valor del espesor. Postes 320-318. ½ Vano. Hilo derecho 195
Planteamiento y resumen de la tesis

La presente tesis doctoral se orienta al estudio de técnicas para mejorar la precisión de los sistemas que miden el desgaste del hilo de contacto en las líneas electrificadas de ferrocarril.

En primer lugar se estudia la problemática de la medida del desgaste del hilo de contacto caracterizada por unos importantes condicionantes en cuanto a tasa de muestreo, condiciones de auscultación y superficies a inspeccionar. Asimismo se examinan en detalle las distintas soluciones que resuelven dicha problemática.

En segundo lugar se estudian los factores que influyen en la precisión de los sistemas de medida que utilizan cámaras CCDs lineales e iluminación láser.

Analizados cada uno de los factores que intervienen en los procesos de formación de las imágenes y su procesamiento, se proponen un conjunto de algoritmos que permiten optimizar las condiciones bajo las cuales se realiza la inspección. El enfoque utilizado se basa en el control en tiempo real de los parámetros de adquisición y en particular del tiempo de integración de las cámaras CCDs. Para conseguir este objetivo se ha desarrollado un algoritmo basado en el histograma de la imagen que se caracteriza por su gran flexibilidad en cuanto a las condiciones de trabajo y el cumplimiento de los altos requisitos temporales para poder realizar la inspección a velocidades de los coches laboratorios.

Parte del desarrollo expuesto en esta tesis doctoral es fruto del trabajo de investigación realizado en un proyecto de colaboración entre la División de Ingeniería Electrónica de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid y la empresa RENFE (Red Nacional de Ferrocarriles Españoles) que ha culminado en un sistema de medida del desgaste del hilo de contacto (MEDES) que actualmente se encuentra operativo en dos coches laboratorios utilizados por RENFE y la SNCF (Francia). El sistema es patente europea.
Capítulo 1

Introducción

Índice

1 INTRODUCCIÓN..3
1.1 Ámbito de la tesis...5
1.2 Objetivos de la tesis...6
1.3 Contenido de la tesis ...8
Introducción

Capítulo 1

1 Introducción

La visión por computador en los ferrocarriles

La visión por computador\(^1\) lleva años extendida y con un gran éxito en varios campos: control de calidad e inspección de procesos industriales, apoyo al diagnóstico médico, percepción remota, guiado de vehículos móviles o gestión de la información visual [Malamas03].

Las ventajas que presentan los sistemas de visión por computador respecto a la inspección humana son su simplicidad, alta velocidad de procesamiento, elevada resolución y capacidad para realizar de forma eficiente tareas repetitivas. Sin embargo, también tienen sus limitaciones tales como la capacidad de adaptación a situaciones imprevistas o la utilización de métodos indirectos en la determinación de las características de los objetos inspeccionados.

Las características propias de la industria ferroviaria en la que tradicionalmente la penetración de las nuevas tecnologías es muy lenta, ha hecho que la presencia de sistemas de visión por computador en el campo ferroviario no sea muy alta. Sin embargo, prueba de que cada vez es mayor la importancia e implantación de esta disciplina es el aumento de artículos presentados en congresos y revistas internacionales. Como ejemplo, en el último Congreso Mundial sobre Investigación Ferroviaria celebrado en Edimburgo (WCRR’03) una de las sesiones monográficas llevaba por título: “Aplicaciones de la visión artificial” [Scherer03], [Ukai03], [Funck03].

En la referencia [Mair98] se hace una revisión de los distintos sistemas de visión por computador que se pueden encontrar en el entorno ferroviario. Entre las motivaciones para el uso de la visión por computador en la industria ferroviaria está la de automatizar las operaciones de mantenimiento de la red. El uso de la visión por computador es especialmente recomendable en las tareas que se realizan en entornos de trabajo de difícil acceso (túneles) o en las que conllevan un riesgo en la seguridad para los trabajadores, por ejemplo, aquellas en las que se ha de trabajar en la vía o en la catenaria. Por otra parte, muchos de los objetos de interés no tienen una geometría complicada y pueden ser descritos por modelos geométricos simples tales como

\(^1\) Un término similar y quizás más extendido es el de visión artificial.
línneas o polígonos, así por ejemplo, en el caso de la vía se tienen dos raíles con una distancia constante entre ellos.

El empleo de sistemas por computador y la automatización de las tareas de inspección aumentan la capacidad de procesamiento y permiten realizar una auscultación fiable, segura y repetible sin interferir en el tráfico ferroviario.

En general, el uso de la visión por computador en los ferrocarriles va a incrementar la seguridad, mejorar la calidad de servicio y disminuir los costes y los tiempos de ejecución.

Las características de los sistemas empleados dependen de cada aplicación en particular. No obstante, debido al entorno de trabajo algunos de los problemas que se han de abordar en el diseño del hardware y software son comunes. Entre ellos podemos destacar los siguientes:

- Condiciones de iluminación no controladas. Normalmente se utilizan filtros ópticos e iluminación en el infrarrojo para eliminar los efectos de la luz natural.

- Al tratarse de aplicaciones localizadas en el exterior, el fondo de “escena” no está bien definido.

- Las condiciones climatológicas como la lluvia, nieve o niebla pueden deteriorar la calidad de las imágenes.

- La presencia de grandes variaciones de temperatura puede afectar al funcionamiento de los componentes electrónicos. En el diseño también habrá que evitar que las vibraciones mecánicas interfieran en el proceso de adquisición de las imágenes.

- Elevados campos electromagnéticos (EMI).

En las dos últimas décadas varios sistemas de visión por computador han sido implementados en el campo ferroviario. En base a su funcionalidad se pueden clasificar en cuatro grandes grupos:

- Sistemas de inspección de infraestructuras.

- Sistemas de inspección de trenes.

- Sistemas para mantenimiento y operación.

- Sistemas relativos a los pasajeros.

Dentro de los sistemas para la inspección de infraestructuras ferroviarias se pueden distinguir varias aplicaciones.

- Sistemas utilizados para medir los parámetros de vía [Alippi02], [cybernetix], [Stella02].
Introducción

- Sistemas de medida de la geometría y el desgaste del hilo de contacto [Borromeo02].
- Monitorización de paredes de túneles [Ortu01].
- Detección de obstáculos, tanto en vía [Ukai96], [REOST], [Rüder03], [Garibotto03], como en la línea área de contacto [Möller01].

Algunas compañías ferroviarias incorporan en un único coche laboratorio distintos sistemas para la inspección de varios de estos parámetros [Fumi01], [Naganuma01]. Para realizar un mantenimiento preventivo y eficaz, los sistemas de inspección deben ser capaces de realizar sus tareas a velocidades lo suficientemente altas para que no interfieran en el tráfico ferroviario.

Los sistemas que se utilizan para analizar el desgaste en ruedas y pantógrafos [Fagnano01], [WheelScan], [ImageMap], se incluyen en la categoría de los sistemas empleados para la inspección de trenes.

Las tareas de mantenimiento y operación requieren interaccionar activamente con el entorno y pertenecen al campo de la robótica. Los sistemas de visión en este tipo de aplicaciones requieren calcular información 3D (tridimensional) a partir de imágenes en 2D (bidimensionales). Las aplicaciones en las que podemos encontrar este tipo de sistemas son las propias del mantenimiento de los trenes tales como soldadura, limpieza o pintura [Parker98].

Otros ejemplos de sistemas basados en la visión por computador utilizados en el entorno ferroviario, aunque no se puede decir que sean específicos de éste, son los sistemas que se encargan de monitorizar las zonas de acceso de los pasajeros. La investigación se centra en los sistemas para contar pasajeros [Zhang95], [Murakami00], [Albiol01], monitorizar zonas de acceso restringido [Freer95] y zonas de seguridad [Fararooy96], [Fry97].

1.1 Ámbito de la tesis

El campo de aplicación dentro del que se va a desarrollar el presente trabajo de investigación es la medida del desgaste del hilo de contacto en las líneas electrificadas de ferrocarril [Hoefler01], [VanGigch91], [Shimada97], [Borromeo03].

La continua fricción entre el pantógrafo y el hilo de contacto produce un desgaste en ambos elementos, ocasionando en el hilo de contacto una reducción en su sección efectiva. Esta reducción hace que aumente la resistencia eléctrica, y con ello las pérdidas en la línea así como un aumento en la temperatura del hilo, lo que favorece que se produzca mayor desgaste. Un desgaste excesivo provoca la rotura del hilo de contacto. Esta rotura supone una parada en el tráfico ferroviario con todos los inconvenientes tanto económicos como en calidad de servicio que ello provoca.
Como consecuencia del uso intensivo de la tracción eléctrica, el aumento de la capacidad de las líneas y de la velocidad, surge la necesidad de medir y controlar de forma automatizada el desgaste de los hilos de contacto. Hasta principios de los años 90 en los que aparecen los sistemas MEDES [Aparicio93] y ATON [VanGigch91] el control del estado de desgaste del hilo de catenaria, se basaba exclusivamente en la inspección manual. Este método era caro y poco preciso. Además interfería el tráfico normal, dificultando la circulación de los trenes.

El sistema MEDES ha sido desarrollado por la División de Ingeniería Electrónica de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid y financiado por RENFE (Red Nacional de los Ferrocarriles Españoles). Actualmente se encuentra operativo en dos coches laboratorios utilizados por las compañías de ferrocarriles española (RENFE) y francesa (SNCF). El trabajo expuesto en esta tesis doctoral se desarrolla en el marco de este proyecto de investigación.

La compañía de ferrocarriles holandesa (Nederlandse Spoorwegen (NS)), emplea para realizar la inspección del hilo de contacto el sistema ATON (Automatic Thickness measurement of Overhead wires Netherlands Railways) diseñado por el TNO Institute of Applied Physics.

En los años ochenta, el RTRI (Railway Technical Research Institute) de Japón estuvo trabajando en un aparato láser para la medición del desgaste del hilo de contacto [Shimada89]. La operatividad del equipo fue escasa, debido fundamentalmente al uso de diodos de Argón con requisitos de alimentación y refrigeración muy críticos. Es a mediados de los noventa cuando se presenta un prototipo en el que se han sustituidos los diodos de Argón por un láser YAG bombeado por diodo [Shimada97]. Este sistema está siendo utilizado por las compañías de ferrocarriles japonesas (JR).

Desde el año 2003 existe otro sistema operativo y que se está utilizando en Italia. Se trata del sistema WWS101 (Wire Wear measuring System) desarrollado en Alemania por el Fraunhofer IPM (Institute for Physical Measurement Techniques) [Hoefler01].

En el capítulo 2 de este documento se hace un estudio de todos los factores que influyen en el diseño de estos sistemas de medida, realizando un análisis comparativo de las distintas soluciones técnicas adoptadas por cada uno de ellos.

1.2 Objetivos de la tesis

Este trabajo de investigación tiene como objetivo principal el estudio e implementación de técnicas para mejorar la precisión de los sistemas que miden el desgaste de los hilos de contacto.

Todo sistema de visión por computador se compone de un sistema de iluminación, un sistema de adquisición y un sistema de procesamiento.
El propósito del sistema de iluminación es el de aumentar todo lo posible el realce de la escena y conseguir, en función de la aplicación, que la imagen sea adquirida en las condiciones óptimas.

El sistema de adquisición proporciona la información que va a ser analizada por el sistema de procesamiento. La disposición de los sensores que lo forman depende de los requisitos de la aplicación. Uno de los factores que influyen en el diseño del sistema es el tamaño del detalle más pequeño que se quiere detectar en la imagen que se obtiene del objeto. Es decir, el número de píxeles en la imagen por milímetro en el objeto, a esta relación es a la que se denomina resolución. Así, por ejemplo, si el sistema de visión tiene que detectar detalles en el objeto de menos de 1 milímetro es recomendable fijar la resolución en más de dos píxeles por milímetro, de esta forma se evitará que el objeto quede dividido en dos píxeles adyacentes. Hay que señalar que hoy en día existen algoritmos de procesamientos con precisión a nivel de subpixel que resuelven este problema [Reinoso96], [Ohtani01].

El sistema de procesamiento es el encargado de evaluar la información enviada por el sistema de adquisición. Interacciona con los sistemas externos tanto para recoger información (de sensores o bases de datos) como para comunicarles los resultados del procesamiento de las imágenes.

Para abordar la mejora en la precisión de los sistemas de medida del desgaste del hilo de contacto en primer lugar se ha realizado un análisis exhaustivo de las variables que interviene en los procesos de formación y procesamiento de las imágenes. Como resultado de este estudio se han identificado las fuentes de error en la medida así como los factores determinantes en la precisión de los sistemas.

La problemática de la dispersión en las medidas se debe principalmente a la variabilidad en las propiedades reflectivas de los hilos de contacto y la no uniformidad en la distribución de la luz. Las características del hilo de contacto, las condiciones en las que se encuentra (presencia de grasa, coca, ralladuras, contaminación) y el tipo de tráfico ferroviario que circula por la vía son algunas de las causas por las que las propiedades reflectivas puedan variar hasta en un orden de magnitud. La disposición de la fuente luminosa y del sistema de adquisición es una de las causas que puede ocasionar que la iluminación no sea homogénea en todo el campo de medida.

Para resolver el problema de la dispersión en las medidas en la tesis doctoral se presentan un conjunto de propuestas que se centran en el cambio del sistema de iluminación. Su inconveniente principal es que no resuelven la problemática de la variabilidad de las propiedades reflectivas de los hilos de contacto. La solución propuesta en esta tesis doctoral y que constituye su aportación fundamental se basa en el control en tiempo real de los parámetros de adquisición.
La originalidad de la solución propuesta radica en el empleo únicamente del tiempo de integración de los CCDs como parámetro de control, sin la necesidad de tener en cuenta otros parámetros como la ganancia o el offset de la cámara.

Además de obtener la imagen en las mejores condiciones para mejorar la precisión en la medida del desgaste del hilo de contacto, el objetivo perseguido en el diseño del sistema de control es la posibilidad de ser implementado en tiempo real sin producir una reducción en las prestaciones del sistema de medida.

Para conseguir este objetivo, el sistema de control se basa en el empleado del histograma de la imagen. El histograma de una imagen se define como la función de densidad de probabilidad de los niveles de iluminación de la imagen. Proporciona una medida del número de píxeles que hay con un determinado nivel de iluminación. Aunque su uso es muy común en el procesado de imágenes [Gonzalez92], su empleo como indicador del tiempo de integración con el que se ha adquirido la imagen es original de este trabajo de investigación.

La implementación de los algoritmos propuestos se va a realizar en el sistema de procesamiento en tiempo real del sistema MEDES [Pérez02], cuya arquitectura se basa en una partición hardware-software en la que el control, procesamiento y adquisición de datos necesarios para realizar la medida se centraliza en un PC. La arquitectura software del PC utiliza el sistema operativo RtLinux, una extensión de tiempo real estricto al sistema operativo de propósito general Linux.

La validación de los algoritmos propuestos se hará con imágenes reales adquiridas por el sistema MEDES instalado en el coche laboratorio nº 1002 de RENFE, en condiciones de funcionamiento, es decir, en la red ferroviaria española. Se va a evaluar la mejora en la precisión de las medidas y la reducción de la dispersión, así como el comportamiento en vía.

1.3 Contenido de la tesis

La memoria de esta tesis se ha dividido en seis capítulos. En este primer capítulo introductorio se discute la problemática general de la visión por computador en el entorno de los ferrocarriles y en particular se centra en las aplicaciones de la medida del desgaste de los hilos de contacto. Se definen los objetivos y se presentan las soluciones propuestas.

En el capítulo dos se estudia en detalle la problemática de la medida del desgaste del hilo de contacto, planteando la necesidad de automatizarla. Se presentan las soluciones propuestas por los distintos sistemas que actualmente están en funcionamiento, haciendo un análisis exhaustivo de los factores que hay que tener en cuenta en el diseño del hardware y del software de estos sistemas. Del análisis comparativo que se presenta a lo largo del capítulo se va a concluir que el sistema MEDES, dentro del cual se desarrolla este trabajo de investigación, es el que...
Introducción

aporta la mejores soluciones técnicas. Esta afirmación se ve respaldada por el hecho de que este sistema está siendo empleado por las compañías ferroviarias RENFE y SNCF. Las redes española y francesa han sido auscultadas varias veces, comprobándose el buen funcionamiento del sistema. Por otra parte, el sistema MEDES es patente europea y ha recibido el reconocimiento tanto nacional (I Premio TALGO a la Innovación Tecnológica), como internacional, ya que varias empresas han mostrado su interés por el equipo.

En el capítulo tres se analizan las diferentes etapas en los procesos de formación y procesamiento de las imágenes en el sistema MEDES. Con el análisis de las variables que intervienen en estos procesos y el estudio de la sensibilidad en la medida se identifican los factores que afectan a la precisión del sistema. Como resultado de los estudios realizados se propone un nuevo algoritmo de asignación de las medidas a los hilos de contacto, que ha sido implementado en el equipo de la SNCF y que constituye una aportación original de la tesis. Asimismo se proponen las posibles soluciones para mejorar la precisión de los sistemas de medida del desgaste del hilo de contacto. Entre las soluciones planteadas se encuentra la aportación fundamental de esta tesis doctoral: diseño de un sistema de control en tiempo real del tiempo de integración de las cámaras CCDs cuyo desarrollo se aborda en el cuarto capítulo.

El desarrollo del algoritmo de control se presenta en el capítulo cuatro. Se estudiará el porqué del uso del histograma y cómo se va a realizar el control. Se va a proponer un modelo de la imagen basado en el histograma. También se validará el histograma como indicador del tiempo de integración. Con estas bases se diseñará un sistema de control del tiempo de integración de los CCDs. Cuando el equipo esté en funcionamiento, lo que va a establecer, en función del histograma de la imagen que se ha adquirido, es si el tiempo de integración que se ha empleado es el adecuado. De no ser así, determinará cuánto hay que variarlo para adquirir la siguiente imagen en condiciones óptimas. Hay que señalar que durante la auscultación en vía de la única información de la que se dispone es la de la imagen adquirida, se desconoce qué tipo de catenarias van a ser auscultadas y en qué condiciones se encuentran. Una vez diseñado el sistema, se explica cómo se realiza su implementación en un sistema en tiempo real. Por último, y debido al creciente empleo de controladores borrosos se va a plantear el desarrollo del sistema de control en términos de lógica borrosa o fuzzy.

En el capítulo cinco se analiza el comportamiento del algoritmo propuesto en condiciones reales de funcionamiento, es decir, en vía. La evaluación se realiza con el equipo que está instalado en el coche laboratorio nº1002 de RENFE. Se estudia la mejora en la precisión de las medidas y la reducción de la dispersión, es decir, cuánto se gana al utilizar el nuevo algoritmo. Además de esta evaluación cualitativa se ha de analizar el comportamiento dinámico en vía.
En el capítulo seis de la memoria se presentan las principales conclusiones de la tesis y las posibles líneas de continuación del trabajo desarrollado.

En los anexos se adjunta el análisis de sensibilidad en la medida, cuyos resultados y conclusiones se exponen en el capítulo 3, así como los resultados de los estudios realizados durante el desarrollo del algoritmo de control.
Inspección automática del desgaste de la catenaria

Capítulo 2

Índice

2 INSEPECCIÓN AUTOMÁTICA DEL DESGASTE DE LA CATENARIA.............. 13
2.1 Introducción: la electrificación de ferrocarriles... 13
 2.1.1 La catenaria o línea aérea de contacto... 15
 2.1.1.1 Criterios mecánicos de diseño de la catenaria... 16
 2.1.1.1.1 Parámetros geométricos... 16
 2.1.1.1.2 Parámetros mecánicos... 23
 2.1.1.2 Dispositivos especiales de la catenaria... 25
 2.1.1.2.1 Seccionamientos... 25
 2.1.1.2.2 Agujas aéreas.. 26
2.2 Definición del Problema.. 27
2.3 Fundamentos y Antecedentes.. 29
2.4 Descripción de los sistemas automáticos de medida del desgaste............... 31
 2.4.1 Sistema MEDES.. 32
 2.4.1.1 MEDES-F1.. 38
 2.4.2 MEDES 2000... 39
 2.4.2.1 Nuevo sistema de adquisición... 40
 2.4.2.2 Arquitectura del nuevo sistema de procesamiento............................... 40
 2.4.3 ATON.. 41
 2.4.4 Sistema japonés... 41
2.4.5 WWS 101 ... 42
2.4.6 Geocat ... 44
2.4.7 Wire Check ... 44
2.4.8 SURCAT: Sistema de medida del espesor del hilo de contacto................. 45

2.5 Conclusiones sobre la inspección automática del desgaste de los hilos de contacto ... 45
Capítulo 2

2 Inspección automática del desgaste de la catenaria

En este capítulo se aborda la problemática de la medida del desgaste del hilo de contacto. Se estudian cuales son los condicionantes propios de la aplicación y los factores que se han de tener en cuenta en el diseño de los sistemas de medida.

Se describen las distintas técnicas para medir de forma automática el desgaste y en particular, aquellas basadas en métodos ópticos. Se presentan los diferentes sistemas desarrollados, estudiando entre otras cuestiones su principio de medida, el tipo de iluminación empleada, así como sus sistemas de adquisición y procesamiento. Igualmente se realiza un análisis comparativo de las soluciones adoptadas por cada uno de ellos, resaltando sus ventajas e inconvenientes.

El capítulo comienza con una breve introducción sobre la electrificación de ferrocarriles. En ella se definen términos específicos que se utilizarán a lo largo de la memoria de la tesis.

Con este capítulo se pretende dar respuesta al por qué de la necesidad de medir de forma automática el desgaste de la catenaria y al cómo se puede realizar.

2.1 Introducción: la electrificación de ferrocarriles

En los últimos años ha habido un gran incremento en el uso de la tracción eléctrica en los ferrocarriles, con el aumento considerable de los kilómetros de catenaria a inspeccionar y mantener. Entre las razones por las que se ha impuesto la tracción eléctrica a la tracción Diesel podemos destacar:

- Menor volumen y peso del sistema de tracción.
- Potencia por unidad de peso en torno a los 50 kW/t de la locomotora eléctrica frente a 20 kW/t de la Diesel.
- El sistema de tracción eléctrica permite una tracción distribuida entre vehículos (automotores).
- Se admiten sobrecargas momentáneas y no se pierde potencia con la altitud.
- Los costes de mantenimiento son del orden de 1/3 de la Diesel.
La mayor capacidad de tracción origina menos costes de explotación y un parque de locomotoras más reducido.

Menor contaminación.

En el caso de la tracción eléctrica el número de averías es de aproximadamente la mitad que las que se originan al utilizar tracción Diesel.

Como principal inconveniente, la tracción eléctrica requiere grandes inversiones en instalaciones propias: líneas de alimentación, subestaciones y catenarias. De los estudios realizados se considera que la electrificación es rentable para líneas de elevadas velocidades o con tráfico intenso.

Se entiende por electrificación ferroviaria el conjunto de las instalaciones necesarias para un sistema de tracción eléctrica.

Figura 2-1. Esquema de un sistema eléctrico ferroviario

Los elementos fundamentales en un sistema de electrificación ferroviario son los que se enumeran a continuación:

- Fuentes de energía o centrales de generación de energía eléctrica.
- Líneas eléctricas de transporte.
- Subestaciones de tracción eléctrica, tanto para sistemas de corriente alterna como continua.
- Línea aérea de contacto.
Feeders (o cables) de alimentación entre la subestación de tracción y la línea aérea de contacto.

En el esquema de la Figura 2-1 se representa la disposición de los elementos anteriores en el sistema eléctrico ferroviario, así como sus tensiones eléctricas nominales de funcionamiento más frecuentes.

2.1.1 La catenaria o línea aérea de contacto

El objetivo de esta apartado es el de proporcionar los conceptos básicos sobre la electrificación en los ferrocarriles, y en particular sobre la catenaria o línea aérea de contacto. La explicación en detalle de los criterios de diseño y cálculo del sistema de la línea aérea de contacto se sale fuera del alcance de esta tesis doctoral. En la referencia [CITEF00] correspondiente a la documentación del Curso de Especialización en Tecnologías Ferroviarias organizado por el Centro de Investigación en Tecnología Ferroviaria (CITEF), se puede encontrar una amplia bibliografía no sólo sobre este tema sino también en campos como la tracción o señalización ferroviaria.

La catenaria o línea aérea de contacto es el tendido aéreo que se monta sobre las vías del ferrocarril de forma aislada, permitiendo al material rodante la captación de la energía. Por extensión, en el argot ferroviario catenaria representa también todos aquellos elementos interrelacionados con el cable de contacto: elementos de sujeción y herrajes, postes, aisladores, otros cables, circuito de retorno, etc.

En la Figura 2-2 se muestran de forma esquemática los elementos principales que conforman el sistema de catenaria. Para facilitar la captación de corriente, es necesario que el hilo conductor se encuentre lo más horizontal posible así que para evitar que los hilos conductores formen una curva debido a su propio peso, se sujetan mediante un cable superior denominado hilo sustentador. El cable sustentador sujeta al conductor por medio de otros cables situados verticalmente que se denominan péndolas. El esquema del montaje de la Figura 2-2 se corresponde con el de un sistema de catenaria simple, con un único hilo de contacto, sistema empleado en las líneas de Alta Velocidad. La catenaria convencional en corriente continua lleva montada dos hilos de contacto.
Los criterios mecánicos que hay que tener en cuenta en el diseño de la catenaria se pueden considerar desde dos puntos de vista distintos aunque relacionados: el geométrico y el comportamiento mecánico. Cada uno de ellos se desarrollará a continuación.

2.1.1.1 Parámetros geométricos
La altura del hilo de contacto, la altura de la catenaria, el vano, el descentramiento, el diseño del brazo de atirantado y la elevación del hilo de contacto en el apoyo al paso del pantógrafo son los parámetros geométricos que se emplean en el diseño de la catenaria.

Altura del hilo de contacto
Altura existente entre el hilo de contacto y el plano de rodadura medio. Éste se define como el plano horizontal que es tangente a las dos zonas de rodadura de las ruedas del tren (Figura 2-3).
Inspección automática del desgaste de la catenaria

Normalmente, la altura del hilo de contacto viene impuesta por normativa en función de la velocidad de circulación del tren. A tal efecto, obsérvese la tabla siguiente (Tabla 2-1), en la cual se muestra la altura a considerar según la Unión Internacional de Ferrocarriles (UIC).§

Velocidad de circulación de la línea (km/hora)	200 < V ≤ 230	230 < V ≤ 300	V >300
Altura nominal del hilo de contacto (m)	5,000 a 5,500	5,080 ó 5,300	5,080 ó 5,300
Tolerancia de altura de apoyo a apoyo (mm)	± 30	± 10	± 10

Tabla 2-1. Altura del hilo de contacto según UIC 799

Al ser los valores de la tabla anterior recomendaciones y no valores obligatorios de diseño, existen algunos condicionantes de montaje por parte de las administraciones y compañías ferroviarias, que hacen que la altura del hilo de contacto no sea constante.

Los tres factores principales a tener en cuenta en el diseño de la altura del hilo de contacto son:

§ A diferencia de otras normativas (por ejemplo UNE o CENELEC), la UIC no establece normas de obligado cumplimiento sino recomendaciones a tener en cuenta en el ámbito ferroviario (a través de las fichas UIC xxx). A pesar de ello, actualmente estas recomendaciones siempre se cumplen.
• Gálibo del material de tracción. Este parámetro actualmente está normalizado.

• Desarrollo y estructura del pantógrafo.

• Gálibo de la infraestructura. A diferencia de los dos factores anteriores, el gálibo de la infraestructura es el mayor condicionante a tener en cuenta en los diseños pues depende de la localización particular del proyecto: túneles, pasos superiores de carreteras o caminos sobre el ferrocarril, etc.

Aunque siempre interesará que la altura del hilo de contacto guarde un valor constante a lo largo del recorrido, la gran cantidad de factores externos que influyen en el montaje, hace que esto no sea siempre posible. Es por ello por lo que hay que hablar de una altura mínima del hilo de contacto y una altura máxima. La mínima altura del hilo de contacto viene dada por los requisitos necesarios para no permitir arcos eléctricos entre el hilo de contacto y los vehículos. Esta mínima altura nunca habrá de ser menor que la suma del gálibo del tren, la distancia de aislamiento de aire entre el pantógrafo y el gálibo anterior y la mínima altura de trabajo del pantógrafo. Si a la altura mínima se la añaden además otros valores como son las tolerancias de montaje de la vía, las propias del hilo de contacto, el efecto del hielo y de la temperatura sobre los conductores y las oscilaciones dinámicas que sufre el hilo se obtiene la mínima altura del hilo de contacto diseñada. De forma parecida, la máxima altura del hilo de contacto diseñada se obtendrá considerando los posibles movimientos verticales del hilo de contacto desde la máxima altura de trabajo del pantógrafo (altura máxima del hilo de contacto), incluyendo las elevaciones del hilo por causa del pantógrafo, por oscilaciones dinámicas del hilo de contacto y las debidas a los efectos de cambio de temperatura de los conductores.

La altura del hilo de contacto podrá ser elegida libremente entre la altura máxima diseñada y mínima diseñada. La Tabla 2-2 indica los valores a considerar para ambos parámetros según la norma EN 50119 y la recomendación UIC 599.

Velocidad de circulación de la línea (km/hora)	V ≤ 230	230 < V ≤ 300	V >300
Altura máxima del hilo de contacto (m)	6,500*	Nominal	Nominal
Altura mínima del hilo de contacto (m)	4,920**	Nominal	Nominal

(*) En puntos singulares
(**) En túneles, pasos superiores, etc.

Tabla 2-2. Alturas máximas y mínimas del hilo de contacto

Obsérvese como para velocidades altas y muy altas (> 300 km/hora) no existe posibilidad de elección, siendo la única posibilidad la altura nominal.
Altura de la catenaria

Distancia vertical entre el hilo de contacto y el cable sustentador en los apoyos (Figura 2-3). Al igual que ocurría con la altura del hilo de contacto, la altura de la catenaria es un valor tenido en cuenta y tabulado por la normativa ferroviaria. La Tabla 2-3 muestra la recomendación de la UIC (según ficha 799) para sistemas ferroviarios de corriente alterna.

<table>
<thead>
<tr>
<th>Velocidad de circulación de la línea (km/hora)</th>
<th>V ≤ 230</th>
<th>230 < V ≤ 300</th>
<th>V > 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>A cielo abierto (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 kV ca</td>
<td>1,80</td>
<td>1,80</td>
<td>1,80</td>
</tr>
<tr>
<td>25 kV ca</td>
<td>1,25</td>
<td>1,40</td>
<td>1,40</td>
</tr>
<tr>
<td>En túneles (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 kV ca</td>
<td>1,10</td>
<td>1,10</td>
<td>1,10</td>
</tr>
<tr>
<td>25 kV ca</td>
<td>0,60</td>
<td>0,80</td>
<td>0,80</td>
</tr>
</tbody>
</table>

Tabla 2-3. Valores recomendados por la UIC 799 para la altura de la catenaria para sistemas ferroviarios de corriente alterna

Nótese como dependiendo de la tensión eléctrica a la que se encuentra electrificada la línea, los valores de la altura de catenaria difieren en uno u otro caso: a mayores voltajes se requerirá un mayor nivel de aislamiento con respecto a elementos externos (bóveda de los túneles, pasos superiores, etc.) y por tanto una menor distancia entre el sustentador e hilo de contacto. También destacar como en los túneles la altura disminuye, sobre todo por el menor gálibo existente.

Vano de la catenaria

Se define como la separación existente entre dos postes consecutivos.

El viento máximo existente en la zona es el condicionante más importante a la hora de diseñar el vano. Si el viento es muy elevado, se corre el riesgo de tener una flecha, en el plano horizontal, que es máxima en el centro del vano. Si esta flecha es muy grande, puede hacer que el pantógrafo pierda el contacto total con el hilo de contacto. La Figura 2-4 representa esquemáticamente la situación anterior.

Figura 2-4. Desplazamiento del hilo de contacto debido al efecto del viento
Descentramiento del hilo de contacto

El hilo de contacto se instala en zig-zag en torno al eje de la vía con el fin de maximizar la zona de contacto con el pantógrafo. El descentramiento se emplea para asegurar un desgaste uniforme de las pletinas del pantógrafo. Si no existiese descentramiento, siempre rozaría al hilo por la misma zona, lo cual llevaría a un mayor desgaste en un menor tiempo de uso, produciendo por tanto unos costes de mantenimiento mayores.

![Figura 2-5. Descentramiento del hilo de contacto en recta](image)

Cuando el trazado de la vía es en curva, la instalación de la catenaria depende del radio de curvatura. En las rectas y las curvas de radio grande (Figura 2-7) (radio mayor que 20,000 metros), el montaje se realiza de forma alternada. En el caso de que la curva sea de radio pequeño, la catenaria se monta mediante tramos rectos (Figura 2-6). El descentramiento se hace hacia el exterior de la curva en todos los apoyos pues si descentrara hacia dentro se correría el peligro de la pérdida de contacto del pantógrafo y el hilo.

![Figura 2-6. Montaje del hilo de contacto en curvas de radio pequeño](image)

Si $7500 \text{ m} > R > 2000 \text{ m}$
Figura 2-7. Montaje del hilo de contacto en curvas de radio grande

Los valores recomendados por la UIC para el descentramiento en los apoyos (Tabla 2-4) y en el centro del vano (Tabla 2-5) así como la variación lateral en horizontal (Tabla 2-6) se adjuntan a continuación.

<table>
<thead>
<tr>
<th>Velocidad de circulación de la línea (km/hora)</th>
<th>200 < V ≤ 230</th>
<th>230 < V ≤ 300</th>
<th>V > 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descentramiento máximo del hilo de contacto en el apoyo (m)</td>
<td>≤ 0,30</td>
<td>≤ 0,30</td>
<td>≤ 0,30</td>
</tr>
</tbody>
</table>

Tabla 2-4. Valores recomendados por la UIC 799 para el descentramiento en el apoyo

<table>
<thead>
<tr>
<th>Velocidad de circulación de la línea (km/hora)</th>
<th>200 < V ≤ 230</th>
<th>230 < V ≤ 300</th>
<th>V > 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descentramiento máximo del hilo de contacto en el centro del vano bajo el efecto del viento transversal (m)</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
</tbody>
</table>

Tabla 2-5. Valores recomendados por la UIC 799 para el descentramiento en el centro del vano

<table>
<thead>
<tr>
<th>Velocidad de circulación de la línea (km/hora)</th>
<th>200 < V ≤ 230</th>
<th>230 < V ≤ 300</th>
<th>V > 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máxima variación lateral en horizontal del perfil del hilo de contacto cada 100 metros de longitud</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Tabla 2-6. Variación lateral en horizontal según UIC 799
Diseño del brazo de atirantado

En la Figura 2-8 se ha esquematizado el montaje de un brazo de atirantado sobre el tubo de atirantado de la ménsula, así como los elementos que lo componen.

Es conveniente que el brazo de atirantado lleve instalado un cable antiviento y un limitador o tope de elevación al paso del pantógrafo. En caso de no llevar estos dos elementos, es necesario diseñarlo de forma que exista una distancia de seguridad suficiente al tubo de atirantado. Ha de ser ligero de peso y siempre ha de estar trabajando a tracción.

Elevación del hilo de contacto en el apoyo al paso del pantógrafo

La elevación que sufre el hilo de contacto al paso del pantógrafo en el apoyo es un parámetro de diseño que hay que tener muy en cuenta en la catenaria. Nótese que este valor está muy relacionado con el diseño del brazo de atirantado. La altura ascendente que describe el brazo de atirantado es la que también experimenta el hilo de contacto en el apoyo.

La elevación del hilo de contacto, y por tanto del brazo de atirantado, es una variable que dependerá de la velocidad de circulación y del pantógrafo utilizado.

La Tabla 2-7 muestra la recomendación dada por la ficha UIC 794 sobre lo que a elevación del hilo de contacto en el apoyo se refiere (al paso del pantógrafo).

<table>
<thead>
<tr>
<th>Velocidad de circulación de la línea (km/hora)</th>
<th>200 < V ≤230</th>
<th>230 < V ≤300</th>
<th>V >300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevación máxima del hilo de contacto en el apoyo (mm)</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

Tabla 2-7. Elevación máxima del hilo de contacto según UIC 794
Sería conveniente destacar brevemente como es sujeto el hilo de contacto por el brazo de atirantado en la catenaria. Tal vez sea esta una de las características más distintivas de esta clase de conductores en relación a la sujeción de los cables de una línea eléctrica de Alta Tensión.

La geometría que se confiere al hilo de contacto ha de ser especial, de forma que la sujeción no interfiera con el frotamiento del pantógrafo. Para ello esta geometría tiene la forma dada en la figura inferior (Figura 2-9). Un herraje de sujeción que lleva instalado el brazo de atirantado en su extremo posibilita el poder coger al hilo de la forma indicada por la zona superior de la sección.

La sujeción de las péndolas se realizara de la misma forma. Por otra parte, el cable sustentador, que sí posee una sección que es circular, se sujeta con un herraje normal.

2.1.1.2 Parámetros mecánicos

Los criterios empleados para diseñar y caracterizar a una catenaria desde el punto de vista mecánico son criterios estáticos, dinámicos y de calidad de captación de la corriente eléctrica.

La catenaria ferroviaria no suele adoptar valores superiores a 70 metros, lo que implica que la curva se puede aproximar a una parábola, cometiendo un error insignificante.

El estudio del comportamiento dinámico de la catenaria es un problema complejo, tratado ampliamente en la bibliografía [Shaub01], [Collina03], [Arribas04]. Requiere de gran cantidad de ensayos reales considerando a la catenaria y al pantógrafo como un sistema físico común, conocido generalmente como sistema interacción catenaria – pantógrafo.

El criterio de captación de la corriente es una variante de los criterios estático y dinámico, pues si éstos no se cumplen, el pantógrafo no podrá tener un comportamiento técnicamente aceptable. Obsérvese para ello la Figura 2-10. En posición de equilibrio (caso a), el tren se encuentra detenido y el pantógrafo ejerce una fuerza de valor positivo sobre el hilo de contacto, estableciéndose por tanto la
conexión eléctrica. Esta fuerza se denomina fuerza de contacto y de ahí que sea importante considerar la elasticidad en el estudio de la catenaria pues al estar sometida a dicha fuerza experimentará una serie de deformaciones que tendrán que ser elásticas y no permanentes.

Figura 2-10. Comportamiento del sistema pantógrafo-catenaria

Al moverse el tren (caso b), se generan una serie de perturbaciones mecánicas que discurren por toda la catenaria. Estas perturbaciones, que son ondas, se reflejarán, sumarán o restarán, etc., al interceptar con las discontinuidades producidas en los conductores y al encontrar algunos puntos singulares como son los brazos de atirantado, péndolas, etc. Por otra parte, en el pantógrafo se generará una serie de movimientos verticales a causa de la oscilación del hilo de contacto y que se compondrán con los movimientos impuestos por el tren (caso c).

Las perturbaciones anteriores originan variaciones de la fuerza de contacto que pueden llegar a ser muy altas, originando grandes desgastes en el hilo de contacto y en las pletinas del pantógrafo, o muy bajas, originando pérdidas de contacto entre ambos elementos con el consiguiente empeoramiento de la calidad de captación de la corriente. En este caso se producirá un arco eléctrico que suele ser muy dañino para la instalación eléctrica, sobre todo en el caso de corriente alterna, pues generará una serie de armonicos que pueden llegar a interferir con los sistemas de comunicaciones y telefonía presentes en el entorno de la línea ferroviaria.

De esta forma, el pantógrafo siempre ha de permanecer en contacto con la catenaria, teniendo que ser la fuerza de contacto siempre positiva.
2.1.1.2 Dispositivos especiales de la catenaria

En este apartado se van a definir algunos de los dispositivos especiales cuyo montaje tiene por finalidad asegurar la captación de corriente por los pantógrafos aún en las peores condiciones locales (paso por aparatos de vía, desvíos, curvas cerradas, viaductos, túneles) y en las condiciones más adversas (fuertes vientos, hielos, temperaturas ambientales)

2.1.1.2.1 Seccionamientos

El cambio de condiciones físicas debido a variaciones de la temperatura es un factor a tener en cuenta en una catenaria ferroviaria. Las péndolas, por su constitución, son elementos dados a contraerse o dilatarse según disminuya o aumente la temperatura, por lo que habrá de idearse un sistema que sea capaz de garantizar, en todo momento, la misma posición del sustentador y sobre todo la del hilo de contacto. Todas estas funciones las desempeña la compensación mecánica de la catenaria.

En un trayecto ferroviario electrificado, el pantógrafo pasará de forma sucesiva a intervalos determinados de un hilo de contacto a otro, o dicho de otra forma, de una a otra catenaria (Figura 2-11). Al construir el tramo con catenarias más pequeñas los fenómenos físicos producidos por cambio de temperatura disminuirán en importancia. En el argot ferroviario cada uno de estos subtramos (l1, l2, l3), que representan una catenaria diferente, se dice que son un cantón de compensación.

Por lo general, los cantones no suelen exceder de los 1.300 metros, aunque dependerá para cada catenaria y montaje. Por ejemplo, en RENFE los cantones de compensación no son superiores a los 1.200 metros, mismo valor que se da en la línea de Alta Velocidad Madrid – Sevilla.

En el paso de un cantón a otro cantón existe un solapamiento de ambas catenarias durante un tramo. Es decir, el pantógrafo no pasa de forma instantánea de una a otra sino que durante varios metros va frotando a las dos. Esta distancia de solapamiento de catenarias, designada por S en la figura superior (Figura 2-11) es lo que se denomina zona de seccionamiento de la catenaria, o más coloquialmente, seccionamiento.

Se definen dos tipos distintos de seccionamiento: seccionamientos de compensación y seccionamientos de lámina de aire. Aquellos seccionamientos en los que si se conectan eléctricamente ambas catenarias, se denominan seccionamientos de compensación. La conexión se realiza uniendo los cables sustentadores de las dos catenarias, así como sus hilos de contacto, con cables de cobre que no están...
sometidos a tensión mecánica. Aunque la mayor parte de los seccionamientos de catenaria de una línea férrea son de tipo compensación, también se han de montar seccionamientos en los que exista posibilidad de aislar eléctricamente a las catenarias que solapan. Estos son los denominados seccionamientos de lámina de aire, y a diferencia de los otros, poseen un aparato seccionador capaz de conectar o no a las catenarias. Un seccionador viene a ser como un interruptor, de características especiales para poder ser colocado en el mismo poste de la catenaria. En funcionamiento normal se encontrará cerrado por lo que ese seccionamiento trabajará como un seccionamiento de compensación. Si se necesita aislamiento eléctrico, se abrirá. Para ello, estos aparatos suelen ser telemandados de forma remota desde un puesto de control o accionados manualmente desde un cuadro eléctrico montado en el mismo poste de catenaria (o al lado de la zona en la que se encuentra situado).

2.1.1.2.2 Aguas aéreas

Para permitir los itinerarios de los trenes, el diseño geométrico de la vía exige el empleo de algunos elementos singulares que permitan las bifurcaciones de los trayectos, su convergencia a una misma vía y la intersección de dos trayectos diferentes. El conjunto de elementos intercalados entre los dos carriles de la vía que permiten resolver estas singularidades es lo que se conoce como aparatos de vía: desvíos que permiten bifurcar los trayectos y cruces que permiten realizar las intersecciones (Figura 2-12).

Figura 2-12. Aparatos de vía: cruce y desvío

Se entiende por aguja aérea a toda la instalación de catenarias en la zona de un aparato de vía, es decir, las catenarias existentes sobre un desvío o una travesía. Aunque aguja aérea propiamente dicha, es la confluencia de los hilos de contacto de ambas vías en los aparatos de vía, el término se extiende a todo el vano que comprende el desvío o cruce muy especialmente hacia el lado divergente de las vías.
2.2 Definición del Problema

La continua fricción entre el pantógrafo y el hilo de contacto produce un desgaste que reduce la sección efectiva del hilo (Figura 2-13). Para asegurar la calidad y seguridad en el servicio es necesario controlar ese desgaste ya que un desgaste excesivo puede provocar la rotura del hilo y con ello una parada en la circulación de trenes en ese tramo.

Por otra parte, la reducción en la sección del hilo hace que aumente la resistencia eléctrica, y con ello aumentan las pérdidas en la línea y la temperatura del hilo, lo que favorece que se produzca mayor desgaste. Es decir, la detección y corrección en sus primeras etapas de cualquier deterioro de la línea provocado por un desgaste excesivo permite alargar el tiempo de vida de la instalación. Este hecho tiene especial relevancia en el caso de líneas nuevas.

El desgaste en el pantógrafo se reduce mediante el descentramiento del hilo de contacto (ver 2.1.1.1). La reducción del desgaste en el hilo se puede conseguir aumentando su dureza, pero esto produce un mayor desgaste en el pantógrafo. Otra posibilidad es disminuir la presión que ejerce el pantógrafo pero esto aumenta el número de despegues, incrementándose el número de arcos eléctricos.

La distribución del desgaste del hilo de contacto no es uniforme en toda la red. En el apartado 2.1.1.2 se explicó como las perturbaciones mecánicas que se generan en el movimiento del tren se reflejan, suman o restan, al interceptar con las discontinuidades producidas en los conductores y al encontrar algunos puntos singulares como son los brazos de atirantado, péndolas, etc. Estas perturbaciones pueden producir variaciones en la fuerza de contacto entre el hilo y el pantógrafo generando grandes desgaste en ambos elementos si la fuerza de contacto es muy alta. Si es muy baja se producirán pérdidas de contacto causando la aparición de arcos eléctricos.
Es decir, existen una serie de puntos críticos donde el desgaste es mayor al del resto de las zonas. Estos puntos críticos se corresponden con:

- **Cambios de subestación eléctrica.** En los cambios de subestación eléctrica se produce una pérdida de contacto entre el pantógrafo y el hilo de la subestación de la que venía alimentándose el tren y una puesta posterior entre el pantógrafo y el hilo de la nueva subestación eléctrica.

- **Agujas o cambios de vía.** En estas zonas aparecen hilos adicionales. Inevitablemente se producen pérdidas de contacto y nuevas puestas en contacto del pantógrafo con los hilos. Estas pérdidas y tomas de contacto suponen un mayor desgaste causado por los arcos de corriente que se producen.

- **Rampas.** En las rampas el vehículo tractor solicita una mayor potencia a la línea. Este aumento de potencia, a tensión constante, supone un aumento de corriente suministrada por la línea, generándose un incremento en las pérdidas en el hilo de contacto que favorece su desgaste.

- **Postes de sujeción.** En estos puntos es donde el hilo de contacto presenta la mayor desviación respecto al eje de la vía. Por esta razón son puntos donde el pantógrafo ejerce menor presión sobre el hilo de contacto ya que el pantógrafo puede girar ligeramente según el eje longitudinal de la vía. Esta menor presión se traduce en una mayor posibilidad de despegue del pantógrafo.

- **Seccionamientos.** Tramos donde existe un solapamiento de catenarias y que se corresponden con el paso de un cantón a otro.

Independientemente de la existencia de estos puntos críticos, el parámetro determinante en el desgaste del hilo de contacto es el consumo en la línea. Así en las líneas de gran consumo el mayor desgaste se da en el centro del vano ya que tiene menor rigidez y mayor resistencia eléctrica. En las zonas de poco consumo el mayor desgaste aparece en los puntos duros, es decir en los postes, ya que como se ha explicado con anterioridad, la posibilidad de aparición de arcos eléctricos debidos a despegues del pantógrafo es mayor. Para ilustrar este hecho se adjunta un ejemplo que corresponde a las medidas del espesor realizadas en una línea con un elevado tráfico ferroviario (ver Figura 2-14). Es conveniente recordar que cuanto mayor es el desgaste menor espesor tiene el hilo de contacto. Como se aprecia, la distribución del espesor se repite a lo largo de todo el tramo, máximo en torno al poste y mínimo en el centro del vano, además los valores son bastante simétricos.
La medida del desgaste del hilo de contacto basada en la inspección manual es un método caro y poco preciso. Hay que realizarla previo corte del fluido eléctrico y desplazando a la zona una carretilla elevadora con el personal necesario. Aparte de los elevados perjuicios que una operación de este tipo conlleva, de los que cabe destacar el corte del servicio durante un periodo de tiempo a veces de varias horas, hay que añadir la imposibilidad de realizar una inspección completa de toda la red ferroviaria.

La medida automatizada permite una auscultación segura, fiable y repetible; muy rápida de ejecutar y que permite disponer de datos de un gran trayecto, o incluso de una gran red ferroviaria, en un breve plazo de tiempo. Igualmente se facilita la creación de bases de datos anuales que permiten realizar una planificación eficiente en las tareas de mantenimiento.

Una vez que se ha justificado la necesidad de sistemas automáticos de medida del desgaste del hilo de contacto en los siguientes apartados se va a dar respuesta al cómo se realiza esa inspección automática.

2.3 Fundamentos y Antecedentes

Se han investigado distintas técnicas de medida, sin contacto, del desgaste de la catenaria [Müller97]: análisis de campos magnéticos, análisis de reflexión de microondas y sistemas basados en detección eléctrica y óptica. Sin embargo son éstos últimos, los basados en métodos ópticos, los que han tenido éxito.

Actualmente el único sistema que no utiliza métodos ópticos es el desarrollado por SCLE para la SNCF [Forum00]. El espesor del hilo de contacto es calculado mediante...
la Transformada de Fourier de la imagen del hilo de contacto. Se basa en una antena radar que emite a 25 GHz y que está localizada en el pantógrafo. El resto de los sistemas operativos y los que están bajo desarrollo utilizan métodos ópticos.

Los factores que han condicionado el desarrollo de los sistemas de medida del desgaste del hilo de contacto son los que se detallan a continuación.

Los hilos de contacto en cuanto a número, variación en altura y descentramiento.

En los seccionamientos hay cuatro hilos de contacto. Es decir, los sistemas tienen que tener la capacidad de medirlos simultáneamente.

A lo largo del capítulo (ver 2.1.1.1.1) se ha explicado cómo existen un conjunto de condicionantes externos, entre ellos el gálibo de la infraestructura, que hacen que la altura del hilo de contacto no sea constante durante el recorrido. En la Tabla 2-2 aparecen los valores máximo y mínimo recomendados por la UIC. Así, para el caso de velocidades de circulación de la línea menores que 230 km/h la variación de altura está en torno al metro y medio. Como se verá más adelante, este hecho ha obligado a los sistemas a que dispongan de autoenfoque en el plano vertical.

La posición del hilo en el plano horizontal tampoco permanece constante. El hilo de contacto se instala en zig-zag, en torno al eje de la vía, con el fin de maximizar la zona de contacto con el pantógrafo, y por lo tanto, minimizar el desgaste en éste (Figura 2-5). Los sistemas deben ser operativos en todo el campo horizontal. El valor máximo recomendado por la UIC para el descentramiento en los apoyos es de 0,3 metros (Tabla 2-4) y en el caso del centro del vano ese valor aumenta a 0,4 metros (Tabla 2-5). La máxima variación lateral en horizontal cada 100 metros de longitud (Tabla 2-6) es de 0,5 metros.

Para que la inspección se realice de forma efectiva, sin interferir en el tráfico ferroviario, **los sistemas deben ser capaces de realizar las medidas a la velocidad del tren**. Es decir, tendrán que adquirir, procesar y almacenar una gran cantidad de datos en tiempo real.

Por otra parte, las medidas no se realizan bajo condiciones controladas como ocurre en la inspección de procesos industriales, en entornos cerrados. A la hora de diseñar los sistemas habrá que considera que la medida se efectuará en el exterior, en un entorno a cielo abierto, con condiciones de iluminación no controladas y en las que también se tendrán que tener en cuenta circunstancias tales como la lluvia, el hielo, la nieve o la niebla.

Las líneas principales de investigación que se han seguido en el diseño de sistemas de medida basados en métodos ópticos y sin contacto son las que se enumeran a continuación:

- Medida de la superficie de desgaste, cuantificando lo que ve una cámara. Este enfoque es el elegido en los distintos equipos desarrollados para las compañías
ferroviarias española y francesa [Aparicio95], [Borromeo03], holandesa [VanGigch91] e italiana [Hoefler01].

- Medida de la huella de desgaste por el tiempo que tarda en recorrerla transversalmente un haz de luz [Shimada97].

- Medida del espesor del hilo de contacto mediante células infrarrojas [Forum00].

Las compañías ferroviarias utilizan el valor del espesor del hilo de contacto o el de la sección efectiva (RENFE) como indicador de su desgaste.

De las tres líneas de investigación citadas anteriormente se puede deducir que los sistemas o bien miden el espesor directamente o bien lo calculan a partir de la medida del ancho de la zona de desgaste o “huella”.

En el siguiente capítulo (ver apartado 3.1) se verá cómo se puede calcular el espesor y la sección efectiva del hilo de contacto en función del ancho de la superficie de desgaste o “huella”.

El medir el ancho de la superficie de desgaste presenta varias ventajas: posibilidad de medir sistemas con dos hilos de contacto, las medidas son realizadas con independencia del equipamiento de la catenaria y al medir el ancho de la “huella” es posible obtener información adicional del estado de la zona de desgaste. El mayor inconveniente es la dependencia de las medidas con las propiedades reflexivas de la superficie de desgaste.

Las principales ventajas de medir el espesor son su bajo coste y su simplicidad. Sin embargo, las desventajas son de mayor relevancia: limitación tanto en el número de hilos que se pueden medir simultáneamente como en el rango de medida y en la velocidad del coche laboratorio. Además para realizar la medida del espesor es necesario modificar el pantógrafo. En el apartado 2.4.8 de esta memoria se presenta un sistema que mide el espesor del hilo de contacto. En la Figura 2-29 se muestra un esquema de su principio de funcionamiento. En ella se puede ver cómo se ha de instalar el equipo en el pantógrafo para medir lateralmente el espesor.

2.4 Descripción de los sistemas automáticos de medida del desgaste

En los siguientes apartados se van a describir cada uno de los sistemas que se han desarrollado para medir de forma automática el desgaste del hilo de contacto. Se estudiará como abordan los condicionantes impuestos por la aplicación tales como la variación de la posición del hilo de contacto tanto en altura como descentramiento, la adquisición y procesamiento en tiempo real así como otros aspectos del diseño como su localización o el tipo de iluminación empleado.

2 A lo largo de la memoria de esta tesis doctoral utilizaremos el término huella o superficie de desgaste indistintamente.
2.4.1 Sistema MEDES

Como ya se ha comentado el sistema MEDES ha sido desarrollado por la UPM-DIE (División de Ingeniería Electrónica Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid) y financiado por RENFE [Aparicio95],[Borromeo03]. Está instalado y operativo en dos coches laboratorios utilizados por RENFE (Figura 2-15) y la SNCF (Figura 2-22). Durante el periodo que lleva en funcionamiento la red ferroviaria española ha sido evaluada en varias ocasiones y su buen comportamiento ha sido confirmado mediante medidas manuales.

![Figura 2-15. Coche auscultador de catenaria nº 1002. RENFE](image)

El sistema es capaz de adquirir y procesar 250 imágenes/s, y ha sido diseñado para obtener una precisión del ±5% en el cálculo de la sección. Actualmente la inspección se realiza a 90 km/h en el caso del equipo RENFE, y a 120 km/h en Francia. Esta limitación viene impuesta por otros sistemas instalados en los coches laboratorios ya que las medidas del sistema son independientes de la velocidad del coche.

Es adaptable a las características propias de la red ferroviaria (altura y descentramiento del hilo de contacto), puede medir simultáneamente hasta cuatro hilos, de sección circular (107 mm2, 120 mm2 ó 150 mm2) u oval (107 mm2 ó 150 mm2).

En cuanto a las condiciones de funcionamiento, puede trabajar tanto de día como de noche, salvo en los casos de lluvia y si está nevando. También es operativo con niebla y con lluvia fina. En este último caso su uso no es muy aconsejable ya que si existe suciedad en los hilos de contacto, ésta puede caer a los espejos del sistema provocando daños en su superficie.

El principio de medida en el que se basa el sistema MEDES es el siguiente: la zona de desgaste es iluminada con un haz de luz infrarroja y el reflejo es capturado por cámaras CCDs lineales (ver Figura 2-16).
Figura 2-16. Principio de medida del sistema MEDES

En la Figura 2-17 se muestra el diagrama de bloques del sistema. El objetivo de este capítulo es hacer una breve descripción de cada uno de los subsistemas que lo forman. En el capítulo 3 se estudiarán en profundidad los parámetros de diseño y las características de los subsistemas de adquisición y procesamiento, ámbito en el cual se ha desarrollado el presente trabajo de investigación.

Figura 2-17. Diagrama de bloques del sistema MEDES
Como se indica en el diagrama de bloques de la Figura 2-17, existen dos unidades físicas donde se alojan los distintos subsistemas funcionales. Estas unidades físicas son la mesa óptica (Figura 2-18), y el rack o armario de control (Figura 2-19). En la mesa óptica se localizan los subsistemas de iluminación, óptico y la parte mecánica del subsistema de enfoque. El sistema de procesamiento y control, el de alimentaciones y el PC se ubican en el armario de control.

La señal de altura del hilo de contacto y una señal por cada metro recorrido son las entradas externas al sistema y son proporcionadas por las compañías ferroviarias.
Subsistema de iluminación

El sistema MEDES utiliza como fuente luminosa luz monocrómatica, y en particular la proporcionada por diodos láser emitiendo a una longitud de onda en torno a los 810 nm. El uso de filtros interferenciales y el empleo de iluminación en el infrarrojo, zona donde la componente espectral de la luz solar es mucho menor que en el visible (Figura 2-20), hace posible reducir casi completamente el efecto de la luz ambiente. El sistema de iluminación está formado por seis módulos iguales, cada uno de ellos constituido por un diodo láser de 1W con su alimentación estabilizada, regulación de temperatura y potencia de emisión.

![Figura 2-20. Radiación solar](image)

Subsistema óptico de captación

Es el encargado de la captura de imágenes mediante cinco cámaras CCD lineales y una óptica convencional. Con el empleo de cinco cámaras solapadas se consigue que el hilo de contacto esté siempre en el campo de visión de las cámaras independientemente de su posición respecto al eje de la vía. Se ha elegido óptica convencional por su simplicidad y bajo coste, a pesar del inconveniente de una resolución variable.

Subsistema de enfoque

Como ya se explicó en apartados anteriores (ver 2.1.1.1.1) debido a pasos a nivel, puentes, túneles o estaciones, la altura del hilo no se mantiene constante, haciendo necesario la presencia de un sistema que mantenga en todo momento enfocado el hilo de contacto. Este subsistema funciona de forma autónoma, siguiendo la referencia de altura facilitada por otros equipos instalados en el coche laboratorio en que se encuentra MEDES. El sistema de enfoque utiliza un servomotor con un regulador PID para posicionar correctamente las cámaras respecto a las lentes.
Subsistema de procesamiento

El procesamiento es complejo ya que hay que procesar una gran cantidad de datos en tiempo real. El sistema MEDES es capaz de adquirir y procesar 250 imágenes/s. Cada cámara lineal CCD tiene 2592 píxeles, con lo que el sistema tiene que ser capaz de procesar 3,2 Mbytes/s. Para ello, se realiza un procesamiento en paralelo en el que se detecta el número de huellas, su posición y su ancho, medida que luego es utilizada para el cálculo de la sección efectiva y el espesor del hilo de contacto.

El sistema de procesamiento se basa en el empleo de transputers [INMOS89]. Los transputers son dispositivos VLSI (Very Large Scale Integration) que incorporan un procesador, memoria y enlaces específicos para poder comunicarse directamente con otros transputers. Se trata de dispositivos que se diseñaron de forma específica para construir sistemas de procesamiento en paralelo.

El interfaz con el usuario es realizado a través de un PC, que es el encargado del archivo, postprocesado y presentación de los resultados, bien mediante informes estadísticos o mediante una representación gráfica. Los informes estadísticos y listados de datos permiten localizar zonas de gran desgaste (o alarmas).

La salida gráfica (Figura 2-21) es de gran ayuda ya que permite conocer el estado de la red de una forma rápida y sencilla. El gráfico consta de siete canales. La altura y descentramiento del hilo de contacto se representan en las dos primeras columnas. Los siguientes cuatro canales contiene la información (ancho de huella, espesor o sección útil) correspondiente a cada uno de los cuatro hilos que pueden ser medidos. En el último canal aparece el punto kilométrico relativo al comienzo del fichero.
Figura 2-21. Salida gráfica del sistema MEDES

Subsistema de alimentación

Se encarga de generar las tensiones necesarias para el funcionamiento de todo el equipo con sus correspondientes protecciones.
2.4.1.1 MEDES-F1

En cuanto se dio a conocer la operatividad del sistema MEDES y los resultados de su explotación varias administraciones ferroviarias (SNCF, FS, Metro de Madrid) se interesaron por el equipo, y de entre ellas, el interés de la administración francesa se materializó en el desarrollo, instalación y montaje de un nuevo sistema de medida (MEDES-F1), diseñado por la UPM-DIE e industrializado por la empresa SEPSA. Este equipo está instalado en el coche laboratorio I.E.E. 142.9 de la SNCF y se encuentra operativo en Francia desde Julio del 2001 (Figura 2-22).

![Figura 2-22. Coche laboratorio IEE 142.9. SNCF](image)

En la realización del nuevo sistema, se han llevado a cabo nuevos diseños que han contribuido a las mejoras de las prestaciones del equipo. Estos nuevos diseños han venido impuestos fundamentalmente por:

- Distintas dimensiones del campo de auscultación, que impone modificaciones en los diseños mecánicos.

<table>
<thead>
<tr>
<th>Decentramiento (mm)</th>
<th>RENFE</th>
<th>SNCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 500</td>
<td></td>
<td>± 450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altura (mm)</th>
<th>RENFE</th>
<th>SNCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4600-6000</td>
<td></td>
<td>4400-6400</td>
</tr>
</tbody>
</table>

Tabla 2-8. Campo de auscultación de las líneas ferroviarias española y francesa

- Inclusión de información facilitada por otros equipos que se encuentran en el coche auscultador de catenaria. Este hecho ha obligado a cambios tanto en el software del procesamiento realizado por los transputers como en los programas de presentación de resultados.
- Modificaciones y mejoras impuestas por el mercado de componentes.
- Transferencia tecnológica a partir de un prototipo no industrial.

Las principales modificaciones mecánicas se centraron en el diseño de la nueva geometría de la mesa óptica (Figura 2-23).
En cuanto al hardware del sistema, las modificaciones más importantes se realizaron en la lógica de control del sistema de adquisición y en el sistema de gestión de entradas y salidas del sistema de procesamiento. Otra mejora importante ha sido el paso a un sistema de alimentación distribuida.

Entre las mejoras software está la implementación de un nuevo algoritmo de asignación de las medidas a cada uno de los hilos de contacto. Su desarrollo se estudiará en detalle en el capítulo siguiente de esta memoria (ver apartado 3.6.1) y constituye una de las aportaciones originales de este trabajo de investigación.

2.4.2 MEDES 2000

Las principales aportaciones de la tesis doctoral se desarrollan dentro del proyecto del nuevo sistema de medida MEDES 2000 cuyos objetivos principales son:

- Mejorar las prestaciones actuales del sistema MEDES en cuanto al número de imágenes procesadas por segundo (al menos 1000 imágenes/s), precisión, flexibilidad (número de cámaras, número de píxeles por cámara, modos de disparo), modularidad y robustez.
- Dotar al sistema de postprocesamiento en tiempo real, permitiendo obtener los resultados en tiempo de auscultación.

Para alcanzar estos objetivos habrá que hacer cambios en los sistemas de adquisición y procesamiento.
2.4.2.1 **Nuevo sistema de adquisición**

Se ha tenido que diseñar un nuevo sistema de adquisición que cumpla los requisitos temporales (frecuencia de muestreo) que permiten adquirir y procesar un mínimo de 1000 imágenes/s.

En el diseño del sistema además de la frecuencia de muestreo se han de tener en cuenta otros factores como la resolución, tamaño de pixel, margen dinámico o control de antiblooming. En el capítulo 3 se van a estudiar todos estos factores que intervienen en la etapa de formación de las imágenes.

2.4.2.2 **Arquitectura del nuevo sistema de procesamiento**

Se ha desarrollado un nuevo sistema de procesamiento que se compone de una parte **hardware** y otra **software**.

La única parte que se ha optado resolver por **hardware** es el preprocesamiento de las imágenes, procesamiento local a cada cámara, sintetizado en una FPGA, en el que se detecta el **número de huellas**, su **posición** y su **ancho**. La adquisición de datos, procesamiento y control del sistema está centralizada en un PC. El sistema operativo sobre el que se fundamenta la arquitectura software del PC es **RtLinux** (versión 3.0), una extensión de tiempo real estricto al sistema operativo de propósito general **Linux**.

En la Figura 2-24 se puede ver la arquitectura del nuevo sistema de procesamiento. La descripción de cada una de las partes que lo componen, el procesamiento **hardware** implementado en las FPGAs y el **software** del PC, se estudiarán en el siguiente capítulo (apartado 3.5).

![Figura 2-24. Arquitectura del sistema de procesamiento en tiempo real](image-url)
2.4.3 ATON

La compañía de ferrocarriles holandesa (NS), para realizar la inspección del hilo de contacto, utiliza el sistema de medida ATON (Automatic Thickness measurement of Overhead wires Netherlands Railways) diseñado por el TNO Institute of Applied Physics.

Figura 2-25. Coche laboratorio empleado por la NS y donde se encuentra instalado el sistema ATON

El sistema determina el espesor del hilo de contacto partiendo de la medida del ancho de la huella. En el plano horizontal el campo de medida del sistema es de 1100 mm. En cuanto a la altura del hilo de contacto puede variar entre 4500 mm y 5950 mm. El sistema puede medir hasta cuatro hilos simultáneamente.

La inspección se puede realizar tanto de día como de noche. En el caso de lluvia, niebla, nieve o hielo las prestaciones del equipo se ven reducidas drásticamente.

El principio de medida del sistema es el mismo en el que se basa el sistema MEDES: la zona de desgaste del hilo de contacto se ilumina con un haz de luz infrarroja y el reflejo es capturado por cámaras CCDs lineales.

Láseres de semiconductor emitiendo a 800nm y filtros pasabanda son utilizados para reducir el efecto de la luz ambiente.

Para cubrir todo el campo de visión el sistema utiliza cinco cámaras CCDs solapas y óptica telescópica. La ventaja principal del uso de este tipo óptica frente a la convencional es que la resolución óptica se mantiene constante.

Para llevar a cabo el procesamiento de las imágenes se ha diseñado una arquitectura en paralelo que utiliza cinco DSPs (Digital Signal Processors).

2.4.4 Sistema japonés

El sistema utilizado en Japón desde finales de los 90 ha sido desarrollado por el Railway Technical Institute [Shimada97].
Es capaz de medir hasta cuatro hilos a la vez, cuya altura esté comprendida entre 4200 mm y 5400 mm, y su descentramiento sea inferior a ±350 mm.

El principio de medida en el que se basa este sistema se describe a continuación: mediante un espejo rotativo, un haz láser hace un barrido de toda la zona de medida. Cuando el haz alcanza la superficie de contacto del hilo, una parte del haz es reflejada y capturada con un dispositivo fotoeléctrico, midiendo la duración de la reflexión. Como el barrido del haz se hace a una velocidad constante, la duración de la reflexión recibida es proporcional al ancho de la “huella”.

El sistema utiliza como fuente luminosa un láser YAG bombeado por diodo, con longitud de onda 1064 nm y potencia de salida 350 mW.

Como puede verse en el esquema de la Figura 2-26 el sistema consta de varios espejos y lentes. Se localiza en el techo del coche laboratorio y tiene unas dimensiones de 2500 x 1000 x 400 mm

Un servomecanismo mueve una de las lentes con el cambio de altura del hilo de contacto.

2.4.5 WWS101

El Fraunhofer IPM ha desarrollado un conjunto de sistemas ópticos de inspección para monitorizar el estado de la línea aérea de contacto. Entre estos sistemas se encuentra el sistema de medida de desgaste del hilo de contacto WWS101
Inspección automática del desgaste de la catenaria

[Hoefler01]. Desde el año 2003 está siendo probado en Italia en un coche laboratorio de la FS (Ferrovie dello Stato, Spa).

El sistema es capaz de realizar la inspección a velocidades de hasta 160km/h, tanto de día como de noche. Sin embargo la precisión en la medida se ve reducida o las medidas no se pueden realizar si la cámara está expuesta a los rayos solares directamente. Es por ello por lo que es preferible que las medidas tengan lugar de noche o cuando el cielo está nublado.

Para poder medir el desgaste de hasta cuatro hilos simultáneamente, el sistema cuenta con dos unidades de inspección que trabajan de forma independiente, una para cada par de hilos de contacto.

El espesor se calcula a partir del ancho de la superficie de contacto. El sistema registra la superficie de desgaste y proporciona datos del desgaste del hilo de contacto cada 25 mm.

El sistema tiene su propia unidad de iluminación y utiliza como fuente luminosa una línea de focos de luz blanca, es decir, no emplea iluminación láser como en el caso de los equipos descritos en los apartados anteriores.

El sistema WWS101 se encuentra en el techo del coche laboratorio y está equipado con dos cámaras CMOS con zoom motorizado que capturan imágenes de la superficie de contacto cada 25 mm. Moviendo la cámara en relación con el objetivo se asegura en todo momento una imagen enfocada del hilo, independientemente de las variaciones de la altura.

El haz de visión de cada cámara es direccionado hacia el hilo de contacto mediante un espejo. La posición del hilo, dato proporcionado por el sistema de medida CRS204 desarrollado también por el Fraunhofer IPM, es utilizado para controlar tanto el zoom de las cámaras como el ángulo de barrido del espejo.

Las imágenes son transferidas mediante fibra óptica al computador donde se va a llevar a cabo el procesamiento software. Se aplican algoritmos de procesamiento de
imágenes así como filtros para resaltar los bordes. La dirección del hilo de contacto se determina cada 25mm. En el procedimiento de cálculo descrito, se pueden producir errores en las zonas donde cambia la pendiente del hilo, es decir en los postes.

2.4.6 Geocat

En el Congreso mundial de investigación ferroviaria celebrado en Colonia en el WCRR'01 [Fumi01] se presentó el prototipo Geocat, instalado en un coche laboratorio de la compañía italiana de ferrocarriles (FS). Se trata de un sistema de diagnóstico integral para controlar los parámetros geométricos, mecánicos y eléctricos de la línea aérea de contacto.

El desgaste del hilo de contacto es uno de los parámetros que se van a inspeccionar. El sistema no utiliza iluminación láser, y se instalará en el pantógrafo, con lo que las vibraciones propias de éste pueden producir errores en la medida. El sistema aún no ha sido probado en vía en condiciones de operación.

2.4.7 Wire Check

La empresa Tecnogamma [Tecnogamma] ha desarrollado un sistema que mide el desgaste, la altura y el descentramiento del hilo de contacto.

Se trata de un sistema óptico que emplea iluminación láser y cámaras CMOS matriciales. En la Figura 2-27 se muestra un esquema de su principio de medida. Para iluminar la catenaria el haz láser conformado se desvía un ángulo fijo mediante un conjunto de espejos. Cuando la altura de la catenaria varía, el bloque de espejos se desplaza, manteniéndose fija la zona de iluminación y el ángulo de iluminación. Mediante un conjunto de cámaras CMOS que cubren todo el campo horizontal de visión se toman las imágenes del hilo de contacto.

Figura 2-28. WireCheck: Principio de medida
El valor añadido de este sistema es su capacidad de calcular el perfil real de la parte inferior de la catenaria mediante técnicas de triangulación.

2.4.8 SURCAT: Sistema de medida del espesor del hilo de contacto.

Todos los equipos estudiados hasta ahora miden el ancho de la superficie de desgaste para calcular el espesor del hilo de contacto. En este apartado se presenta el equipo desarrollado por la empresa francesa Cybernetix [cybernetix] y utilizado por la SNCF para medir el desgaste del hilo de contacto en las líneas de 25.000V (catenaria sencilla con un único hilo de contacto).

![Diagrama del sistema de medida del espesor del hilo de contacto](image)

Los principios inconvenientes del sistema son su baja velocidad de auscultación, limitada a 30 km/h y la imposibilidad de medir dos hilos simultáneamente.

Para solucionar este último problema la misma empresa está desarrollando un sistema que incorpora un dispositivo que eleva uno de los hilos. Este equipo tiene dos importantes limitaciones: la velocidad máxima del tren no puede superar los 5km/h y el campo de medida en el plano horizontal es de ± 0,25m, con lo que no se cubre todo el campo de medida. Se recuerda que de acuerdo con la recomendación UIC 799 el valor del descentramiento del hilo de contacto en el vano puede tener un valor de hasta 0,4m (ver Tabla 2-4).

2.5 Conclusiones sobre la inspección automática del desgaste de los hilos de contacto

Para mejorar la seguridad y la calidad de servicio es necesario el desarrollo de equipos que permitan medir y controlar el desgaste de los hilos de contacto sin interferir en el tráfico ferroviario. Sistemas que realicen la auscultación de las líneas de forma fiable, precisa y en un periodo de tiempo reducido, facilitando las tareas de inspección y mantenimiento.
En este capítulo se han presentado las distintas soluciones técnicas aportadas por los sistemas desarrollados para medir el desgaste de forma automática. Se trata de sistemas basados en métodos ópticos.

A excepción del equipo SURCAT (ver 2.4.8) todos los sistemas miden el ancho de la superfi
cie de desgaste del hilo de contacto. A pesar del bajo coste y simplicidad de los sistemas que miden el espesor, las limitaciones en cuanto al número de hilos, el rango de medida así como la velocidad de auscultación hacen preferibles los sistemas que a partir de la medida del ancho de la huella determinan el espesor del hilo de contacto.

Por otra parte, medir el ancho de la huella tiene otras ventajas como la independencia de las medidas con el equipamiento de la catenaria o la posibilidad de obtener información adicional del estado de la zona de desgaste. No obstante, el cálculo del espesor al realizarse de forma indirecta puede verse afectado por errores debidos a las tolerancias de fabricación de los hilos de contacto.

Sin embargo, el principal inconveniente que tiene medir el desgaste a partir del ancho de la huella, es la dependencia de la medida con las propiedades reflexivas de la superfi
cie de desgaste. Problema al que pretende dar solución el trabajo realizado en esta tesis doctoral.

Aunque en Japón desde finales de los 90 está operativo un sistema en el que se emplean células fotoelec
tricas, lo que constituye la base de los equipos que están en funcionamiento son los sistemas de visión por computador.

Dentro de ellos, el problema se aborda desde dos puntos de vista distintos: utilizar la reflexi
ón especular de la zona de desga
te cuando ésta es iluminada con un haz láser o la reflexión difusa.

Los sistemas MEDES y ATON se basan en la reflexión especular del hilo de contacto, la cual es capturada con cámaras CCDs lineales.

Para simplificar las tareas de procesamiento es conveniente que la zona de desgaste aparezca varias veces más “brillante” que el resto de la imagen, es decir, que el cielo u otras partes de la línea aérea de contacto. La mejor solución es usar una fuente de luz monocromática. Aunque las lámparas flash o de Sodio podrían ser utilizadas, su complejidad, coste y consumo hacen inviable su uso. La luz láser es una mejor solución y entre las distintas posibilidades, el uso de diodos láser es la óptima por su pequeño tamaño, alta fiabilidad y estabilidad. Además mediante filtros interferenciales se reduce casi completamente el efecto de la luz ambiente.

En los sistemas MEDES y ATON, el ángulo de visión de las cámaras y el de iluminación de los láseres permanecen constantes. Para cubrir todo el campo de medida en el plano horizontal, se emplean cinco cámaras solapadas y varios láseres que crean una cortina de haces luminosos paralelos, que mantiene iluminado en todo momento el hilo de contacto, independientemente de su posición respecto del eje de
Inspección automática del desgaste de la catenaria

la vía. Esta solución, aunque tiene el inconveniente de un mayor número de componentes es la más ventajosa por su simplicidad.

Por otra parte, para evitar problemas mecánicos y de mantenimiento ningún componente de los sistemas de medida se monta en el techo del coche laboratorio o en el pantógrafo. Los sistemas se instalan dentro del coche auscultador.

La principal diferencia entre ambos equipos es el uso de óptica telescópica compleja y diseñada a medida por parte del sistema ATON, mientras que el sistema MEDES se basa en soluciones electrónicas y en óptica comercial. Esto hace que el sistema MEDES sea más sencillo y menos costoso.

En los sistemas WWS101, Wire Check y Geocat la luz que llega a las cámaras es consecuencia de la reflexión difusa, siendo más pobre que en el caso de que lo hubiese hecho por reflexión directa. Este hecho condiciona la elección del tipo de sensor empleado, el procesamiento y la localización del sistema.

En estas condiciones se necesita aplicar algoritmos de reconocimiento de imagen, lo que aumenta el tiempo de procesamiento, pues es como si se estuviese haciendo una foto hacia arriba y después se tuviese que extraer la información del área donde se encuentra la catenaria, por ejemplo, aplicando algoritmos para reconocimiento de formas.

En lugar de cámaras lineales CCDs se emplean cámaras matriciales CMOS. Las cámaras CMOS tienen una mayor resposividad, es decir, necesitan menor energía para obtener la misma respuesta. Otra ventaja de este tipo de cámaras frente a las CCDs es la capacidad de leer una única zona del sensor\(^3\) permitiendo elevar la tasa de muestreo para una región de interés. Así una posibilidad para aumentar el ritmo de salida de imágenes consistiría en sacar más de una imagen de cada toma realizada con la cámara. Por ejemplo, si se considera una cámara de 1024 píxeles, dedicando 300 píxeles de los 1024 que tiene la cámara en el sentido longitudinal a la vía a cada imagen, de cada toma realizada podrían sacarse 3 imágenes, triplicando la tasa de muestreo.

A pesar de estas ventajas, las cámaras CCDs ofrecen un mejor comportamiento en calidad de la imagen (medido como eficiencia cuántica y ruido). Tienen mayor rango dinámico y uniformidad en la respuesta de los píxeles del sensor bajo las mismas condiciones de iluminación.

En los sistemas que miden la reflexión difusa el ángulo de visión de las cámaras no permanece constante, hay que variarlo con la posición del hilo de contacto. Así en el caso del sistema WWS101 el haz de visión de cada cámara es direccionado hacia el hilo de contacto mediante un espejo. Esto supone un aumento en la complejidad del sistema.

\(^3\) Término conocido en la nomenclatura anglosajona como windowing
Para medir la reflexión difusa, con menor intensidad que la especular, los equipos deben situarse cerca del hilo de contacto, por lo que se instalan en el techo del coche laboratorio, complicándose las tareas de limpieza y mantenimiento. De hecho, el sistema WWS101 cuenta con sistemas auxiliares de limpieza.

Como conclusión se podría decir que aunque los sistemas que utilizan la reflexión especular de la imagen (MEDES y ATON) tienen un mayor número de componentes (cámaras y diodos láser solapados), las soluciones técnicas empleadas son más ventajosas por su simplicidad.

Asimismo, en el procesamiento no es necesario aplicar algoritmos de reconocimiento de imagen, con la mejora en las prestaciones en cuanto a tasa de muestreo que eso supone.

De todo lo dicho hasta ahora, se podría decir que son los sistemas MEDES y ATON los que han adoptado las mejores soluciones, haciendo que sean los que ofrecen mejores prestaciones. De hecho, estos sistemas llevan operativos varios años y han demostrado su efectividad en la inspección automática del hilo de contacto.

Del análisis comparativo entre ellos, el sistema MEDES presenta como principal ventaja el uso de soluciones electrónicas y óptica convencional frente a la óptica telescópica, lo que lo hace más sencillo y competitivo. De ahí, que actualmente MEDES no sólo lo esté utilizando RENFE en España, sino que la SNCF optara por este sistema para realizar la medida del desgaste del hilo de contacto en la red ferroviaria francesa.

Por todo ello, RENFE ha patentado el sistema a nivel europeo. Además ha apostado por desarrollar un tercer equipo MEDES2000, basado en la misma filosofía y que constituye el ámbito donde se ha desarrollado el trabajo de investigación que se presenta en esta tesis doctoral.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Capítulo 3

Adquisición y procesamiento de las imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Índice

3. ADQUISICIÓN Y PROCESAMIENTO DE LAS IMÁGENES CAPTURADAS CON CCD LINEALES. MEDIDA DEL DESGASTE DEL HILO DE CONTACTO..... 51

3.1 Principio de medida del sistema MEDES.. 52
 3.1.1 Sección circular.. 53
 3.1.2 Sección Oval.. 55
 3.1.2.1 Ancho de huella mayor que el ancho circular (d > d_{c})............................. 55
 3.1.2.2 Ancho de huella menor que el ancho circular (d < d_{c})......................... 57

3.2 Estudio de la sensibilidad en la medida ... 58
 3.2.1 Sección Circular.. 58
 3.2.1.1 Cálculo de la sección.. 58
 3.2.1.2 Cálculo del espesor.. 59
 3.2.2 Sección Oval.. 60
 3.2.2.1 Cálculo de la sección.. 60
 3.2.2.2 Cálculo del espesor.. 61
 3.2.3 Cálculo del error máximo permitido en la medida del ancho de la huella 61

3.3 Adquisición de imágenes .. 63
 3.3.1 Sistema de iluminación.. 63

49
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

<table>
<thead>
<tr>
<th>Sección</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Sistema óptico de captación: parámetros de diseño</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Error máximo permitido expresado en píxeles</td>
<td>69</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>CCDs lineales</td>
<td>73</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Transmisión y digitalización de la imagen</td>
<td>74</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Sistema de Enfoque</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Imagen adquirida</td>
<td>76</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Imagen ideal</td>
<td>76</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Desenfoque</td>
<td>77</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Desplazamiento lateral del HC</td>
<td>77</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Huellas Inclinadas</td>
<td>79</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Bordes de la imagen</td>
<td>80</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Grasa en los bordes de la huella</td>
<td>80</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Gotas de agua</td>
<td>81</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Influencia del ángulo de ataque del pantógrafo</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Procesamiento de las imágenes</td>
<td>82</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Descomposición estructural del software del PC</td>
<td>83</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Procesamiento hardware</td>
<td>84</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>Parámetros de procesamiento</td>
<td>85</td>
</tr>
<tr>
<td>3.6</td>
<td>Postprocesamiento</td>
<td>87</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Algoritmo de asignación de canales</td>
<td>90</td>
</tr>
<tr>
<td>3.6.1.1</td>
<td>Desarrollo del algoritmo de asignación de canales</td>
<td>94</td>
</tr>
<tr>
<td>3.6.1.1.1</td>
<td>Algoritmo_1HC</td>
<td>96</td>
</tr>
<tr>
<td>3.6.1.1.2</td>
<td>Algoritmo_2HC</td>
<td>98</td>
</tr>
<tr>
<td>3.6.1.1.3</td>
<td>Resultados</td>
<td>100</td>
</tr>
<tr>
<td>3.6.1.1.4</td>
<td>Discusión de los resultados</td>
<td>103</td>
</tr>
<tr>
<td>3.7</td>
<td>Precisión en la medida</td>
<td>103</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Soluciones hardware</td>
<td>105</td>
</tr>
<tr>
<td>3.7.1.1</td>
<td>Cambio de la fuente luminosa</td>
<td>105</td>
</tr>
<tr>
<td>3.7.1.2</td>
<td>Cambio de la geometría del sistema</td>
<td>106</td>
</tr>
<tr>
<td>3.7.1.3</td>
<td>Un único láser</td>
<td>107</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Control del tiempo de Integración</td>
<td>107</td>
</tr>
<tr>
<td>3.8</td>
<td>Conclusiones</td>
<td>108</td>
</tr>
</tbody>
</table>
Capítulo 3

3. Adquisición y procesamiento de las imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

En este capítulo se van a estudiar en profundidad los procesos de adquisición y procesamiento de las imágenes del sistema de medida del desgaste del hilo de contacto (Sistema MEDES) desarrollado por la División de Ingeniería Electrónica y que está siendo utilizado por RENFE y la SNCF.

Con el análisis de las variables que intervienen en las etapas de formación y procesamiento de las imágenes y el estudio de la sensibilidad en la medida se identifican los factores que afectan a la precisión del sistema.

El capítulo comienza explicando cómo es el principio de medida del sistema MEDES, y cómo se calcula el espesor y la sección del hilo de contacto a partir de la medida del ancho de la superficie de desgaste. Con el estudio de la sensibilidad en la medida, se calculan cuáles son los errores máximos que se pueden cometer para conseguir la precisión requerida.

En todo sistema de visión por computador se pueden distinguir tres etapas: adquisición de las imágenes, procesamiento y por último la etapa de interpretación o análisis (Figura 3-1).

Si se considera sólo la etapa de adquisición de las imágenes, los elementos a tratar son los sistemas de iluminación, las características de los sensores y la transmisión de la señal. El diseño de la aplicación, requiere del análisis de todos los factores que influyen en la calidad de la imagen, buscando igualmente las fuentes de degradación y cuantificando el error que introducen.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

En el caso del sistema MEDES se realiza un procesamiento en paralelo basado en la segmentación de la imagen por nivel, en el que se calcula el ancho de la superficie de desgaste, el número de huellas y su posición.

Con los resultados que se obtienen en la etapa de procesamiento, se calcula el espesor o la sección del hilo de contacto y se asignan las medidas a cada uno de los hilos. Para conseguir una correcta asignación de las medidas a los hilos de contacto se ha desarrollado un **nuevo algoritmo que constituye una de las aportaciones de la tesis**. Con él se ha conseguido mejorar considerablemente las prestaciones del sistema. Se ha solucionado la inversión y aparición de nuevos hilos dentro de una sección o cantón. Asimismo se ha aumentado considerablemente la tasa de detección de seccionamientos.

En la última parte del capítulo se analiza la problemática de la dispersión en las medidas y la precisión del sistema. Se identifican las causas y se proponen distintas soluciones para resolverla.

3.1 Principio de medida del sistema MEDES

Para controlar el desgaste del hilo de contacto las compañías ferroviarias utilizan como indicador el valor del espesor o el de la sección efectiva (RENFE).

Como ya se explicó a lo largo del segundo capítulo de esta memoria, los sistemas de medida se basan en métodos ópticos sin contacto. En el caso del sistema MEDES aprovecha el hecho de que la zona de desgaste del hilo de contacto o "huella" refleja mucho más que cualquier otra parte del mismo. La imagen que se obtiene mediante una cámara CCD lineal del reflejo de una "huella" iluminada con luz infrarroja
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

permite medir su ancho. Partiendo de este dato es posible calcular tanto el espesor del hilo como la superficie útil. El cálculo para el caso de hilos con sección circular (ver 3.1.1) y sección oval (ver 3.1.2) se desarrolla en los siguientes apartados.

Con el empleo de luz láser se consiguen los objetivos de dotar a la zona de desgaste de máximo contraste y de anular el efecto de la luz solar.

En el diseño del sistema, el ángulo de iluminación y el de visión de las cámaras se han mantenido constantes. Con este condicionante, la solución adoptada para cubrir todo el campo de medida en el plano horizontal es la de utilizar un conjunto de cámaras y láseres solapados.

La variación de la altura del hilo de contacto obliga a que el sistema cuente con autoenfoque.

Por último señalar que el sistema al medir el ancho de la superficie de desgaste del hilo de contacto tiene el inconveniente de la dependencia de la medida con las propiedades reflexivas de la superficie de desgaste. Problema al que intenta dar solución el trabajo de investigación que se presenta en esta memoria.

3.1.1 Sección circular

En este apartado se va a estudiar el caso de la sección circular. En el esquema de la Figura 3-2 se muestra la sección de un hilo de contacto nuevo (izquierda) y la de un hilo con desgaste (derecha).

Figura 3-2. Sección del hilo de contacto

Las expresiones que relacionan la sección útil y el espesor con el radio del hilo (r) y el ancho de la huella (d) son las que se desarrollan a continuación.

El valor del espesor (e) se puede expresar de acuerdo a la ecuación [3.1]:

53
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

\[e = r + r \cdot \cos \alpha = r \cdot (1 + \cos \alpha) \]

\[[3.1] \]

La expresión del ángulo \(\alpha \) en función del radio del hilo (\(r \)) y el ancho de la huella es la siguiente:

\[\alpha = \arcsen \left(\frac{d/2}{r} \right) \]

\[[3.2] \]

Combinando las ecuaciones [3.1] y [3.2], se puede calcular el espesor (\(e \)) a partir de ancho de la superfi cie de desgaste (\(d \)):

\[e = r \cdot \left[1 + \cos \left(\arcsen \left(\frac{d}{2 \cdot r} \right) \right) \right] \]

\[[3.3] \]

Aplicando que la sección desgastada es el área del segmento circular con ángulo \(2\alpha \), la relación entre el área desgastada (\(S \)) y el ancho de huella (\(d \)) puede ser descrita por la siguiente ecuación:

\[S = r^2 \cdot \arcsen \frac{d}{2 \cdot r} - \frac{r^2}{2} \sqrt{r^2 - \left(\frac{d}{2} \right)^2} \]

\[[3.4] \]

Con lo que la expresión de la superfi cie útil es la dada por la ecuación [3.5], en la que \(S_N \) es la sección nominal del hilo:

\[S = S_N - \left(r^2 \arcsen \frac{d}{2r} - \frac{r^2}{2} \sqrt{r^2 - \left(\frac{d}{2} \right)^2} \right) \]

\[[3.5] \]

En la Tabla 3-1 se muestran las expresiones del espesor y la sección del hilo de contacto en función del ancho de la superfi cie de contacto.

SECCIÓN CIRCULAR	
Sección [mm²]	\(S = S_N - \left(r^2 \arcsen \frac{d}{2r} - \frac{r^2}{2} \sqrt{r^2 - \left(\frac{d}{2} \right)^2} \right) \)
Espesor [mm]	\(e = r \cdot \left[1 + \cos \left(\arcsen \left(\frac{d}{2 \cdot r} \right) \right) \right] \)

\[Tabla \text{ 3-1. Hilo de contacto de sección circular: sección y espesor} \]
3.1.2 Sección Oval

Los hilos de contacto también pueden presentar una sección oval (Figura 3-3). Los parámetros que definen esta geometría son los radios r y R y el valor del ancho d_c, valor a partir del cual el desgaste se estudia como si se tratara de un hilo de sección circular de radio r. A lo largo del capítulo a ese valor se denominará ancho circular (d_c). Es decir, se van a estudiar dos casos, cuando el ancho de la huella es mayor que el ancho circular y cuando es menor.

Figura 3-3. Sección oval

3.1.2.1 Ancho de huella mayor que el ancho circular ($d > d_c$)

Figura 3-4. Sección oval: caso en el que el ancho de huella es mayor que el ancho circular
Si se observa la Figura 3-3, se puede comprobar que la superficie desgastada es el área del segmento circular de ángulo 2α menos el área del segmento circular de ángulo 2β (ambos segmentos de radio r) más el área del segmento circular de ángulo 2θ de radio R.

$$A(r, R, d, d_c) = A_1 - A_2 + A_3$$ \[3.6\]

La expresión del área del segmento circular de ángulo 2α viene dado por la ecuación [3.7]:

$$A_1(\alpha, r, d) = \alpha r^2 - \frac{1}{2} \int dr \cos \alpha$$ \[3.7\]

De la expresión del valor del ancho de la superficie de desgaste dado por la ecuación [3.7] se obtiene la expresión del ángulo α en función del radio del hilo (r) y el ancho de la huella [3.8]:

$$d = 2rsen\alpha$$ \[3.8\]

$$d = 2rsen\alpha \Rightarrow \alpha = arsen \frac{d}{2r}$$ \[3.9\]

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{d}{2r} \right)^2}$$ \[3.10\]

Sustituyendo en la ecuación [3.7] las expresiones dadas por [3.9] y [3.10] se obtiene la expresión del área del segmento circular de ángulo 2α en función del radio del hilo de contacto (r) y del ancho de la huella (d).

$$A_1(r, d) = r^2 arcsen \frac{d}{2r} - \frac{d}{2} \sqrt{r^2 - \left(\frac{d}{2} \right)^2}$$ \[3.11\]

El cálculo del área del segmento circular de ángulo 2β se realiza de forma análoga, obteniéndose la expresión dada por la ecuación [3.14], en la que el área es función del ancho circular (d_c) y el radio r.

$$A_2(\beta, r, d_c) = \beta r^2 - \frac{1}{2} d_c r \cos \beta$$ \[3.12\]

$$d_c = 2rsen\beta$$ \[3.13\]

$$A_2(r, d_c) = r^2 arcsen \frac{d_c}{2r} - \frac{d_c}{2} \sqrt{r^2 - \left(\frac{d_c}{2} \right)^2}$$ \[3.14\]
Las expresiones para el cálculo del área del segmento circular de ángulo 2θ de radio R son las que se muestran a continuación:

$$A_3(\theta, R, d_c) = \theta R^2 - \frac{1}{2} d_c R \cos \theta$$ \[3.15\]

$$d_c = 2 R \sin \theta$$ \[3.16\]

$$A_3(R, d_c) = R^2 \arcsen \left(\frac{d_c}{2R}\right) - \frac{d_c}{2} \sqrt{R^2 - \left(\frac{d_c}{2}\right)^2}$$ \[3.17\]

Es decir, la sección útil del hilo se puede calcular según la ecuación [3.18], en la que S_N es la sección nominal del hilo nuevo.

$$S = S_N - (A_1 - A_2 + A_3)$$ \[3.18\]

Como puede observarse los valores de S_N, A_2 y A_3 son constantes por lo que se pueden agrupar en una única constante S_{aux} tal que la expresión de la sección del hilo sea la dada por la ecuación [3.21]:

$$S_{aux} = S_N + A_2 - A_3$$ \[3.19\]

$$S = S_{aux} - A_1(r, d)$$ \[3.20\]

$$S = S_{aux} - \left(\frac{r^2 \arcsen \left(\frac{d}{2r}\right)}{2} - \frac{d}{2} \sqrt{r^2 - \left(\frac{d}{2}\right)^2}\right)$$ \[3.21\]

3.1.2.2 Ancho de huella menor que el ancho circular ($d < d_c$)

En este caso, la expresión de la sección del hilo de contacto se calcula como la diferencia entre la sección nominal S_N y el área del segmento circular de ángulo 2θ (A_3):

$$S = S_N - A_3(R, d) = S_N - R \arcsen \left(\frac{d}{2R}\right) - \frac{d}{2} \sqrt{R^2 - \left(\frac{d}{2}\right)^2}$$ \[3.22\]

En la Tabla 3-2 aparecen las fórmulas que se han obtenido para el cálculo de la sección útil y el espesor en el caso de hilo con sección oval.
3.2 Estudio de la sensibilidad en la medida

El sistema MEDES ha sido diseñado para obtener una precisión en la medida de la sección del ±5%, para todo tipo de hilos con una sección útil mínima del 70%.

En el Anexo I se adjunta el estudio realizado para el cálculo de la sensibilidad, así como el error máximo que se pueden cometer en la medida del ancho de la huella para obtener la precisión requerida. En los siguientes apartados se muestran los resultados y conclusiones obtenidos.

3.2.1 Sección Circular

3.2.1.1 Cálculo de la sección

Partiendo de las expresiones que se han calculado con anterioridad (ver apartado 3.1.1) y que expresan la sección del hilo de catenaria en función del ancho de la huella (ver ecuación [3.5]) se puede calcular la sensibilidad como:

\[
\frac{\partial S}{\partial d} = \frac{\partial S(S_N, d, r)}{\partial d} \frac{d}{S(S_N, d, r)} [3.23]
\]

Del estudio realizado en Mathcad®, que se adjunta en el Anexo I, se obtiene la expresión de la sensibilidad:
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

\[
Sensibilidad(SN,d,R,S) = \left\{ \begin{array}{c}
\frac{-1}{2} \cdot \frac{R}{r^2} \cdot \left(1 - \frac{1}{4} \cdot \frac{d^2}{R^2} \right) + \frac{1}{4} \cdot \frac{4 \cdot R^2 - d^2}{R^2} \\
\frac{d}{SN - R^2 \cdot \arcsin \left(\frac{d}{R} \right) + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{4 \cdot R^2 - d^2}{R^2} \right) \end{array} \right.
\]

[3.24]

El error máximo que se puede cometer al medir el ancho de la superficie de desgaste viene dado por la siguiente ecuación:

\[
error(d, \text{precision}, S_n, R, \text{Señal}) = d \cdot \frac{\partial d}{\partial S_n} = \frac{\text{precision}}{Sensibilidad(S_n, d, R, \text{Señal})} \cdot d
\]

[3.25]

3.2.1.2 Cálculo del espesor

Al igual que se hizo con la sección se puede calcular la sensibilidad en la medida del espesor con el ancho de la huella:

\[
Sensibilidad(d, r) = \frac{\partial e}{\partial d} = \frac{\partial e(d, r)}{d} \cdot \frac{d}{e(d, r)}
\]

[3.26]

\[
Sensibilidad(d, r) = \left\{ \begin{array}{c}
-1 \\
2 \cdot \left(r^2 \cdot \left(\frac{d^2}{r^2} \right) \right) \cdot \left(1 + \frac{1}{2} \cdot \frac{4 \cdot d^2}{r^2} \right) \end{array} \right.
\]

[3.27]

En la Figura 3-5 se representa la sensibilidad en el cálculo de la sección y del espesor en función del ancho de la huella (d).

Figura 3-5. Sensibilidad en la medida del espesor y de la sección. Hilo de sección circular 107 mm².
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Como se puede ver en la figura anterior (Figura 3-5), las funciones de la sensibilidad en el cálculo de la sección y del espesor en función del ancho de la huella \((d)\) no son lineales, aumentando a medida que lo hace el desgaste. Para el caso de pequeños desgastes la sensibilidad en el cálculo del espesor es ligeramente superior, tendencia que se invierte en el caso de desgastes mayores.

3.2.2 Sección Oval

3.2.2.1 Cálculo de la sección

Los cálculos para el caso de sección oval se hacen de manera análoga, partiendo de la expresión de la sección efectiva o sección útil:

\[
S_{\text{efectiva}}(S_{\text{n}}, S_{\text{aux}}, R, r, d, dc) = \begin{cases} \frac{R^2 - \frac{1}{2} d R \sin \left(\frac{d}{22} \right)}{2} & d < dc \\ \frac{r^2 - \frac{1}{2} d r \sin \left(\frac{d}{22} \right)}{2} & d > dc \end{cases}
\]

El cálculo se hace en dos tramos en función si el ancho de la huella es menor o mayor que el ancho circular. En el caso que sea mayor se calcula como si se tratara de un hilo de sección circular. Las expresiones para cada uno de los tramos se muestran a continuación.

Caso en el que el desgaste es menor que el ancho circular \((d<dc)\):

\[
\text{Sen}(S_{\text{n}}, S_{\text{aux}}, d, r, R) = \frac{1}{2} \left[\frac{R}{d^2 + 4R^2} - \frac{1}{4} \sqrt{4R^2 - d^2} \right] \left(S_{\text{n}} - R^2 \left(\frac{d}{2R} \right) \frac{d}{4} \sqrt{4R^2 - d^2} \right) \]

\[3.29\]

Caso en el que el desgaste es mayor que el ancho circular \((d>dc)\):

\[
\text{Sen}(S_{\text{n}}, S_{\text{aux}}, d, r, R) = \frac{1}{2} \left[\frac{r}{d^2 + 4r^2} - \frac{1}{4} \sqrt{4r^2 - d^2} \right] \left(S_{\text{aux}} - r^2 \left(\frac{d}{2r} \right) \frac{d}{4} \sqrt{4r^2 - d^2} \right) \]

\[3.30\]
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

3.2.2.2 Cálculo del espesor

Las expresiones que se obtienen para la sensibilidad en la medida del espesor son las que se adjuntan a continuación.

Caso en el que el desgaste es menor que el ancho circular (d<dc):

\[
\text{Sen}(Sn, Saux, R, r, d, dc, \theta) = \left[\frac{1}{2} \left(R \frac{4 - \frac{d^2}{R^2}}{R^2} \right) \right] \left[\frac{1}{2} \left(1 + \frac{1}{2} \sqrt{4 - \frac{dc^2}{r^2}} \right) + R \frac{1}{2} \sqrt{4 - \frac{d^2}{r^2} - \cos \theta} \right]^{-1} d^2
\]

[3.31]

Caso en el que el desgaste es mayor que el ancho circular (d>dc):

\[
\text{Sen}(Sn, Saux, R, r, d, dc, \theta) = \left[\frac{1}{2} \left(r^2 \frac{d^2}{r^2} \right) \right] \left[1 + \frac{1}{2} \sqrt{4 - \frac{d^2}{r^2}} \right]^{-1} d^2
\]

[3.32]

3.2.3 Cálculo del error máximo permitido en la medida del ancho de la huella

Para calcular el error máximo permitido en la medida del ancho de la superficie de desgaste, en función de la precisión que se quiera del sistema, se ha de aplicar la siguiente ecuación:

\[
\text{error} = \frac{\text{precision}}{\text{Sensibilidad}} \cdot d
\]

[3.33]

Con las expresiones obtenidas en los apartados anteriores vamos a calcular cuál es el error máximo permitido en la medida del ancho de la huella para obtener una precisión del ±5% en la medida de la sección o del espesor, siempre que la sección útil sea superior al 70% de la sección nominal.

En las siguientes tablas se adjuntan los datos del estudio realizado, que aparece en el Anexo I. Los valores se han calculado en función del tipo de hilo, es decir, hilo de sección circular (Tabla 3-3) u oval (Tabla 3-4) y el grado de desgaste (hilos con una sección útil del 70%, 80% y 90%).
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto.

<table>
<thead>
<tr>
<th>SECCIÓN CIRCULAR</th>
<th>Error máximo [mm]*</th>
<th>Error máximo [mm]**</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 mm² 70%</td>
<td>0,259</td>
<td>0,329</td>
</tr>
<tr>
<td>80%</td>
<td>0,506</td>
<td>0,575</td>
</tr>
<tr>
<td>90%</td>
<td>1,111</td>
<td>1,043</td>
</tr>
<tr>
<td>120 mm² 70%</td>
<td>0,273</td>
<td>0,347</td>
</tr>
<tr>
<td>80%</td>
<td>0,538</td>
<td>0,611</td>
</tr>
<tr>
<td>90%</td>
<td>1,177</td>
<td>1,106</td>
</tr>
<tr>
<td>150 mm² 70%</td>
<td>0,305</td>
<td>0,388</td>
</tr>
<tr>
<td>80%</td>
<td>0,600</td>
<td>0,682</td>
</tr>
<tr>
<td>90%</td>
<td>1,318</td>
<td>1,239</td>
</tr>
</tbody>
</table>

(* Error máximo permitido para obtener una precisión del 5% en el cálculo de la sección
(*** Error máximo permitido para obtener una precisión del 5% en el cálculo del espesor)

Tabla 3-3. Sección Circular: error máximo permitido en la medida del ancho de la huella

<table>
<thead>
<tr>
<th>SECCIÓN OVAL</th>
<th>Error máximo [mm]*</th>
<th>Error máximo [mm]**</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 mm² 70%</td>
<td>0,223</td>
<td>0,310</td>
</tr>
<tr>
<td>80%</td>
<td>0,418</td>
<td>0,524</td>
</tr>
<tr>
<td>90%</td>
<td>0,807</td>
<td>0,873</td>
</tr>
<tr>
<td>150 mm² 70%</td>
<td>0,237</td>
<td>0,321</td>
</tr>
<tr>
<td>80%</td>
<td>0,452</td>
<td>0,555</td>
</tr>
<tr>
<td>90%</td>
<td>0,819</td>
<td>0,893</td>
</tr>
</tbody>
</table>

(•) Error máximo permitido para obtener una precisión del 5% en el cálculo de la sección
(*** Error máximo permitido para obtener una precisión del 5% en el cálculo del espesor

Tabla 3-4. Sección Oval: error máximo permitido en la medida del ancho de la huella

Los casos más desfavorables se dan para los hilos de sección oval, y en particular el de 107 mm². Siendo el más favorable el hilo circular de 150 mm².

El valor del error máximo permitido en la medida del ancho de la huella junto con el tamaño de pixel del sensor utilizado determinará los valores máximos y mínimos de la resolución del sistema (ver apartado 3.3.2).
3.3 Adquisición de imágenes

Los elementos a considerar en la etapa de adquisición de las imágenes son la iluminación y el sistema óptico de captación de las imágenes, formado por los elementos ópticos, sensores y tarjetas digitalizadoras.

En el proceso de adquisición, el hilo de contacto es iluminado de manera óptima, tal que se aumente el contraste entre el fondo y el objeto. La luz reflejada pasa a través de un sistema óptico, adecuando la escena al tamaño del sensor. Los sensores CCDs convierten los fotones recibidos en energía eléctrica. Esta información se digitaliza y es enviada para su posterior procesamiento.

Debido a que un sistema de visión por computador extrae necesariamente información de una imagen, se necesita que la calidad con la que es adquirida sea la óptima. Los factores que afectan a la calidad de la imagen son:

- Sistema de iluminación.
- Superficie a inspeccionar.
- Sensores.
- Óptica y sistema de enfoque.
- Transmisión y digitalización de la imagen.

El exacto conocimiento de los factores que influyen en la calidad de la imagen permitirá la elección correcta de cada uno de los componentes, así como la identificación de las causas que provocan una degradación en la imagen. En los párrafos siguientes se van a analizar cada uno de estos factores.

3.3.1 Sistema de iluminación

El sistema de iluminación es uno de los aspectos claves en el diseño de los sistemas de visión por computador.

El contenido espectral, o lo que es lo mismo las longitudes de onda existentes en la fuente luminosa, así como su disposición, son los parámetros de diseño más importantes a tener en cuenta.

- Para la aplicación que nos ocupa, y como ya se explicó en el capítulo anterior (ver apartado 2.4) se han utilizado diodos láser emitando en los 810 nm. Al utilizar una fuente de luz en el infrarrojo la energía necesaria para minimizar el efecto de la luz ambiente es mucho menor que si se utilizara iluminación en el visible, ya que la componente espectral de la radiación solar es menor (ver Figura 2-20). Asimismo, se han utilizado filtros interferenciales, con lo que el efecto de la luz ambiente se ha eliminado en su totalidad.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

- En el sistema MEDES se mantienen constantes los ángulos de iluminación y de visión. La geometría del sistema de iluminación se ha visto condicionada por este hecho. Para la formación de la línea que ha de iluminar el campo transversal se disponen de seis láseres, situados a distancias iguales entre sí, cuyas irradiancias se solapan. El campo de visión de cada cámara es iluminado por dos láseres. En la Figura 3-6 se muestra de forma esquemática la planta de la mesa óptica, en la que aparece la disposición de los CCDs y de los diodos láser.

Figura 3-6. Disposición de los diodos láser y de los CCDs en la mesa óptica

- La emisión de los diodos sigue una distribución gaussiana tal que en el eje del diodo se tiene el 100% de la irradiancia, y en el eje de la cámara el 50%. Al estar iluminado el campo de visión de cada cámara por dos diodos, la composición de las dos distribuciones suma aproximadamente 100% de la irradiancia. De esta forma se consigue una distribución más o menos uniforme que cubre todo el campo de medida en el plano horizontal. En la Figura 3-7 se representa la distribución de cada uno de los diodos y la resultante de todas ellas.
3.3.2 Sistema óptico de captación: parámetros de diseño

En este apartado se van a estudiar los parámetros de diseño del sistema óptico de captación, esto es, los valores de la resolución óptica del sistema, distancia focal de los objetivos así como el tipo de sensor utilizado.

En primer lugar, se va a analizar el proceso de formación de una imagen, basándonos en el modelo de lente delgada (ver Figura 3-8):

- Los rayos ópticos que pasan por el centro de la lente no sufren desviación.
- Los rayos paralelos al eje óptico de la lente salen por el foco.
- La imagen se forma en donde se juntan los rayos.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Aplicando el teorema de Thales en la Figura 3-8 se puede obtener la relación entre \(p \) (distancia objeto-lente), \(p' \) (distancia lente-CCD) y \(f \) (distancia focal):

\[
\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}
\]

[3.34]

En la misma figura se puede apreciar que el factor de escala o resolución (R) entre el objeto (Y) y la imagen (Y') es el dado por la siguiente ecuación:

\[
R = \frac{Y}{Y'} = \frac{p'}{p} = \frac{p}{f} - 1
\]

[3.35]

A continuación se va a describir cómo se realiza la selección de los parámetros ópticos.

La primera decisión que hay que tomar es el tipo de sensor que se va a utilizar.

Se va a realizar una inspección unidimensional, con el objeto en movimiento y que precisa de una alta resolución. Para este tipo de aplicaciones el tipo de sensor más adecuado es un sensor CCD lineal.

Como ya se estudió en el capítulo 2 existen equipos de medida, en particular el WWS101 y el WireCheck, que utilizan cámaras matriciales CMOS. Como valor añadido, en el caso del sistema WireCheck, posibilitan el cálculo del perfil de la parte inferior de la catenaria. Sin embargo, el uso de cámaras matriciales complica los algoritmos de procesamiento y aumenta la cantidad de información que ha de enviarse al sistema de procesamiento percutiendo negativamente sobre las prestaciones de los sistemas. Por otra parte, los sensores CCD tienen mayor rango dinámico que los CMOS y mayor uniformidad en la respuesta de los píxeles del sensor bajo las mismas condiciones de iluminación. Estas dos características son muy importantes en esta aplicación ya que existe una gran dispersión en las propiedades reflexivas del hilo de contacto. Además, el CCD está iluminado durante periodos muy cortos de tiempo, en los que recibe gran cantidad de energía que incide sobre un área muy reducida.

Una vez seleccionado el tipo de sensor se elige el tamaño de píxel. Para ello hay que tener en cuenta las siguientes consideraciones. Para una misma óptica, cuanto menor es el tamaño de píxel, se tiene mayor resolución, es decir, es posible resolver el objeto con mayor precisión. Pero por otro lado, cuanto más pequeño es el tamaño de píxel, para dar la misma respuesta en el mismo tiempo se necesita mayor energía. Así por ejemplo, para el caso cámaras con tamaño de píxeles de \(7\mu m \times 7\mu m (49\mu m^2) \) se necesita el doble de energía que si se utiliza un CCD con tamaño de píxel de \(10\mu m \times 10\mu m (100\mu m^2) \) (ver Figura 3-9). Es decir, en la elección del tamaño del píxel habrá que llegar a un compromiso entre la precisión (mayor resolución y por lo tanto menor tamaño de píxeles) y los requisitos del sistema de iluminación.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Figura 3-9. Responsividad de la cámara Piranha2 de DALSA en función del tamaño del pixel

Se seleccionado el tipo de sensor, para determinar el resto de los parámetros hay que contestar a la siguiente pregunta: ¿qué es lo que se necesita ver y qué es lo que se quiere medir?

El sistema MEDES ha sido diseñado para obtener una precisión en el cálculo de la sección del ±5%, para todo tipo de hilos y con una sección útil mínima del 70%. En el apartado 3.2.3 de este capítulo se ha calculado cuál el error máximo que se puede cometer para resolver el ancho de la huella para garantizar esta precisión. El peor caso se da para los hilos con sección oval de 107mm² (ver Tabla 3-4). Este valor hay que dividirlo por dos, ya que el error se comete en los bordes de la imagen. Si a esta magnitud en el objeto se la hace corresponder con un pixel en el CCD, se puede calcular el valor de resolución máxima.

\[
R_{\text{max ima}} = \frac{Y}{Y'} = \frac{\text{Error max } / 2}{\text{TamañoPixel}} \tag{3.36}
\]

Este valor de resolución máxima corresponde al caso en el que el hilo de contacto se encuentra más alejado del CCD, esto es, a la altura máxima.

La distancia hilo de contacto-lente (p) es conocida. En la elección de la disposición de la mesa óptica, y por lo tanto en el valor de p, el criterio de diseño ha sido que la mesa óptica estuviera lo más cerca del suelo. De esta forma se consigue que el movimiento sea solidario con el coche laboratorio y se disminuyan los efectos de la suspensión del coche.

Conocido p, y aplicando la ecuación óptica se calcula el valor de la distancia focal.

\[
f = \frac{p}{R_{\text{max}} + 1} \tag{3.37}
\]
La elección de los objetivos de las cámaras se hace en base a este valor de la distancia focal y al hecho de evitar en lo posible la distorsión por difracción. Con estos condicionantes y los propios de mercado (realizar un objetivo a medida es impensable por el grado de dificultad y alto coste que supondría) se seleccionó un objetivo con distancia focal de 351 mm y apertura máxima de 6,8.

Fijado el valor de f se vuelve a ajustar el valor de la resolución máxima aplicando la ecuación [3.35].

Partiendo de la ecuación óptica se tiene que:

\[\Delta R = \frac{\Delta p}{f} \quad [3.38] \]

Por otro lado:

\[\Delta p = H_{\text{maxima}} - H_{\text{minima}} \quad [3.39] \]

Combinando las ecuaciones [3.38] y [3.39] se puede obtener el valor de la resolución a la altura mínima del hilo de contacto.

Una vez calculados los valores de la resolución a altura máxima y mínima se puede obtener el margen de variación de la distancia entre la lente y el sensor CCD para que la imagen esté enfocada a todas las alturas del hilo de catenaria.

Para altura máxima:

\[p'_{\text{max}} = \frac{f(1 + R_{\text{max}})}{R_{\text{max}}} \quad [3.40] \]

Para altura mínima:

\[p'_{\text{min}} = \frac{f(1 + R_{\text{min}})}{R_{\text{min}}} \quad [3.41] \]

Debido al descentramiento del hilo de contacto, el campo de visión del sistema es de un metro. Para cubrirllo necesitamos que el sensor tenga el número de píxeles dado por la ecuación [3.42]:

\[n^\circ\text{píxeles} = \frac{\text{campos de visión}}{\text{Resolución mínima} \cdot \text{Tamaño pixel}} \quad [3.42] \]

En el caso de utilizar un CCD con tamaño de píxel 10 µm x 10 µm se necesitaría un sensor de aproximadamente 14000 píxeles. Como esta solución es inviable se ha optado por utilizar varios sensores, de menor número de píxeles, solapados. El solape mínimo entre cámaras debe garantizar que la imagen de una huella siempre vaya a ser vista por una cámara.
Resumiendo, el proceso que se ha seguido en la elección de los parámetros ópticos ha sido el siguiente:

- En primer lugar se selecciona el tipo de sensor en función de la aplicación. En la elección del tamaño de pixel se ha de llegar a un compromiso entre la resolución y los requisitos del sistema de iluminación.
- Se establece el error máximo con el que se ha de resolver la medida de la huella para conseguir la precisión deseada.
- Con los valores del error máximo y el tamaño de pixel del sensor se estima el valor de la resolución máxima del sistema.
- Con el valor de la resolución máxima, y conocida la distancia objeto-lente (p) se seleccionan los objetivos intentando evitar, en lo posible, las distorsiones por difracción.
- Una vez calculados los valores de la resolución a altura máxima y mínima y conocido el valor de la distancia focal se obtienen los parámetros del sistema de enfoque, es decir, el margen de variación de la distancia entre la lente y el sensor CCD para que la imagen esté enfocada a todas las alturas del hilo de contacto.
- Se establece la disposición y el número de sensores necesarios para cubrir todo el campo de visión del sistema. El solape mínimo entre cámaras se fija para que aun en el peor caso, altura mínima y máximo desgaste, la imagen de la huella siempre sea “vista” por una cámara.

3.3.2.1 Error máximo permitido expresado en píxeles

Definidos los valores de los parámetros ópticos se va a calcular cuántos píxeles en el CCD se corresponden con el error máximo calculado en el apartado 3.2.

Figura 3-10. Correspondencia ancho de huella, dimensión en milímetros y píxeles
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

En las siguientes tablas aparecen los valores calculados para el equipo instalado en el coche laboratorio de RENFE, en el que tamaño de píxeles es 10 µm x 10 µm. El error se calcula en función del desgaste y la altura del hilo de contacto.

<table>
<thead>
<tr>
<th>SECCIÓN CIRCULAR 107 mm²</th>
<th>Error máximo [píxeles]</th>
<th>Error máximo [píxeles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura máxima</td>
<td>70% ±2, 80% ±4, 90% ±9</td>
<td>±3, ±5, ±8</td>
</tr>
<tr>
<td>Altura nominal</td>
<td>70% ±2, 80% ±5, 90% ±10</td>
<td>±3, ±5, ±10</td>
</tr>
<tr>
<td>Altura mínima</td>
<td>70% ±3, 80% ±6, 90% ±3</td>
<td>±4, ±7, ±12</td>
</tr>
</tbody>
</table>

(*) Error máximo permitido para obtener una precisión del 5% en el cálculo de la sección
(**) Error máximo permitido para obtener una precisión del 5% en el cálculo del espesor

Tabla 3-5. Sección circular 107 mm². Error máximo permitido en la medida del ancho de la huella

<table>
<thead>
<tr>
<th>SECCIÓN CIRCULAR 120 mm²</th>
<th>Error máximo [píxeles]</th>
<th>Error máximo [píxeles]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura máxima</td>
<td>70% ±2, 80% ±4, 90% ±9</td>
<td>±3, ±5, ±9</td>
</tr>
<tr>
<td>Altura nominal</td>
<td>70% ±3, 80% ±5, 90% ±11</td>
<td>±3, ±6, ±10</td>
</tr>
<tr>
<td>Altura mínima</td>
<td>70% ±3, 80% ±6, 90% ±14</td>
<td>±4, ±7, ±13</td>
</tr>
</tbody>
</table>

(*) Error máximo permitido para obtener una precisión del 5% en el cálculo de la sección
(**) Error máximo permitido para obtener una precisión del 5% en el cálculo del espesor

Tabla 3-6. Sección circular 120 mm². Error máximo permitido en la medida del ancho de la huella
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

<table>
<thead>
<tr>
<th>SECCIÓN CIRCULAR 150 mm²</th>
<th>Error máximo [pixeles]</th>
<th>Error máximo [pixeles]**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura máxima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>± 2</td>
<td>±3</td>
</tr>
<tr>
<td>80%</td>
<td>±5</td>
<td>±5</td>
</tr>
<tr>
<td>90%</td>
<td>±11</td>
<td>10</td>
</tr>
<tr>
<td>Altura nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>±3</td>
<td>±4</td>
</tr>
<tr>
<td>80%</td>
<td>±6</td>
<td>±6</td>
</tr>
<tr>
<td>90%</td>
<td>±12</td>
<td>±12</td>
</tr>
<tr>
<td>Altura mínima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>±4</td>
<td>±5</td>
</tr>
<tr>
<td>80%</td>
<td>±7</td>
<td>±8</td>
</tr>
<tr>
<td>90%</td>
<td>±15</td>
<td>±15</td>
</tr>
</tbody>
</table>

(*) Error máximo permitido para obtener una precisión del 5% en el cálculo de la sección
(**) Error máximo permitido para obtener una precisión del 5% en el cálculo del espesor

Tabla 3-7. Sección circular 150 mm². Error máximo permitido en la medida del ancho de la huella

<table>
<thead>
<tr>
<th>SECCIÓN OVAL 107 mm²</th>
<th>Error máximo [pixeles]</th>
<th>Error máximo [pixeles]**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura máxima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>± 2</td>
<td>±2</td>
</tr>
<tr>
<td>80%</td>
<td>±3</td>
<td>±4</td>
</tr>
<tr>
<td>90%</td>
<td>±7</td>
<td>±7</td>
</tr>
<tr>
<td>Altura nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>±2</td>
<td>±3</td>
</tr>
<tr>
<td>80%</td>
<td>±4</td>
<td>±5</td>
</tr>
<tr>
<td>90%</td>
<td>±7</td>
<td>±8</td>
</tr>
<tr>
<td>Altura mínima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>±3</td>
<td>±4</td>
</tr>
<tr>
<td>80%</td>
<td>±5</td>
<td>±6</td>
</tr>
<tr>
<td>90%</td>
<td>±10</td>
<td>±10</td>
</tr>
</tbody>
</table>

(*) Error máximo permitido para obtener una precisión del 5% en el cálculo de la sección
(**) Error máximo permitido para obtener una precisión del 5% en el cálculo del espesor

Tabla 3-8. Sección oval 107 mm². Error máximo permitido en la medida del ancho de la huella
Las conclusiones más significativas que se obtienen del análisis de los datos de las tablas anteriores son las siguientes:

- Para asegurarnos una precisión del ±5% en todo el campo de medida, para hilos de sección circular el error permitido es de ±2 píxeles. Este error puede aumentar al disminuir el desgaste, así para hilos con sección útil del 80% es suficiente con una precisión de ±4 píxeles y si los hilos están muy poco desgastados (sección útil del 90%) de ±8 píxeles.

- En el caso de hilos de sección oval, si la medida del ancho se hace con una precisión del ±2 píxeles, a altura máxima, para hilos con sección útil del 70% el error es algo mayor que el ±5%. En el caso de altura nominal y mínima es suficiente medir el ancho de la huella con un error de ±2 píxeles para garantizar la precisión del ±5%.

Resumiendo, con un error de ±2 píxeles nos aseguramos una precisión en el cálculo de la sección y del espesor del ±5% en el caso de hilos con sección circular, y alrededor del ±5,5% para hilos con sección oval.

En la Tabla 3-10 se adjuntan los valores de la precisión en el cálculo de la sección y el espesor en el caso que se cometa un error en la medida del ancho de la superficie de desgaste de ±2 píxeles. Los datos se corresponden con el caso más crítico, es decir, hilos con superficie efectiva del 70% a altura máxima.

<table>
<thead>
<tr>
<th>SECCIÓN OVAL 150 mm²</th>
<th>Error máximo [píxeles]*</th>
<th>Error máximo [píxeles]**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura máxima</td>
<td>70% ±2</td>
<td>80% ±4</td>
</tr>
<tr>
<td></td>
<td>90% ±7</td>
<td></td>
</tr>
<tr>
<td>Altura nominal</td>
<td>70% ±2</td>
<td>80% ±4</td>
</tr>
<tr>
<td></td>
<td>90% ±8</td>
<td></td>
</tr>
<tr>
<td>Altura mínima</td>
<td>70% ±3</td>
<td>80% ±5</td>
</tr>
<tr>
<td></td>
<td>90% ±10</td>
<td></td>
</tr>
</tbody>
</table>

(∗) Error máximo permitido para obtener una precisión del 5% en el cálculo de la sección

(∗∗) Error máximo permitido para obtener una precisión del 5% en el cálculo del espesor
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

<table>
<thead>
<tr>
<th></th>
<th>Sección circular</th>
<th>Sección oval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precisión en la Sección (%)</td>
<td>Precisión en el Espesor (%)</td>
</tr>
<tr>
<td>107 mm²</td>
<td>4.86</td>
<td>3.81</td>
</tr>
<tr>
<td>120 mm²</td>
<td>4.60</td>
<td>3.61</td>
</tr>
<tr>
<td>150 mm²</td>
<td>4.11</td>
<td>3.22</td>
</tr>
<tr>
<td>107 mm²</td>
<td>5.65</td>
<td>4.06</td>
</tr>
<tr>
<td>150 mm²</td>
<td>5.30</td>
<td>3.92</td>
</tr>
</tbody>
</table>

Tabla 3-10. Precisión en la sección y el espesor para hilos de contacto con superficie efectiva del 70% a altura máxima. Caso en el que el error en la medida de la huella es de ±2 píxeles

3.3.2.2 **CCDs lineales**

A continuación se van definir los distintos parámetros asociados a los CCDs y que afectan al proceso de adquisición

Margen dinámico del CCD: cociente entre el valor de salida para una exposición hasta la saturación y el valor de salida para la exposición equivalente al valor medio del ruido. En ocasiones puede ser definido el margen dinámico en términos de ruido pico a pico. En la aplicación que se está estudiando, esta característica es muy importante debido a la variabilidad en las propiedades reflexivas de las catenarias. Cuando se habla del margen dinámico hay que distinguir entre el margen dinámico del sensor CCD y el margen dinámico del sistema (de la cámara), valor que depende de la resolución del convertidor analógico-digital (CAD) empleado. Así si el margen dinámico del sensor es de 496:1 y el CAD tiene una resolución de 8 bits, el nivel de ruido corresponderá a 0,5 píxeles. En cambio si la resolución es de 10 bits el nivel de ruido será de 2 píxeles.

Tiempo de integración: periodo en el que los elementos fotosensibles están acumulando carga gracias a la luz recibida.

Tiempo de exposición: es el periodo durante el cual el CCD está “expuesto” (tiempo de integración) más el tiempo durante el que se está produciendo la transferencia de la información a la salida.

Exposición equivalente al nivel medio de ruido: se define como el nivel de exposición necesario para que la señal de salida tome el valor del nivel medio de ruido sobre el valor correspondiente a una imagen completamente oscura.

Exposición saturada: mínimo nivel de exposición necesario para proporcionar la máxima señal de salida posible o, lo que es lo mismo, una señal de salida saturada.

Respuesta del CCD: valor de tensión de salida por unidad de exposición, para un tipo de radiación espectral específico.

No uniformidad en la respuesta de los fotodiodos (PRNU): diferencia entre los niveles de salida de los elementos más y menos sensibles, estando sometido todo el
Cámara a una iluminación uniforme. En esta medida se debe excluir el primer y último pixel del sensor.

Señal de nivel oscuro (Dark signal): salida producida en la oscuridad, originada por los electrones que se generan por efecto térmico. Es función lineal del tiempo de integración y altamente sensible con la temperatura.

Tensión de salida de saturación: valor máximo de tensión de la señal de salida. La eficiencia en la transferencia de carga disminuye cuando sobrepasa la tensión de salida de saturación.

Blooming. Los fotodiodos muy intensamente iluminados, al llegar a la saturación, pueden comenzar a derramar el exceso de carga sobre los fotodiodos vecinos, originando una pérdida local de resolución de la imagen, tanto más grande cuanto mayor es el número de fotodiodos sobresaturados (esto suele ocurrir cuando el margen dinámico del CCD es menor que el margen dinámico de iluminación en la imagen). Entre las características de los sensores CCDs con los que trabaja el sistema MEDES, se encuentra el antiblooming. El **antiblooming** corta o limita la cantidad de carga que puede ser almacenada en cada elemento fotosensible. Cuando se realiza el ajuste adecuado del antiblooming, ningún fotodiodo acumula más carga de la que el registro de transferencia es capaz de transportar correctamente. Este control produce una pérdida de amplitud en la señal de salida para estos fotodiodos sobresaturados, pero previene que el exceso de cargas de éstos ocasione un derrame sobre los fotodiodos vecinos, con la consecuente pérdida de resolución.

3.3.2.3 Transmisión y digitalización de la imagen

El sistema MEDES utiliza sensores con 2592 píxeles y un tamaño de pixel de 10µm x 10µm. La División de Ingeniería Electrónica ha desarrollado la electrónica que se encarga de acondicionar y digitalizar la señal de salida del CCD. Señal analógica cuyo valor es proporcional a la cantidad de luz que le llega a los elementos fotosensibles.

Mediante un convertidor analógico-digital se codifican en binario los niveles de intensidad de cada pixel. Se les suele denominar **niveles de gris**, y el número que se podrán distinguir en la imagen viene determinado por la resolución (número de bits) del convertidor.

Otro aspecto importante a considerar es la transmisión de los datos desde la cámara al sistema de procesamiento. Teniendo en cuenta el entorno de trabajo, caracterizado por un elevado nivel de ruido, se ha elegido un protocolo de comunicación diferencial, que permite transmisiones más rápidas y mayor inmunidad al ruido.
3.3.3 Sistema de Enfoque

En el apartado 3.3.2 se explicó como conocidos los valores de la distancia focal y los de la resolución a altura máxima y mínima, es posible obtener el margen de variación de la distancia entre la lente y el sensor CCD para que la imagen esté enfocada a todas las alturas del hilo de contacto.

Para realizar el enfoque se utiliza un sistema de control realimentado que decide la posición del CCD en relación con el objetivo, en función de la altura a la que se encuentre el hilo de contacto.

El enfoque es una tarea complicada, ya que la relación entre la distancia objeto-lente (p) y la distancia lente-sensor (p’), no es lineal (Figura 3-11). Esta relación viene dada por la ecuación óptica (ver ecuación [3.34]).

![Figura 3-11. Gráficas de la ecuación óptica y la resolución](image)

Dada la necesidad de enfoque del sistema óptico, en función de la altura de los hilos de contacto, se plantea el problema de posicionar mecánicamente las cámaras CCD a la distancia de los objetivos. La solución adoptada por el sistema MEDES es utilizar una servo-mesa de posicionamiento, accionada por un motor de continua (Figura 3-12). El método para enfocar emplea un lazo analógico de control de posición con un cálculo digital de la posición de referencia para situar la mesa de enfoque.
3.4 Imagen adquirida

3.4.1 Imagen ideal

La imagen ideal que se obtendría de la superficie de desgaste del hilo de contacto al ser iluminada por un haz láser es la que aparece en la Figura 3-13. En ella, los píxeles pertenecientes a la huella tienen un nivel de gris de 255 y los no pertenecientes a la huella nivel cero.

En la práctica existen una serie de factores que distorsionan la imagen:

- Desenfoques que hacen que los cambios en los flancos sean más suaves.
- Los bordes de los hilos no son prefectos, a veces aparecen redondeados debido al rozamiento desigual entre pantógrafo y catenaria.
- Desplazamiento lateral del hilo de contacto.
- La huella no siempre está paralela al suelo, en ocasiones el hilo está girado.
3.4.2 Desenfoque

La variación de la altura del hilo de contacto obliga a los sistemas a contar con un sistema que posicione las cámaras respecto de las lentes, de forma que la imagen del hilo de contacto esté en todo momento enfocada. De no ser así la imagen obtenida se distorsiona. El efecto del desenfoque hace que los flancos de la imagen sean más suaves y que se produzca un ensanchamiento en la base.

![Figura 3-14. Imagen desenfocada](image1)

![Figura 3-15. Imagen Enfocada](image2)

El sistema de enfoque tiene que ser capaz de ejercer un desplazamiento del CCD, de modo que la distancia lente-CCD \((p')\) disminuya cuando aumente la distancia lente-hilo de contacto \((p)\), para que se mantenga la relación dada por la ecuación óptica. No obstante una pequeña variación en la altura del hilo de contacto puede no ser crítica en el desenfoque de la imagen. Esto es así ya que existe una pequeña zona en torno al plano del objeto en la que éste se puede mover sin que el dispositivo óptico note una pérdida de nitidez. Este margen de variación del plano de la imagen, se conoce con el nombre de profundidad de foco. Si se considera que el plano de imagen se mantiene a una distancia fija de la lente, la profundidad de foco se traduce en un cierto margen en el que se puede mover el objeto. Este margen se conoce con el nombre de profundidad de campo.

3.4.3 Desplazamiento lateral del HC

El hilo de contacto se instala en zig-zag, según el eje longitudinal de la vía, con el fin de minimizar el desgaste en el pantógrafo (ver apartado 2.1.1.1.1).

Según los datos suministrados por RENFE la máxima desviación del hilo de contacto con respecto al eje de la vía se produce en las curvas de radio mínimo \((R_{\text{min}} = 300 \text{ m})\).
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

![Diagrama de ángulo de desviación lateral](image)

Figura 3-16. Ángulo de desviación lateral

El máximo ángulo de desviación lateral (β_{max}) se produce en los anclajes del hilo de contacto, y se puede calcular a partir del triángulo OAB del dibujo de la Figura 3-16.

$$\cos \beta = \frac{OB}{OA} = \frac{R - 0,2}{R + 0,3} \Rightarrow \beta_{\text{max}} = 3,3^\circ = 5,77 \cdot 10^{-2} \text{ rad}$$

[3.43]

Esta inclinación puede perjudicar notablemente la calidad de la imagen. Si no se trabaja con tiempos de integración suficientemente pequeños, el CCD estará visualizando el hilo de contacto en "movimiento" transversal.

La información que recibe el CCD es el resultado de la luz recibida durante el tiempo de integración. Así la imagen será el valor medio del conjunto de imágenes visualizadas durante ese periodo. El CCD visualiza sucesivas líneas del hilo de contacto, que se van "desplazando" lateralmente, con lo que la imagen resultante presenta flancos más o menos inclinados en lugar de los ideales cambios de nivel verticales.

Este problema se soluciona trabajando con tiempos de integración pequeños, de modo que durante ese periodo, el hilo de contacto se desplace poco.

El cálculo del desplazamiento lateral del hilo en función del ángulo de desviación lateral (β) y del tiempo de integración se puede expresar con las siguientes ecuaciones:

$$V_{\text{transversal}} = V_{\text{longitudinal}} \cdot \tan \beta$$

[3.44]

$$\text{Desplazamiento}_\text{Lateral} [\text{mm}] = T_{\text{integración}} [\text{ms}] \cdot V_{\text{transversal}} [\text{mm/ms}]$$

[3.45]

Si se toma como valor de desplazamiento lateral del hilo el tamaño de un pixel, se podría decir que se está visualizando el hilo de contacto como si estuviese quieto (en cuanto a su desplazamiento lateral).

Se va a calcular el tiempo de integración máximo para que el desplazamiento lateral sea de 0,1 mm que corresponde aproximadamente a 1 pixel (a altura nominal). Para el cálculo se va considerar el peor de los casos, ángulo de desplazamiento máximo...
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

(β_{max} = 3,3°), y velocidad del coche laboratorio máxima (90 km/h), aunque parece poco probable que se den los dos casos simultáneamente, máxima velocidad en curvas de radio mínimo.

\[T_{\text{Integración}}[ms] = \frac{0,1[mm]}{25[mm/\text{ms} \cdot \tan(3,3°)]} = 0,07\text{ms} = 70\mu\text{s} \quad [3.46] \]

Es decir, para tiempos de integración en torno a 70\mu s, se puede considerar que la adquisición de la imagen, en cuanto al desplazamiento lateral del hilo de contacto, se hace bajo condiciones estáticas, como si estuviese quieto.

3.4.4 Huellas Inclinadas

En algunos casos, puede ocurrir que la cámara CCD no visualice una huella perfectamente paralela al plano horizontal de la vía, lo que hace que la medida del ancho sea errónea.

Según se observa en la Figura 3-17, en ambos casos se está visualizando una huella menor que la real.

Aunque en la figura anterior para mayor claridad se ha exagerado mucho el giro, la inclinación de la huella respecto de la horizontal suele ser menor, en torno a los dos o tres grados.

El error cometido se puede calcular con las siguientes expresiones:

\[d_{\text{visual}} = d_{\text{real}} \cdot \cos \theta \quad [3.47] \]

\[\text{error}[^{\circ}] = \frac{d_{\text{real}} - d_{\text{visual}}}{d_{\text{real}}} \cdot 100 = \frac{d_{\text{real}} - d_{\text{real}} \cdot \cos \theta}{d_{\text{real}}} \cdot 100 = (1 - \cos \theta) \cdot 100 \quad [3.48] \]
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Al tratarse de inclinaciones de unos pocos de grados, el error cometido es muy pequeño. Así por ejemplo, para el caso de inclinaciones de 3°, el error cometido se sitúa en torno al $0,14\%$.

Situando el punto de visión próximo al pantógrafo se minimiza este error, las huellas se mantienen siempre paralelas al eje de la vía además de obtener la medida en las condiciones reales de funcionamiento.

3.4.5 Bordes de la imagen

Otro posible error que se comete en la medida es considerar la huella perfectamente plana. En realidad los bordes de la huella no son aristas perfectas, sino que están en mayor o menor medida redondeados. En este caso los rayos de luz que inciden en estos bordes se reflejan hacia los laterales en lugar de hacerlo hacia el objetivo de la cámara. Por consiguiente se está considerando que el ancho de la huella es menor que el real.

Es importante señalar que la reflexión en los bordes del hilo no se conoce en profundidad. La manera en la que la luz es reflejada depende, entre otros factores, de las formas macroscópicas que constituyen las superficies. Así, las superficies lisas al ser iluminadas con un haz incidente, la luz reflejada sobre ellas toma una sola dirección, en superficies rugosas tienden a difuminarse en múltiples direcciones. Para conocer con exactitud el fenómeno de la reflexión, es necesario tener conocimiento a priori de la estructura de la superficie, es decir, un modelo de ésta. La realización de este modelo se sale fuera del ámbito de esta tesis, pero podría ser una cuestión a considerar para futuros trabajos.

3.4.6 Grasa en los bordes de la huella

Hay que prever la presencia de grasa en los bordes de la huella, con propiedades reflexivas distintas a las del cobre del hilo de contacto. Esta grasa se aplanúa al paso del pantógrafo, haciendo más ancha la huella (Figura 3-18)
3.4.7 Gotas de agua

La presencia de gotas de agua en el hilo de contacto no es muy crítica, en cuanto a los errores que se cometen en la medida del ancho, ya que con el paso del pantógrafo se desprenden del hilo. El problema aparece si el hilo presenta suciedad, ya que ésta con el agua puede caer al equipo deteriorando los espejos del sistema óptico.

En el caso de mantener cerrada la ventana situada en el techo del coche laboratorio, la acumulación de gotas de agua en ella, hace que por la refracción de la luz en esas gotas, se distorsione la imagen.

3.4.8 Influencia del ángulo de ataque del pantógrafo

Se ha comprobado que para el buen funcionamiento del sistema MEDES es necesario un pantógrafo. Con su empleo se consigue que los hilos de contacto mantengan una posición estática en el momento de la captura.

Por otra parte, hay que garantizar un buen contacto entre pantógrafo y catenaria para obtener una buena imagen. Si el ángulo de ataque del pantógrafo (θ)(Figura 3-19) no es el adecuado, los bordes de la imagen se harán más suaves (mismo efecto que en el caso de imágenes desenfocadas) y la medida de la huella no será la correcta, siendo en algunos casos mayor que la real y en otros menor.

En la Figura 3-20 se muestra las imágenes que se obtienen si el ángulo de ataque entre el pantógrafo y la catenaria no es el adecuado.

Figura 3-19. Ángulo de ataque del pantógrafo

Figura 3-20. Influencia del ángulo de ataque pantógrafo-catenaria
3.5 Procesamiento de las imágenes

En la Figura 3-21 se muestra el diagrama funcional del sistema MEDES instalado en los coches laboratorios de RENFE y SNCF. En él se puede ver cómo primeramente se lleva a cabo un procesamiento en tiempo real realizado por transputers en el que se detecta el número de huellas, su posición y su ancho. Estos datos se almacenan en el PC para su posterior postprocesamiento, tarea que ya no se realiza en tiempo real, sino fuera de línea. Es en esta etapa, a partir de las medidas obtenidas en el procesamiento realizado por los transputers, donde se calculan los valores de espesor o sección útil del hilo de contacto.

Como ya se ha explicado en el capítulo 2, se está desarrollando un nuevo equipo MEDES2000 cuyos objetivos son la mejora de las prestaciones del sistema en cuanto al número de imágenes preprocesadas por segundo y el dotar al sistema de la capacidad de obtener los resultados en tiempo de auscultación.

En el apartado 2.4.2.2 ya se hizo una descripción de la arquitectura del nuevo sistema de procesamiento que se está desarrollando. Se compone de una parte hardware y otra software. Consta de tres partes físicas bien diferenciadas que son cinco tarjetas por cámara (las tarjetas PU-PCI), un PC industrial y el PC-HOST (ver figura 2-26).

En el PC industrial se montan las tarjetas PU-PCI. Cada Tarjeta PU-PCI incorpora un dispositivo de lógica programable (FPGA) donde se efectúa el procesamiento hardware, el realizado por los transputers en el caso de los equipos MEDES y MEDES-F1. En la misma FPGA se implementa el protocolo PCI de comunicación con el PC industrial.
El PC-HOST centraliza el control, el procesamiento y la adquisición de datos. En el siguiente apartado se va a describir la arquitectura del software del PC.

3.5.1 Descomposición estructural del software del PC

RtLinux, una extensión de tiempo real estricto al sistema operativo de propósito general Linux, es el sistema operativo sobre el que se basa la arquitectura software del PC.

Figura 3-22. Medes2000: Estructura del software del PC

Como estructura del software del PC se ha dispuesto un modelo de varias capas, con funcionalidades bien diferenciadas y con interfaces de comunicación entre las mismas que permiten aislarlas tanto en su desarrollo como en las pruebas de validación.

En la Figura 3-22 se muestra la descomposición estructural y las relaciones existentes entre todos los componentes.

Se tienen cinco capas:

- **La capa o módulo de tiempo real**, que controla todo el hardware específico de comunicaciones y adquisición de datos que el PC tiene instalado.

- **La biblioteca de programación de nivel I**, que dispone de las rutinas y estructuras de datos necesarias para configurar y ordenar acciones y para obtener datos de las tareas de tiempo real de la capa inferior.

- **La biblioteca de programación de nivel II**, que contiene rutinas y estructuras de datos orientadas a las funcionalidades finales de control del sistema MEDES.
La biblioteca de postprocesamiento, que dispone de las funciones y estructuras de datos necesarias para la resolución de los solapes entre cámaras y el cálculo de la sección efectiva del hilo de contacto, a partir de las imágenes preprocesadas obtenidas por las capas inferiores.

La capa de aplicación, que interacciona con el usuario disponiendo un entorno gráfico.

Los resultados del trabajo de investigación que se presenta en este documento se van a implementar como parte del módulo de tiempo real (algoritmo de control del tiempo de integración de las cámaras CCDs) y de las bibliotecas de postprocesamiento (algoritmo de asignación de canales).

3.5.2 Procesamiento hardware

El procesamiento hardware realizado tanto por los transputers como por las FPGAs es el mismo y se fundamenta en un proceso de segmentación por nivel.

El tipo de iluminación empleada y la concepción del sistema facilitan las tareas de procesamiento, ya que las imágenes tienen un fuerte contraste entre el fondo y la superficie de desgaste del hilo de contacto.

En el sistema MEDES no se aplica ningún tipo de tratamiento previo a la imagen. Por su propia naturaleza, la imagen tiene un contraste muy elevado, luego lo único que podría interesar sería filtrar el ruido de la imagen. Ahora bien, nuestro objetivo es determinar los bordes con precisión y el efecto de un filtro pasabajo sería su deslocalización.

Para la segmentación se ha escogido un algoritmo basado en nivel. El hecho de que en la imagen haya únicamente dos grandes zonas, huella y no huella, que el nivel de una de ellas, sea cercano a cero, y que la diferencia de nivel entre ambas sea elevada redundan en que, frente a un detector de bordes basado en la derivada, sea mucho más eficiente uno basado en el nivel. Por otra parte, este tipo de algoritmos son más fáciles de programar y más rápidos.
3.5.2.1 Parámetros de procesamiento

En la Figura 3-23 se muestra un esquema de la imagen en dónde se especifican los parámetros básicos del procesamiento hardware. A continuación se van a explicar brevemente.

Nivel de corte primario. Las intensidades mayores que este valor se consideran pertenecientes a una huella. En su elección se ha de llegar a un compromiso. Si se escoge un valor demasiado bajo, la medida de la huella se podría ver afectada por el nivel de ruido de la imagen. Tampoco puede ser muy alto, ya que en condiciones no óptimas (huella ennegrecida o con iluminación insuficiente), en las que no se llega a la saturación, un nivel de corte alto puede afectar considerablemente al ancho de la huella. Asimismo, un nivel de corte alto unido a un valor pequeño de la separación mínima entre huellas puede provocar la división de una huella en dos.

Este último caso se ilustra en la Figura 3-24. Si se elige como nivel de corte, un nivel en la intensidad del pixel de 110, y un valor para la separación mínima entre huellas de 10 píxeles, al procesar la huella, ésta será dividida en dos.

La imagen que aparece en la figura, es la que se obtiene al emplear uno de los programas del sistema MEDES, el encargado de visualizar las imágenes sin procesar, es decir, tal como han sido capturadas por las cámaras.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Figura 3-24. Influencia del nivel de corte

El valor óptimo del nivel de corte primario se ha establecido para un valor de iluminación entre 70 y 100.

Al aumentar el nivel de corte disminuye el ancho de la huella. En la Tabla 3-11 se muestran los resultados de los estudios realizados para niveles de corte de 70, 85 y 100 tomando como valor de referencia el ancho de la huella obtenido para nivel de corte 70.

<table>
<thead>
<tr>
<th>Nivel de corte</th>
<th>Variación del ancho de la huella [pixeles]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altura máxima</td>
</tr>
<tr>
<td>Nivel de corte 70</td>
<td>Referencia</td>
</tr>
<tr>
<td>Nivel de corte 85</td>
<td>0</td>
</tr>
<tr>
<td>Nivel de corte 100</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 3-11. Variación del ancho de la huella según el nivel de corte

Nivel de corte secundario. Este es un valor superior al nivel de corte primario, que se emplea cuando se quieren distinguir dos huellas próximas. El valor del nivel de corte secundario tiene por objeto la detección de hilos muy juntos, a la vez que se evitan divisiones entre huellas. En el procesamiento, se utiliza cuando el ancho de la huella que se obtiene es superior al tamaño máximo de una huella. Valor que viene dado por el parámetro de procesamiento denominado ancho máximo.

En la Figura 3-25, se muestra la imagen de dos hilos de contacto. Al aplicar el nivel de corte primario, se obtendría una única huella con un ancho superior al máximo tamaño de huella. En estas circunstancias se aplica un segundo procesamiento.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

utilizando el nivel de corte secundario, cuyo resultado es la obtención de las dos huellas, correspondientes a cada uno de los hilos.

![Gráfico 3-25. Nivel de corte primario y secundario](image)

Ancho mínimo. El ancho a la altura máxima de la imagen de la huella más pequeña que se desea medir.

Ancho máximo. El tamaño máximo en píxeles de una huella. Su valor es el ancho que tendría la imagen de una huella de tamaño el diámetro del hilo de contacto a la mínima altura.

Máxima discontinuidad. Representa la discontinuidad máxima que puede haber en una huella. Éstas son causadas por ralladuras, coca y ruido. Las ralladuras producidas por partículas abrasivas durante el contacto con el pantógrafo son paralelas al eje y pueden extenderse a lo largo de una distancia considerable. Esto provoca zonas muy oscuras en el interior de la huella, incluso con niveles inferiores al fondo. También las coca, producidas en el chisporroteo que aparece durante los despegues del pantógrafo, son muy oscuras y pueden alcanzar grandes tamaños, causando el mismo efecto.

3.6 Postprocesamiento

En el postprocesamiento **se calcula la sección efectiva y el espesor** de los hilos de contacto, a partir de las medidas obtenidas por el procesamiento hardware. Para el cálculo se emplean las ecuaciones obtenidas en el apartados 3.1 de este capítulo.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Otra de las tareas que se realizan en el postprocesamiento es la resolución del solape entre cámaras.

El solape entre los haces ópticos, o lo que es lo mismo, entre los campos de visión de las cámaras, es lo que asegura poder cubrir el campo horizontal de la catenaria para cualquier altura a lo largo de un trayecto. Esto tiene el inconveniente de provocar la redundancia de las huellas en cámaras consecutivas, cuando la catenaria se encuentra en zona de solape. Es decir, una misma catenaria es “fotografiada” por dos cámaras. Como consecuencia, en la imagen recibida aparecen huellas en exceso que deben ser eliminadas.

En la Figura 3-26 se ilustra este hecho. Uno de los hilos de la catenaria se encuentra en el solape entre la cámara 2 y la cámara 3. Es decir, tendremos imagen del mismo hilo en las dos cámaras (Figura 3-27 y Figura 3-28). En el procesamiento una de las huellas, que corresponden al mismo hilo, deberá ser eliminada. El criterio elegido es el de eliminar la de menor ancho.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Figura 3-27. Imagen en cámara 2
Figura 3-28. Imagen en cámara 3

Tanto en la resolución de los solapes como en el cálculo de la sección efectiva son necesarios un conjunto de parámetros ópticos, los llamados **parámetros de calibración** del sistema:

- Distancia del centro del espejo al objetivo de la cámara. Común a todas las parejas de espejos y objetivos.
- Altura de los ejes de objetivos respecto al plano de vía.
- Distancia focal de las lentes de los objetivos.
- Los valores de la altura máxima, nominal y mínima del hilo de contacto respecto al plano de vía. Depende de la administración ferroviaria.
- Resolución óptica a las alturas máximas, nominal y mínima del hilo de contacto.
- Solapes entre cada par de cámaras a dos de las alturas.

La Figura 3-29 muestra un esquema del subsistema óptico del sistema MEDES en los que se representan los parámetros de calibración. También aparecen los valores que toman estos parámetros en una calibración de la versión que actualmente está en servicio en Francia.
Una vez calculada la sección efectiva, o el espesor, y resuelto el solape entre cámaras, el último paso es asignar las medidas a cada uno de los hilos de contacto.

3.6.1 Algoritmo de asignación de canales

Calculados los valores de la sección efectiva o el espesor hay que asignarlos a los hilos de contacto, para su posterior presentación, bien mediante informes estadísticos o mediante representación gráfica (ver apartado 2.4.1).

El objetivo de este apartado es describir un nuevo algoritmo de asignación de las medidas a cada uno de los hilos de contacto, que ha sido implementado con éxito en el sistema MEDES-F1 y que constituye una aportación original de este trabajo de investigación.

Antes de pasar al desarrollo del algoritmo, se van a recordar algunos términos y consideraciones necesarias para la compresión de su funcionamiento.

Sección o cantón: tramo del tendido que se distingue por la continuidad de sus hilos, aunque ocasionalmente, como consecuencia de una rotura, se mantenga por medio de piezas especiales.

Seccionamiento: tramo del tendido en el que se solapan los extremos de dos secciones consecutivas y en el que finalizan los hilos de la sección precedente y comienzan los de la nueva sección.

Para la asignación de las muestras a cada uno de los hilos se contemplan los siguientes principios:
En una sección el número de hilos permanece constante.

Dentro de una sección los hilos son continuos.

En una sección puede haber un mínimo de un hilo y un máximo de dos.

Los hilos nunca se cruzan.

Ningún hilo pertenece a más de una sección.

Las secciones se solapan siempre en sus extremos (seccionamientos), pero nunca en toda su longitud.

Nunca se solapan simultáneamente más de dos secciones.

En un seccionamiento todos los hilos de una sección están a un mismo lado de todos los de la otra sección.

También se han de considerar las siguientes reglas experimentales:

En un seccionamiento, la distancia entre cualquiera de los hilos de una y otra sección es siempre mayor que una dada.

La distancia entre los hilos de una misma sección es siempre inferior a una dada y, en un seccionamiento, inferior a la menor distancia entre hilos de distinta sección.

La longitud de los seccionamientos, la zona de solape entre dos secciones, es siempre menor que la longitud no solapada de cada sección.

La distancia entre seccionamientos no es un parámetro constante a lo largo de la línea, si bien este valor no supera los 1200 metros en el caso de RENFE.

Por otra parte, hay que tener en cuenta que la imagen de cualquiera de los hilos, incluso de la de varios de ellos a la vez, puede desaparecer durante un cierto intervalo. Las distribuciones espaciales de estos intervalos pueden considerarse aleatorias e independientes entre sí. Las causas más comunes de estas pérdidas de imagen son:

Desgaste insuficiente en hilos nuevos.

Oxidación de la superficie de la huella en líneas con poco tráfico y/o ambiente favorable para la corrosión.

En secciones con hilo doble, defectos de pendolado con pérdida de contacto de uno de los hilos y ulterior oxidación de su huella.

Ennegrecimiento por humo en líneas compartidas con locomotoras Diesel.

Ennegrecimiento por acumulación de grasa y polvo en líneas de poco tráfico.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

- Ocacionalmente, en líneas con pendolado antiguo que favorece una gran proximidad entre los hilos de la sección, fusión de las imágenes de las huellas de dos hilos en una sola de mayor anchura aparente

- La presencia de hilos revirados provoca la aparición del denominado “doble plano”. Se pasa de una zona con una única huella a otra con dos planos de desgaste (Figura 3-30). Se produce un cambio del plano de huella sin que haya habido tiempo para que este presente una huella apreciable y habiéndose ennegrecido ya el antiguo.

Figura 3-30. Hilos de contacto con dos superficies de desgaste

Como consecuencia de estas pérdidas de imágenes, la presencia de ruido y la aparición de elementos pertenecientes a la geometría de la catenaria tales como agujas aéreas, puede aparecer un problema de asignación errónea de medidas a los hilos de contacto que se manifiesta en:

- Inversión de hilos.
- Aparición de nuevos hilos dentro de una sección.

En la Figura 3-31 se muestra como la pérdida de imágenes provoca la inversión entre los hilos 3 y 2.
La problemática que aquí se plantea, no es única al sistema MEDES, también ha sido detectada en otros equipos como el desarrollado por la empresa SELECTRA para la FS (ver apartado 2.4.6). Así en la Figura 3-32, obtenida de la documentación que muestra dicha empresa en su página web [www.selectra.org], se puede ver como en el seccionamiento se produce inversión de hilos.
Aparte de la asignación errónea de las medidas a cada uno de los canales asignados a los distintos hilos de contacto se ha de abordar otro problema: **aumentar el número de seccionamientos detectados**.

En la red ferroviaria francesa, y en particular en las líneas de 1500V, con catenaria doble, aparecen un tipo de seccionamientos, caracterizados por su pequeña longitud y una reducida separación entre parejas de hilos, que en algunas ocasiones son del orden de la separación existente entre los hilos de una misma sección cuando están en curva. A lo largo de este documento, a este tipo de seccionamientos se les denominarán **“seccionamientos cortos”**. Su tasa de detección con el algoritmo utilizado en el equipo de RENFE es muy baja.

3.6.1.1 Desarrollo del algoritmo de asignación de canales

Los objetivos que se persiguen con el desarrollo del algoritmo son los siguientes:

- Solucionar el problema de la inversión de hilos dentro de una sección.
- Solucionar el problema de la aparición de nuevos hilos dentro de una sección.
- Aumentar el número de detecciones de seccionamientos.

Debido a las diferencias en la geometría de las catenarias de 1500V (dos hilos de contacto) y 25kV (un hilo de contacto) se han generado dos procesamientos diferentes dependiendo del tipo de catenaria: Algoritmo_1HC y Algoritmo_2HC.

El algoritmo, en sus dos versiones, se compone por varios **procedimientos** que se describen a continuación.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

OrdenarHuella: Ordena las huellas por descentramiento utilizando el método burbuja.

AsignarHuellas: Asigna huellas a los cables activos por mínima distancia.

AsignarHuellasSec: Asignación de las huellas en los seccionamientos.

El caso de seccionamientos con pérdidas de imágenes en un hilo hace necesario la creación del procedimiento AsignarHuellasSec, ya que la asignación por mínima distancia como se realiza en el vano no produce resultados satisfactorios.

La aparición de huellas muy pequeñas, provocada por un alto nivel de corte unido a una baja distancia entre huellas, que hace que la huella se divida en dos (ver Figura 3-24), hace que se produzcan asignaciones erróneas.

En la Tabla 3-12 se ilustra este hecho. En la imagen 733, se ha producido la división en dos de la huella del hilo 2, produciendo la activación del hilo 3. Si la asignación se realiza por mínima distancia provoca en las siguientes imágenes una asignación errónea, asignación al hilo 3 en lugar de al hilo 2.

La solución que se adoptó para evitar el problema que ilustra la Tabla 3-12 fue la implementación del nuevo proceso de asignación de huellas en los seccionamientos. La asignación no se va a producir si la distancia huella-cable es mayor que la mínima distancia que hay entre las parejas de cables en los seccionamientos.

Tabla 3-12. Aparición de huellas muy pequeñas

<table>
<thead>
<tr>
<th>Imagen</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
</tr>
</thead>
<tbody>
<tr>
<td>732</td>
<td>11358</td>
<td>4917</td>
<td>12526</td>
<td>5462</td>
<td>6263</td>
<td>9103</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>733</td>
<td>10297</td>
<td>4941</td>
<td>3715</td>
<td>5480</td>
<td>2229</td>
<td>5590</td>
<td>5626</td>
<td>9120</td>
</tr>
<tr>
<td>743</td>
<td>8917</td>
<td>4948</td>
<td>0</td>
<td>0</td>
<td>3184</td>
<td>5597</td>
<td>3927</td>
<td>9120</td>
</tr>
</tbody>
</table>

(*) En esta columna se muestra el valor del descentramiento del hilo de contacto

Tabla 3-13. Aparición de huellas muy pequeñas, sin aplicar el algoritmo

<table>
<thead>
<tr>
<th>Imagen</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1029</td>
<td>6224</td>
<td>7733</td>
<td>0</td>
<td>0</td>
<td>8448</td>
<td>6481</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1030</td>
<td>2339</td>
<td>6495</td>
<td>6015</td>
<td>7732</td>
<td>8243</td>
<td>6845</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1031</td>
<td>2445</td>
<td>6499</td>
<td>6669</td>
<td>7737</td>
<td>8448</td>
<td>6847</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1032</td>
<td>2334</td>
<td>6503</td>
<td>6113</td>
<td>7740</td>
<td>8225</td>
<td>6851</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1033</td>
<td>2450</td>
<td>6507</td>
<td>6572</td>
<td>7739</td>
<td>8243</td>
<td>6853</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(*) En esta columna se muestra el valor del descentramiento del hilo de contacto
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

En la Tabla 3-13 se puede ver como la división de la huella del hilo 3 en la imagen 1030 hace que se active el hilo 2 y se produzca una inversión de hilos. En las imágenes siguientes, las huellas asignadas al hilo 2 deberían ser del hilo 1 y las asignadas al 1 pertenecen al hilo 3.

En la Tabla 3-14 se muestran los resultados que se obtiene al procesar el fichero con el nuevo algoritmo. Se puede comprobar cómo se ha solucionado el problema de mala asignación de las medidas a los hilos.

<table>
<thead>
<tr>
<th>Imagen</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
<th>Ancho</th>
<th>Descen*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1029</td>
<td>6224</td>
<td>7733</td>
<td>0</td>
<td>0</td>
<td>8448</td>
<td>6481</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1030</td>
<td>6015</td>
<td>7732</td>
<td>0</td>
<td>0</td>
<td>2339</td>
<td>6495</td>
<td>8243</td>
<td>6845</td>
</tr>
<tr>
<td>1031</td>
<td>6669</td>
<td>7737</td>
<td>0</td>
<td>0</td>
<td>2445</td>
<td>6499</td>
<td>8448</td>
<td>6847</td>
</tr>
<tr>
<td>1032</td>
<td>6113</td>
<td>7740</td>
<td>0</td>
<td>0</td>
<td>2334</td>
<td>6503</td>
<td>8225</td>
<td>6851</td>
</tr>
<tr>
<td>1033</td>
<td>6572</td>
<td>7739</td>
<td>0</td>
<td>0</td>
<td>2450</td>
<td>6507</td>
<td>8243</td>
<td>6853</td>
</tr>
</tbody>
</table>

(*) En esta columna se muestra el valor del descentramiento del hilo de contacto

Tabla 3-14. Asignación de las huellas al aplicar el algoritmo

CrearNuevosHilos: Se activan nuevos canales. La creación de los hilos se hace en grupos de dos para el caso del Algoritmo_2HC y un único cable para el caso de de la versión del Algoritmo_1HC.

EliminarHilosViejos: Se eliminan los canales correspondientes a los hilos que desaparecen al llegar al final del seccionamiento.

Las principales diferencias entre los dos algoritmos son:

- En el caso de dos hilos de contacto se distingue entre “seccionamiento corto” y “seccionamiento largo”. En el caso de la variante Algoritmo_1HC, sólo existe un tipo de seccionamiento, ya que los llamados “seccionamientos cortos” no son característicos de este tipo de líneas.
- El valor de las constantes de procesamiento. A la hora de fijar las constantes en el Algoritmo_2HC, se ha optado por unos valores que no provoquen la aparición de falsas detecciones.
- En el caso del Algoritmo_1HC en el procedimiento CrearNuevosHilos, activa un único hilo. En la versión para dos hilos de contacto, se activa un grupo de canales.

3.6.1.1.1 Algoritmo_1HC

Constantes utilizadas en el algoritmo

- cnHueLaMinima [píxeles]. Tamaño mínimo para considerar válida una huella.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

- **cnMinSeparDetec [pixeles]**. Mínima distancia entre dos detecciones en una imagen para no considerarlas solapes.
- **cnMaxDexVar [mm]**. Máxima distancia entre dos detecciones en imágenes consecutivas para considerarlas del mismo cable.
- **LnDstLimSec [m]**. Longitud por debajo de la cual se encuentran el 95% de los seccionamientos.
- **LnDstLimEntreSec [m]**. Longitud mínima entre seccionamientos. Se ha tomado un valor muy conservador, distancia entre postes.
- **LnDistPOSSec [m]**. Longitud mínima en la que se tiene que mantener la condición de seccionamiento para considerarlo como tal.

![Flujograma del algoritmo de asignación de canales para un hilo de contacto](image)

Figura 3-33. Flujograma del algoritmo de asignación de canales para un hilo de contacto

El flujograma del algoritmo implementado es el que se adjunta en la Figura 3-33.

En él se puede ver cómo se distinguen cinco estados: **Vano, Posible Seccionamiento, Seccionamiento, Fin Seccionamiento, Error Seccionamiento**. El paso de uno a otro
se hace comparando la distancia recorrida (lnDst) con las constantes lnDstLimSec, lnDstLimEntreSecc, lnDstLimPoSSec, según corresponda. Además se ha de comparar la distancia huella-hilo con la constante cnMaxDexVar.

3.6.1.1.2 Algoritmo_2HC

El algoritmo se basa en los siguientes principios:

- **Detección de seccionamientos.**
- **En los seccionamientos aparecen nuevos hilos (la aparición es por grupos).**
- **Al final del seccionamientos desaparecen los hilos de la antigua sección.**
- **Entre seccionamientos no pueden aparecer ni desaparecer hilos.**
- **Las asignaciones se hacen por mínima distancia, salvo en el caso de encontrarnos en un seccionamiento, zonas en las que como ya se comentó anteriormente la asignación no se produce si la distancia huella-cable es mayor que la mínima distancia que hay entre las parejas de cables en los seccionamientos.**
- **Para evitar falsas detecciones provocadas por aparición de elementos pertenecientes a la geometría tales como “agujas aéreas”, cuya longitud puede ser de varios metros se optimizó el algoritmo respecto de la versión para un único hilo. Una vez detectado un seccionamiento, se comprueba si lo que suponemos cables nuevos, son tales. Esa comprobación se hace determinando el número de asignaciones a esos cables al final del seccionamiento (en esa zona los cables antiguos habrán desaparecido y sólo habrá asignaciones a los cables nuevos)**

Constantes utilizadas en el algoritmo

- **cnHuellaMinima [píxeles].** Tamaño mínimo para considerar válida una huella
- **cnMinSeparDetec [píxeles].** Mínima distancia entre dos detecciones en una imagen para no considerarlas solapados.
- **cnMaxDexVarSecCorto [mm].** Máxima distancia entre dos detecciones en imágenes consecutivas para considerarlas del mismo cable (Seccionamientos cortos).
- **cnMaxDexVarSecLargo[mm].** Máxima distancia entre dos detecciones en imágenes consecutivas para considerarlas del mismo cable (Seccionamientos largos).
- **cnLngtdSecCorto [m].** Longitud para seccionamientos cortos.
- **cnLngtdSecLargo [m].** Longitud para seccionamientos largos.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

- \(\text{cnLngtPOSSec} \ [\text{m}]\). Longitud mínima en la que se tiene que mantener la condición de seccionamiento para considerarlo como tal. Como ya se ha dicho, como consecuencia de la reducida longitud de los “seccionamiento cortos” si se disminuye esta constante se aumentan las detecciones, pero también aparecen detecciones falsas. El valor elegido es el que consigue que no aparezcan detecciones falsas, aunque con ello se reduzca el número de detecciones.

- \(\text{cnLngtObjetoSecLargo} \ [\text{m}]\). Longitud a partir de la cual se va a comprobar el número de asignaciones a los cables nuevos para confirmar si se trata de un seccionamiento largo.

- \(\text{cnAsignacionErrorLargo} \ [\text{Imágenes}]\). Número de asignaciones de los cables nuevos para determinar si se trata de seccionamiento o no. El valor de esta constante es el único que no es independiente con la velocidad. Para determinarlo se ha tenido en cuenta que si la velocidad es de 100 km/h, y como se toman 260 imágenes/s, aproximadamente se tienen 8 imágenes/m. Con lo que si se trata de un seccionamiento real el número de asignaciones en 10 metros serían unas 160. Se ha tomado la mitad para evitar que las pérdidas de imágenes no provoquen errores (Seccionamientos largos).

- \(\text{cnLngtObjetoSecCorto} \ [\text{m}]\). Longitud a partir de la cual se va a comprobar el número de asignaciones a los cables nuevos para confirmar seccionamientos cortos.

- \(\text{cnAsignacionErrorCorto} \ [\text{Imágenes}]\). Número de asignaciones de los cables nuevos para determinar si se trata de seccionamiento o no. (Seccionamientos cortos).

- \(\text{cnLngEntreSec} \ [\text{m}]\). Longitud mínima entre seccionamientos. Se ha tomado la distancia entre postes.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

3.6.1.1.3 Resultados

Los algoritmos se han evaluado en varios tramos de la red ferroviaria francesa. Tanto en el caso del algoritmo para un hilo como para el de dos hilos los problemas de aparición de hilos en un cantón (o sección) y el de inversión han sido corregidos. Como ejemplo de ello en la Figura 3-35, se puede ver como dentro de un mismo cantón debido a la aparición de imágenes espurias se produce inversión de los hilos y la eliminación de uno (azul oscuro) y la aparición de otro (verde).

Figura 3-34. Flujograma del algoritmo de asignación de canales para dos hilos de contacto
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Figura 3-35. Inversión de hilos y aparición de nuevos hilos dentro de un catón

Al aplicar el algoritmo al fichero anterior se solucionan los problemas producido por una mala asignación de las imágenes a los hilos (Figura 3-36).

Figura 3-36. Fichero de la Figura 3-35 al que se le ha aplicado el algoritmo de asignación de canales

En la Tabla 3-15 aparecen los resultados que se obtuvieron con varios ficheros de distintos tramos de la red francesa y que constituyeron uno de los requisitos para las pruebas de recepción del equipo por parte de la SNCF.

<table>
<thead>
<tr>
<th>Problema</th>
<th>Resultado al aplicar el algoritmo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio de hilos en un cantón</td>
<td>Solucionado al 100%</td>
</tr>
<tr>
<td>Inversión de hilos</td>
<td>Solucionado al 100%</td>
</tr>
<tr>
<td>Detección de seccionamientos</td>
<td>Detectados el 60 %</td>
</tr>
</tbody>
</table>

Tabla 3-15. Resultados al aplicar el algoritmo de asignación de canales
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

A pesar de no conseguir la totalidad de las detecciones de los seccionamientos, en la Tabla 3-16 se muestra que con este nuevo algoritmo se consigue un considerable aumento de detecciones respecto al algoritmo utilizado hasta ahora en el equipo de RENFE.

<table>
<thead>
<tr>
<th>Detección de seccionamientos</th>
<th>Algoritmo RENFE</th>
<th>Nuevo Algoritmo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK 259.870</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 260.900</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 262.000</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 263.000</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PK 264.120</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 265.200</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 266.210</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 267.220</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PK 268.350</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 269.440</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 270.500</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 271.580</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 272.670</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 273.600</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 274.650</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 275.630</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 276.850</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 277.780</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PK 278.560</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 279.000</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 279.800</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PK 280.850</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 281.950</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 283.010</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PK 284.290</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 285.050</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>PK 286.180</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>%Detecciones</td>
<td>5/27 (≈ 18%)</td>
<td>16/27 (≈ 60%)</td>
</tr>
</tbody>
</table>

Tabla 3-16. Detección de seccionamientos.

X: Seccionamiento no detectado
✓: Seccionamiento detectado
3.6.1.1.4 Discusión de los resultados

Se ha desarrollado un nuevo algoritmo de asignación de las medidas a cada uno de los hilos de contacto que ha sido implementado en el sistema MEDES-F1 y que constituye una aportación original de este trabajo de investigación. Con este nuevo algoritmo se han solucionado los problemas de aparición de hilos en un cantón (o sección) y el de inversión de hilos. Es decir, la aparición de elementos extraños tales como estructuras, agujas aéreas, o la pérdida de imágenes no producen ni aparición ni cambios de hilos entre seccionamientos.

Con el nuevo algoritmo también se ha conseguido aumentar considerablemente la tasa de detección de los seccionamientos (de un 20% a un 60%). Hay que señalar un hecho importante, la no detección de los seccionamientos se produce en el caso de los denominados “seccionamientos cortos”, característicos de la red francesa. Los seccionamientos tipo “RENFE”, o “seccionamientos largos” son detectados prácticamente en su totalidad. También es importante señalar la no aparición de ninguna detección falsa.

Las razones por las que no se detectan el 100% de los “seccionamientos cortos” se exponen a continuación:

- En el algoritmo se ha dado prioridad al hecho que todas las detecciones sean reales, es decir, se han optimizado los parámetros de procesamiento para que no se produzcan detecciones falsas, aún en detrimento del número de detecciones.
- La asignación juega con dos variables, la distancia entre hilos y la longitud del seccionamiento. La no detección en algunos casos se produce porque a separación máxima entre hilos “entrantes” y “salientes” es del orden o incluso inferior a la que se da entre hilos de una misma sección en curvas.
- La duración del seccionamiento en algunos casos es muy corta. En el caso que se redujera la constante empleada en el algoritmo para distinguir seccionamiento de lo que no es, la aparición de agujas u otro tipo de elementos de sujeción provocarían efectos muy negativos.
- La longitud de este tipo de seccionamientos, en ocasiones es del orden de 1 m, mínima resolución del sistema.

3.7 Precisión en la medida

En la primera parte del capítulo se han estudiado en detalle los procesos de formación y procesamiento de la imagen en el sistema MEDES.

Se han identificado algunas de las fuentes que degradan la calidad de la imagen: desenfoques, desplazamiento lateral del hilo de contacto o las propiedades reflexivas en los bordes de la imagen.
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

Analizados todos estos factores el objetivo de este apartado es identificar cuáles son las fuentes de error, para de esta forma, intentar mejorar la precisión del sistema y disminuir la dispersión en las medidas.

Del estudio de la sensibilidad en la medida (ver apartado 3.2) se concluyó que para obtener una precisión del ±5% en el cálculo de la sección para cualquier tipo de hilo con una sección mínima del 70% es suficiente con que el ancho de la huella sea medido con un error de ±2 píxeles.

De las pruebas realizadas con las distintas catenarias y en todo el campo de medida se han identificado como principales fuentes de error la dispersión de las propiedades reflexivas de las catenarias y las variaciones de iluminación en el campo de medida.

La variabilidad de las propiedades reflexivas de las catenarias origina que para una misma posición y bajo las mismas condiciones el tiempo de integración necesario para obtener una imagen con buena calidad pueda variar hasta en un orden de magnitud (multiplicado por 10). Como ejemplo, se adjuntan en la Tabla 3-17 los resultados de las pruebas que se hicieron en Francia con seis catenarias de distintos tramos de su red ferroviaria. En la tabla aparece el tiempo de integración óptimo necesario para obtener una buena imagen. Como puede verse, dependiendo de la catenaria éste varía entre 100µs y 800µs.

<table>
<thead>
<tr>
<th>Circular 120 mm². Grasa</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular 150 mm²</td>
<td>700</td>
</tr>
<tr>
<td>Oval 150 mm²</td>
<td>200</td>
</tr>
<tr>
<td>Circular 120 mm², PSE/2</td>
<td>100</td>
</tr>
<tr>
<td>Circular 120 mm², PSE/2</td>
<td>100</td>
</tr>
<tr>
<td>Circular 120 mm², PSE/2</td>
<td>150</td>
</tr>
</tbody>
</table>

Tabla 3-17. Tiempo de integración óptimo para distintos tipos de catenarias

La variabilidad en las propiedades reflexivas, no sólo se debe a las características propias del hilo de contacto, sino también a las condiciones en las que se encuentra, así como al tipo de tráfico que circula por la vía. Las catenarias por las que pasan pantógrafos de Cu-Zr, presentan un alto nivel de rayado y se necesita un mayor tiempo de integración. Igualmente, si la superficie de desgaste se presenta fuertemente contaminada, a causa de la oxidación, humo de locomotora Diesel o grasa grafítica pastosa o incrustada, las condiciones de reflexión del haz láser son muy malas, necesitando tiempos de integración altos.

La geometría del sistema de iluminación (diodos láser solapados) y la propia naturaleza de la luz láser son las causas de la dispersión producida por la distribución no uniforme de la luz en todo el campo de medida. En la Figura 3-7 se
muestra la distribución de la luz en el campo horizontal. Como puede verse en ella, aun en el caso ideal, existen diferencias de iluminación entre las distintas zonas.

En la Tabla 3-18 se muestra la dispersión que se produce en el ancho de la huella para una catenaria en distintas posiciones del campo de medida. Las medidas se realizaron a altura máxima, nominal y mínima. Y en cada altura en el eje de las cinco cámaras y de los seis diodos láser. Como puede apreciarse la dispersión a altura máxima y nominal es de ±3 píxeles y altura mínima de ±5 píxeles.

<table>
<thead>
<tr>
<th>Ancho de la huella [píxeles]</th>
<th>L1</th>
<th>C1</th>
<th>L2</th>
<th>C2</th>
<th>L3</th>
<th>C3</th>
<th>L4</th>
<th>C4</th>
<th>L5</th>
<th>C5</th>
<th>L6</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura máxima</td>
<td>82</td>
<td>83</td>
<td>82</td>
<td>82</td>
<td>81</td>
<td>81</td>
<td>84</td>
<td>82</td>
<td>79</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura nominal</td>
<td>101</td>
<td>104</td>
<td>103</td>
<td>103</td>
<td>104</td>
<td>103</td>
<td>104</td>
<td>103</td>
<td>101</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura mínima</td>
<td>141</td>
<td>143</td>
<td>140</td>
<td>142</td>
<td>144</td>
<td>141</td>
<td>143</td>
<td>147</td>
<td>142</td>
<td>138</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3-18. Dispersión del ancho de la huella en el campo de medida.

A todo lo anterior habría que añadir que el sistema está constituido por cinco cámaras, cada una de las cuales con su propia ganancia y características, que introducirán diferencias en su respuesta. Sin embargo, la no uniformidad en la iluminación y la convivencia de catenarias con propiedades reflexivas muy distintas son los aspectos en los que nos vamos a centrar para reducir la dispersión y aumentar la precisión, ya que son los factores más determinantes. En los apartados siguientes se van a presentar las posibles soluciones que se han estudiado.

3.7.1 Soluciones hardware

3.7.1.1 Cambio de la fuente luminosa

La no uniformidad en la luz es intrínseca a la fuente de iluminación láser. Una alternativa podría ser el cambio por LEDs. Un inconveniente de esta solución es que no es posible obtener la potencia suficiente para mantener el sistema de iluminación dentro del coche laboratorio. Es decir, el sistema de iluminación habría que montarlo en el techo del coche auscultador. La ventaja que tiene ubicar el sistema de iluminación en la mesa junto con la óptica es que así su movimiento es solidario con el movimiento de la mesa. En el caso de colocarlo en el techo independiente de la óptica, podría ocurrir que si se mueve la mesa y con ello la óptica, hubiera zonas sin iluminar. Por otra parte, las tareas de mantenimiento se complicarían.

Otro tipo de luz que podría emplearse es luz blanca, como en el caso del sistema WWS101 desarrollado por el Fraunhofer IPM (apartado 2.4.5). Esta solución obligaría a emplear la reflexión difusa, e instalar, al igual que en el caso del empleo de los LEDs, el sistema en el techo del coche laboratorio. Todo esto implicaría cambiar la filosofía del equipo, filosofía, cuya eficacia ha quedado probada durante los años en los que el sistema lleva en funcionamiento en España y Francia.
3.7.1.2 Cambio de la geometría del sistema

Otra de las soluciones estudiadas es el cambio en la geometría del sistema de iluminación, conservando los diodos láser emitiendo en el infrarrojo.

El objetivo sería el de mantener la zona y el ángulo de iluminación constantes, independientemente de la altura del hilo de contacto. Esta es la filosofía empleada por el sistema WireCheck descrito en el apartado 2.4.7 de este documento.

![Figura 3-37. Sistema de iluminación del sistema WireCheck](image)

El haz láser se desvía un ángulo fijo mediante los espejos (en la Figura 3-37, el bloque 4) para iluminar la catenaria en una determinada zona. Cuando la altura de la catenaria varía, el bloque de espejos se desplaza, manteniéndose fija la zona de iluminación y el ángulo de iluminación.

El desplazamiento L que debe realizar el bloque de espejos es grande. Por ejemplo, para un ángulo de iluminación de 45º, que podría ser el observado en la figura de la información proporcionada por Tecnogamma (empresa que comercializa el equipo), el desplazamiento L debería ser el mismo que el de la catenaria (h) desde la altura máxima a la mínima.

Por otro lado, el ángulo de observación de las cámaras CCD, no se encuentra en el camino de reflexión especular, sino en el de luz difusa (Figura 3-38). La elección de este sistema de iluminación implica una alta complejidad mecánica. Por otra parte, habría que cambiar, como ocurriría en el caso de cambio de fuente luminosa, el principio de medida del sistema MEDES, basado en la reflexión especular.

Como ya se ha comentado a lo largo de este documento, la reflexión difusa implica el uso de algoritmos de tratamiento de imágenes, con el consiguiente retardo en el tiempo de procesamiento.
3.7.1.3 **Un único láser**

Esta solución es la adoptada por el sistema empleado por los japoneses (ver apartado 2.4.4). Un único láser sigue al hilo de contacto. Mediante un espejo rotativo el haz láser hace un barrido de toda la zona de medida.

Trasladar esta filosofía al sistema MEDES implica una elevada complejidad mecánica y óptica que hace inviervible su uso.

3.7.2 **Control del tiempo de Integración**

Las soluciones hardware que se acaban de describir, cambio de la fuente luminosa o la geometría del sistema, no son capaces de resolver el problema de la dispersión en las propiedades reflexivas de las catenarias.

La solución óptima es conseguir que la imagen sea adquirida en las mejores condiciones de iluminación, independientemente del hilo de contacto.

Con el control del tiempo de integración se puede variar la capacidad de respuesta del CCD. El control del tiempo de integración se usa para el ajuste en tiempo real de la capacidad de respuesta del dispositivo. Es decir **controlando el tiempo de integración se puede controlar las condiciones de iluminación con las que son adquiridas las imágenes**

El ajuste de la capacidad de respuesta del sistema por medios ópticos (por ejemplo, un iris mecánico, un disparador mecánico) es mucho más lento que un simple ajuste del ciclo de reloj del tiempo de integración.

Para obtener unos resultados óptimos en la medida, el **tiempo de integración no debe considerarse fijo, debe estar condicionado a la calidad de la superficie de desgaste del hilo de contacto**, tanto en lo relativo a que su reflexión sea más o menos...
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

especular (cómo de pulida está la superficie) como al nivel de opacidad debido a la grasa-gráfitica de los pantógrafos.

La convivencia de catenarias con distintas condiciones y la falta de una base de datos de dónde nos encontramos auscultando o lo que nos vamos a encontrar según avanzamos hace necesaria la presencia de un sistema automático de control que determine, en tiempo real, el tiempo de integración óptimo.

El diseño de ese sistema de control constituye la aportación principal de este trabajo de investigación y se va a desarrollar en el capítulo siguiente.

3.8 Conclusiones

En la primera parte de este capítulo se han estudiado en detalle las etapas de adquisición y procesamiento de imágenes del sistema MEDES. Se han analizado los factores y parámetros que intervienen en el diseño de los sistemas implicados en cada una de esas etapas.

Los elementos a tratar en la etapa de adquisición de la imagen son la iluminación, y el sistema óptico de captación.

El diseño del sistema de iluminación está condicionado por el hecho de mantener los ángulos de iluminación y de visión constantes. Esto obliga al uso de diodos láser solapados, solución que introduce variabilidad en la distribución de la luz.

La elección de los parámetros del sistema óptico se hace en función del error máximo con el que se ha de resolver la huella para obtener una precisión de ±5% en el cálculo de la sección y el espesor, en hilos con una sección mínima del 70%. Este valor está en torno a 0,1 mm.

Definido el sistema óptico, se ha calculado con cuántos píxeles en el CCD se debe resolver el ancho de la huella para asegurar la precisión del ±5%. Del estudio realizado se concluye que un error de ± 2 píxeles garantiza el ±5% para hilos con sección circular, y en torno al ±5,5% si se trata de hilos con sección oval.

La detección en la imagen del número de huellas, su posición y su ancho se obtiene mediante un procesamiento hardware basado en un proceso de segmentación por nivel. En la elección del valor umbral que define a partir de que valor de nivel de gris el pixel pertenece a la huella, hay que llegar a un compromiso. Un nivel alto puede afectar al ancho de la huella, incluso puede provocar su división en dos. Por otra parte, el nivel de ruido de la imagen podría afectar a la medida en el caso de elegir un valor muy bajo.

Se ha establecido su valor óptimo para un nivel de iluminación entre 70 y 100. Al aumentar el nivel de corte disminuye el ancho de la huella. La variación en el ancho de la huella que se produce entre elegir 70 ó 100 es de un pixel, para el caso en que la
Adquisición y procesamiento de imágenes capturadas con CCD lineales. Medida del desgaste del hilo de contacto

altura del hilo de contacto sea la nominal, aumentando hasta tres, si la altura es la máxima.

A partir de las medidas obtenidas por el procesamiento hardware se calcula la sección efectiva y el espesor y se asignan a cada uno de los hilos de contacto.

Se ha desarrollado un nuevo algoritmo de asignación de las medidas a los hilos de contacto que se ha implementado en el sistema MEDES-F1 y que constituye una aportación original de este trabajo de investigación. Con este nuevo algoritmo se han solucionado los problemas de aparición e inversión de hilos dentro de una sección o cantón.

Asimismo, se ha conseguido aumentar considerablemente la tasa de detección de los seccionamientos (de un 20% a un 60%) sin que se produzcan detecciones falsas.

A partir de la imagen ideal se han estudiado y cuantificado los factores que distorsionan la imagen. Entre ellos cabe destacar, el desenfoque, cuyo efecto se manifiesta en un ensanchamiento en la base de la huella y un cambio suave en los flancos de la imagen.

El error que introduce el desplazamiento lateral del hilo se reduce con tiempos de integración bajos. Así con valores alrededor de 70µs, se considera que la adquisición se ha realizado como si el hilo estuviera quieto (en cuanto a su movimiento lateral).

Se ha justificado la necesidad de utilizar un pantógrafo en la auscultación. Con el uso de l pantógrafo las huellas se mantienen siempre paralelas al eje de la vía, eliminando el error que se pudiera producir en la medida por el hecho de estar inclinadas.

Otro hecho que se ha planteado es el desconocimiento del mecanismo de la reflexión en los bordes de la imagen. Cuestión que habría que considerar en trabajos futuros.

En la última parte del capítulo se han identificado como principales causas de la dispersión de las medidas y la consiguiente reducción en la precisión del sistema la gran variabilidad en las propiedades reflectivas de las catenarias y la no uniformidad de la iluminación en todo el campo de medida.

Debido a la dispersión en las propiedades reflectivas el tiempo de integración necesario para obtener una imagen de buena calidad puede variar hasta en un orden de magnitud, dependiendo de la catenaria.

El hecho de que la iluminación no sea uniforme, introduce variaciones en la medida de ±3 píxeles a altura máxima y nominal y ±5 píxeles a la altura mínima.

Para resolver la problemática de la dispersión en las medidas se han propuesto un conjunto de soluciones que afectan al cambio de la fuente luminosa o de su disposición. Estas propuestas, además de suponer un cambio en la filosofía del sistema MEDES, cuya eficacia ha quedado probada en España y Francia, no
resuelven la dispersión causada por la variación en las propiedades reflexivas de las

La solución óptima es conseguir que la imagen sea adquirida en las mejores
condiciones de iluminación, independientemente del hilo de contacto y de dónde se

Con el tiempo de integración de las cámaras, se puede variar la capacidad de
respuesta del CCD, es decir, se puede controlar las condiciones de iluminación con
las que son adquiridas las imágenes.

Es por ello, por lo que se propone el desarrollo de un sistema automático de control
que determine en tiempo real el tiempo de integración óptimo con el que se ha de
adquirir la imagen y de esta forma, mejorar la precisión del sistema y reducir la
dispersión.

El diseño de este sistema de control constituye la aportación principal de la tesis
doctoral y será descrito en el capítulo siguiente.
Capítulo 4

Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

Índice

4. ALGORITMO DE CONTROL DEL TIEMPO DE INTEGRACIÓN DE LOS CCDS BASADO EN EL HISTOGRAMA DE LA IMAGEN... 113

4.1 Control del proceso de adquisición .. 114

4.2 ¿Cómo afecta el tiempo de integración a la calidad de la imagen? 117
 4.2.1 Efectos en la imagen de un tiempo de integración inadecuado............. 119
 4.2.2 Variación del ancho de la huella con el tiempo de integración 122

4.3 El uso del histograma para determinar el tiempo de integración óptimo .. 123
 4.3.1 Caracterización de las imágenes mediante el histograma 125

4.4 Diseño del algoritmo de control del tiempo de integración...................... 128
 4.4.1 Parámetros de control .. 130
 4.4.2 Medidas en estático ... 132
 4.4.2.1 Descripción de las muestras utilizadas 132
 4.4.2.2 Resultados .. 134
 4.4.3 Medidas en vía ... 140
 4.4.3.1 Conclusiones de los análisis realizados con imágenes adquiridas en vía 141
 4.4.4 Evaluación del algoritmo ... 143
4.4.4.1 Discusión de los resultados ... 146
4.4.4.2 Comparativa con los resultados obtenidos con un tiempo de integración fijo .. 147
4.4.5 Cálculo de los coeficientes α del algoritmo 149

4.5 Implementación del sistema de control .. 150

4.6 Formulación del control en términos de lógica difusa 153
4.6.1 Control borroso del tiempo de integración ... 157
4.6.2 Comparativa entre el diseño clásico y la lógica difusa 163

4.7 Conclusiones ... 164
Capítulo 4

4. **Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen**

En este capítulo se va a presentar un algoritmo de control basado en el histograma de la imagen y que constituye la aportación fundamental de la tesis. Se va a intentar dar respuesta al **cómo se realiza el control** y al **por qué se utiliza el histograma**.

Se ha visto en el capítulo anterior que la mejor solución para resolver la problemática de la dispersión de las medidas es la de adquirir las imágenes en condiciones óptimas. En este trabajo de investigación se propone como parámetro de control del proceso de adquisición el tiempo de integración.

Se estudiará cómo varía la medida del ancho de la superficie de desgaste con el tiempo de integración de los CCDs. No hay que olvidar, que el objetivo del sistema es medir con la mayor precisión ese ancho, a partir del cual se calcula el desgaste del hilo de contacto.

En el desarrollo del algoritmo se ha seguido la siguiente metodología:

- **Validación del histograma como indicador del tiempo de integración.**
- **Caracterización de las imágenes utilizando el histograma.**
- **Diseño e implementación del algoritmo de control.**

Debido al auge de los controladores borrosos y al aumento de su uso en diversas ramas tecnológicas, en la última parte del capítulo se va a plantear el control en términos de **lógica borrosa** o difusa.
4.1 Control del proceso de adquisición

Las condiciones variables en la iluminación hacen necesario el ajuste automático de los parámetros de la cámara para obtener las imágenes en las mejores condiciones.

Los métodos empleados por las cámaras fotográficas basados en autofocus, autoiris o el control automático de la ganancia [Ookawa91], [Karulski97] son inviables en el caso de los sistemas de visión por computador ya que los sistemas de visión por computador requieren de cierto grado de focalización.

Varios autores han propuesto diferentes métodos para controlar los parámetros de adquisición en distintos sistemas de visión por computador.

Murino et al. [Murino96] realizan un control adaptativo para regular los parámetros de la cámara basado en la evaluación de la calidad de la imagen adquirida. Para ello, definen un conjunto de funciones, derivadas del contenido en alta frecuencia de la imagen o del análisis del histograma.

Estas funciones evalúan el grado de desenfoque de la imagen, la regularidad del histograma, la distribución de los niveles de gris, los valores máximos y mínimos, así como la media y la varianza. Combinando todos los parámetros anteriores se define una función de calidad, que habrá que maximizar para obtener la imagen en condiciones óptimas.

En el proceso de digitalización de la imagen, los valores de los píxeles son función lineal del valor analógico de la tensión de salida del CCD. Al tratarse de una función lineal serán necesarios dos parámetros de control, que dependiendo de los autores los traducen en términos de “ganancia y offset”, “brillo y contraste” o “niveles de referencia del blanco y del negro”. Estos parámetros son utilizados para optimizar el rango dinámico del sistema.

En el control propuesto por Murino, la apertura del diafragma, la ganancia y el valor de referencia del negro se utilizan como parámetros de ajuste. Si se establece que el nivel de iluminación en la imagen es alto, se cierra el diafragma, se aumenta la ganancia y se ajusta el valor de referencia del negro. Realizando las acciones contrarias en el caso en el que la iluminación sea baja. La tasa de muestreo máxima está en torno a 25 imágenes/s, límite que no se llega a alcanzar por el retraso que introducen los motores encargados de controlar el enfoque de las cámaras y la apertura del diafragma.

Marchant et al. [Marchant03] proponen métodos de control que ajustan los niveles de referencia del blanco y del negro y el tiempo de integración de la cámara. La cámara empleada permite cambios discretos del tiempo de exposición, hasta en ocho pasos. En cada paso se reduce la exposición a la mitad. Las técnicas propuestas se basan en maximizar la función dada por la ecuación [4.1], a la que han denominado entropía del histograma, y en la que p(i) representa la probabilidad del nivel de gris i. La
implementación en tiempo real del sistema de control no se ha realizado y la frecuencia de muestreo máxima prevista no supera los 25 Hz.

\[H = \sum_{i=0}^{255} p(i) \cdot \log(1 / p(i)) \]

[4.1]

Los trabajos expuestos hasta ahora utilizan un modelo de la cámara y el digitalizador, usando como control de la exposición el ajuste de la ganancia y el offset. Con el tipo de cámaras que actualmente hay en los equipos RENFE y SNCF este tipo control no es factible. Las cámaras han sido íntegramente desarrolladas en la División de Ingeniería Electrónica de la Escuela Técnica Superior de Ingenieros Industriales (Figura 4-1).

Figura 4-1. Cámara CCD del sistema MEDES

Cada cámara contiene tres tarjetas con la electrónica necesaria para la correcta captación de la imagen. La primera de ellas es la denominada tarjeta analógica. Esta tarjeta contiene el sensor CCD que transforma las señales luminosas en dos señales analógicas. Se encarga de ajustar la ganancia y el offset de las dos señales de salida del CCD y de adecuarlas a las siguientes etapas de procesamiento. Para ello se ha diseñado un circuito con amplificadores operacionales, que permite dicho ajuste mediante el uso de dos potenciómetros. Es decir, una vez que se ha calibrado la cámara, estos dos parámetros, ganancia y offset no pueden ser variados durante la auscultación. Utilizando un convertidor analógico-digital se transforman las tensiones analógicas, obtenidas en la etapa anterior, en señales digitales. Como ya se
ha mencionado a lo largo de la memoria, la resolución o número de bits de este convertidor determina el número de niveles de gris que podrá distinguir la cámara.

En la segunda de las tarjetas o **tarjeta digital** se mezclan los dos canales de información procedentes de la tarjeta analógica para formar la imagen completa de la huella. La lógica de control ha sido implementado en dos PALes. Los datos son transferidos a una memoria FIFO (*First Input First Output*), en la que son almacenados. Un convertidor paralelo-serie toma los datos contenidos en la memoria FIFO y los transmite al sistema de procesamiento.

Por último se ha diseñado una tarjeta que proporciona las conexiones a las fuentes de alimentación y las protecciones ante sobretensiones.

Es decir, el ajuste dinámico de la ganancia y el offset no es posible, están fijados por la electrónica del sistema.

En el aparatado 2.4.2 de este documento se hizo una descripción del nuevo sistema MEDES2000 que se está desarrollando para mejorar las prestaciones de los equipos RENFE y SNCF. Entre las mejoras introducidas está el cambio de las cámaras que se acababan de describir por cámaras comerciales las cuales incorporan como protocolo de comunicaciones el estándar **Camera LINK™ [CLINK]**. Se trata de un interfaz de comunicaciones para aplicaciones de visión por computador que permite el ajuste dinámico, entre otros parámetros, de la ganancia y el offset.

Aunque con las nuevas cámaras sea posible controlar la ganancia, se ha preferido el tiempo de integración como parámetro de control del proceso de adquisición. De esta forma, es posible mantener el margen dinámico del sistema, el cual se vería reducido, en los casos en los que fuera necesario tener valores altos de ganancia (malas propiedades reflexivas, niveles de iluminación bajos).

Por otra parte, los requisitos temporales y ópticos del sistema de medida tampoco permiten variaciones dinámicas en la apertura del diafragma.

El sistema de control propuesto en la tesis y que se va a desarrollar en los siguientes apartados, **actúa únicamente sobre el tiempo de integración del CCD**. Evalúa la imagen adquirida y determina cuál es el tiempo de integración óptimo para la siguiente imagen.

Aparte de obtener la imagen en las mejores condiciones para poder realizar la medida del ancho de la huella de la manera más precisa, los objetivos perseguidos en el desarrollo del algoritmo han sido **sencillez, bajo coste computacional y posibilidad de ser implementado en tiempo real sin producir una reducción en las prestaciones del sistema**.
4.2 ¿Cómo afecta el tiempo de integración a la calidad de la imagen?

En este apartado, se va analizar cómo afecta el tiempo de integración del CCD a la calidad de la imagen, es decir, qué tipo de imágenes se obtienen en función del tiempo de integración empleado. Asimismo, se va a cuantificar la relación existente entre el ancho de la huella y la variación en el tiempo de integración.

Antes de abordarlo se van a desarrollar una serie de aspectos previos que hay que tener en cuenta.

El sistema de enfoque (ver apartado 3.3.3) posiciona las cámaras respecto de las lentes, de forma que se asegura que las imágenes están enfocadas en todo momento. Es decir, las distorsiones que aparecen en los flancos de las imágenes no son atribuibles a desfocos, aunque, como ocurre al utilizar tiempos de integración demasiado altos, los efectos sean similares.

Otro aspecto importante a tener en cuenta es el análisis de los bordes de la imagen.

En el caso ideal se considera que el borde de la imagen es un escalón. Sin embargo, en un sistema real, se asume que el borde de la imagen cambia gradualmente de intensidad. La información del borde de la imagen es un proceso complejo que depende de muchos factores. Uno de ellos, y que ya ha sido mencionado con anterioridad en esta memoria (ver apartado 3.4.3), es el movimiento durante la exposición, que puede causar un emborronamiento del borde. Por otra parte, las celdas del CCD recibirán radiación reflejada de un punto (x) y de su entorno. Esto es especialmente importante en el caso de los bordes, que dividen dos zonas con propiedades reflectivas distintas. Otro factor que contribuye a la suavización de los bordes es que el CCD integra la radiación recibida en su superficie.

Una modelización del nivel de gris en el borde de la imagen se puede encontrar en [LI88]. El nivel de gris en el borde de la imagen g(x) es formulado como la convolución de un escalón ideal e(x) con una función h(x), que agrupa todos los efectos descritos con anterioridad y que contribuyen a suavizar los bordes:

\[g(x) = h(x) \ast e(x) \] \[4.2 \]

La expresión de un escalón e(x), caso de flanco ideal, es la siguiente:

\[e(x) = \text{sgn}(x) = \begin{cases}
-1, & x < 0 \\
0, & x = 0 \\
1, & x > 0
\end{cases} \] \[4.3 \]

Debido a la cantidad de factores implicados, la deducción de la expresión exacta de h(x) no es sencilla. Se ha elegido una función exponencial:
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

\[h(x) = \frac{c}{2} e^{-|x|}, \quad c > 0 \] \[[4.4] \]

Las contribuciones de cada punto son siempre positivas, es decir, \(h(x) > 0 \) para todo \(x \). En el límite, el cual se corresponde con el caso ideal \(g(x) = e(x) \), su expresión viene dada por:

\[\lim_{c \to \infty} h(x) = \delta(x) \] \[[4.5] \]

Sustituyendo [4.3] y [4.4] en la ecuación [4.2] se tiene la expresión del nivel de gris en el borde de la imagen:

\[g(x) = e(x) \ast h(x) = (1 - e^{-|x|}) \cdot \text{sgn}(x) \] \[[4.6] \]

La función \(g(x) \) cambia gradualmente y de forma suave. Este hecho hace que sea acceptable ajustarla mediante un polinomio de orden no muy alto. Esta consideración se va a tener en cuenta a la hora de determinar los parámetros del algoritmo de control.

Otro factor que juega un papel importante en el desarrollo del algoritmo es la presencia de ruido en la imagen. Se denomina ruido a las fluctuaciones aleatorias que añaden un nivel indeseable en la señal. No es reproducible. El estudio en profundidad de su origen desborda el alcance de esta tesis, aunque de este tema se puede encontrar abundante información bibliográfica.

Idealmente el fotodetector actúa como un convertidor de fotones incidentes a electrones [Pratt91]. El detector produce una corriente de señal a través de un filtro paso bajo, creando una tensión a través de una carga. La fuente de error más común asociada con los fotodetectores, respecto a la electrónica asociada, consiste en el ruido térmico resultante de las fluctuaciones de electrones aleatorios en elementos resistivos dentro del amplificador del sensor. Según Pratt, el ruido térmico puede ser modelado como un proceso estocástico normal aditivo. No obstante, la corriente de ruido térmico generada se puede modelar como un proceso aleatorio gaussiano de media cero y varianza dependiente del sensor utilizado.

Por otro lado, aun no teniendo en cuenta este ruido térmico generado, la corriente del fotodetector no tiene un valor constante, aún cuando la intensidad de luz incidente sea la misma. Los sensores fotoeléctricos exhiben una incertidumbre como consecuencia de la naturaleza mecánica - cuántica de la luz. A niveles bajos de luz, el número de electrones emitidos por un fotodetector está gobernado por una densidad de probabilidad de Poisson. La incertidumbre resultante en el conocimiento de la corriente del detector se denomina ruido de disparo (shot). La incertidumbre en el número de fotones almacenados durante un periodo viene dada por [4.7] en la que
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

La ecuación 4.7:

$$\sigma_{\text{shot}} = \sqrt{S}$$

4.2.1 Efectos en la imagen de un tiempo de integración inadecuado

En este apartado se va a estudiar que aspecto tiene las imágenes que no son adquiridas con un tiempo de integración adecuado. Antes de analizar que efectos que las caracterizan en la Figura 4-2 se muestra la imagen que se obtiene al emplear un tiempo de integración óptimo.

Figura 4-2. Imagen adquirida con un tiempo de integración óptimo

En el caso de utilizar **un tiempo de integración alto**, los fotodiodos pueden llegar a la **saturation**. En esta situación los píxeles pierden la capacidad de acomodar carga adicional y pueden comenzar a derramar el exceso de carga sobre los vecinos, originando una pérdida local de resolución de la imagen, es lo que denomina efecto **blooming**, y al que ya se ha hecho referencia a lo largo de la memoria (ver apartado 3.3.2.1)

En la Figura 4-3 se muestra la imagen del hilo de contacto, en la que el tiempo de integración que se ha utilizado es alto. Como consecuencia de la saturación y el blooming se produce un ensanchamiento en la base debido al desbordamiento de carga hacia los píxeles vecinos. Esto provocará errores en la medida de la huella.
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

La saturación y el blooming son unos fenómenos que ocurren en todos los CCDs y que afectan tanto cuantitativamente como cualitativamente a las características de la imagen.

Para controlar la saturación y el blooming, los CCDs utilizan varios procedimientos. Uno de ellos consiste en recortar la señal del ruido de disparo. Esto se traduce en un efecto característico de diente de sierra en los flancos de la imagen, que se puede ver en la Figura 4-4.

![Figura 4-4. Saturación de la imagen](image)

En el siguiente gráfico (Figura 4-5), se muestran los flancos de subida de dos imágenes, una de ellas adquirida con un tiempo de integración adecuado y la otra con un tiempo de integración alto. En este último caso se puede ver cómo ha habido...
un desplazamiento de carga debido al blooming y como aparece el efecto de diente de sierra.

Figura 4-5. Tiempo de integración alto: bordes de la imagen

Para la misma catenaria de la Figura 4-3 la imagen adquirida con un **tiempo de integración bajo** es la que aparece en la Figura 4-6. Lo primero que se observa es que los bordes de la imagen **no están bien definidos**. Como ya se ha explicado, la reflexión en los bordes puede ser distinta al del resto de la superficie de desgaste, no tratándose de reflexión especular, con lo que será la zona más afectada por un bajo nivel de exposición.

Figura 4-6. Imagen adquirida con tiempo de integración bajo
En ambos casos, tanto con tiempo de integración alto como bajo, se producirán errores significativos en la medida del ancho de la huella.

En particular, en la imagen de la Figura 4-6 (tiempo de integración bajo) el ancho de la huella que se obtiene es 19 píxeles menor que el ancho real. En cambio si se utiliza un tiempo de integración alto (Figura 4-3) el valor de la huella es 7 píxeles mayor que el real.

4.2.2 Variación del ancho de la huella con el tiempo de integración

El estudio se ha realizado con catenarias de la red ferroviaria española con distintos grados de desgaste. Las medidas se efectuaron variando el tiempo de integración en escalones de 50µs, desde 100µs a 1000µs.

Cada una de las muestras se midió en los ejes de las cámaras y de los láseres a dos alturas diferentes, la nominal y la mínima. En estudios previos se comprobó la linealidad de los resultados a las tres alturas: mínima, nominal y máxima. Dada la dificultad de efectuar medidas a altura máxima se eligieron las alturas mínima y nominal para realizar el análisis.

En la Figura 4-7 se muestra la gráfica que se obtiene para la catenaria cuyas imágenes aparecen en el apartado anterior (Figura 4-2 y Figura 4-6)

La curva se puede dividir en varios tramos lineales. Los dos primeros, se corresponden con tiempos de integración bajos, en los que pequeños cambios provocan grandes variaciones en el ancho de la huella.

A continuación se pasa a una zona en el que la variación del ancho de la huella cada 100µs es de aproximadamente de un píxel (tiempo de integración ligeramente bajo).
La zona estable, en la que el ancho de la huella se mantiene prácticamente constante se corresponde con el tiempo de integración óptimo (intervalo entre 500µs y 600µs).

Cuando el tiempo de integración es alto y debido a los efectos de saturación y blooming, el ancho de la huella aumenta rápidamente.

![Diagrama de la variación del ancho de la huella con el tiempo de integración](image)

Figura 4-8. Variación del ancho de la huella con el tiempo de integración (II)

Este comportamiento se puede generalizar al resto de catenarias, aunque dependiendo de sus propiedades reflexivas y la iluminación, los valores del tiempo de integración para los cuales se da el caso óptimo serán distintos. Así para la misma catenaria de la figura anterior, la curva que se obtiene con la muestra en otra posición, donde el nivel de iluminación es mayor, el tiempo de integración óptimo se sitúa en el intervalo entre 250µs y 350µs (Figura 4-8).

4.3 El uso del histograma para determinar el tiempo de integración óptimo

El empleo del histograma como indicador del tiempo de integración con el que se ha adquirido la imagen es una aportación original de la tesis.

El **histograma de una imagen** se define como la función de densidad de probabilidad de los niveles de gris. Consiste en un diagrama de barras de la imagen, utilizándose como abscisas los niveles de gris y como ordenadas el número de píxeles de la imagen para cada nivel de gris. Como la utilización directa del número de píxeles puede dar lugar a valores muy elevados, es frecuente normalizar el histograma entre 0 y 1 y emplear, por lo tanto, la frecuencia relativa.

El número de niveles de gris depende de la resolución del convertidor analógico-digital empleado. Lo más habitual es utilizarlo de 8 bits, con lo que se tienen 256 posibles niveles, desde el 0 que representa al negro, al 255 que corresponde al blanco.
En las siguientes figuras se muestran los histogramas de las figuras del apartado anterior. Hay que señalar que los histogramas se limitan a la zona de la huella y no se calculan sobre toda la cámara ya que en la imagen capturada por una cámara puede haber hasta cuatro huellas.

Figura 4-9. Histograma de la imagen de la Figura 4-2. (Tiempo de integración óptimo)

Figura 4-10. Histograma de la imagen de la Figura 4-6. (Tiempo de integración bajo)

Figura 4-11. Histograma de la imagen de la Figura 4-3. (Tiempo de integración alto)

El histograma proporciona una información sobre la imagen digital que se reduce a la distribución en frecuencia de los diferentes niveles de gris. Con ello se consigue reducir drásticamente la carga computacional. Se pasa de una función $I(i)$ con N valores (número de píxeles del sensor lineal) a una unidimensional, $H(p)$ con 2^q valores, donde q es el número de bits empleados para la digitalización. Esta característica ha sido determinante en la elección del histograma como base del algoritmo de control.

El histograma es una herramienta ampliamente utilizada en gran cantidad de técnicas de procesado de imagen: segmentación, compresión, detección de bordes y...
métodos de realce [Gonzalez92]. El rango dinámico de la imagen, rango de todos los niveles de gris presentes, y el grado de contraste son informaciones que se pueden obtener de su estudio.

El histograma no contiene información sobre la distribución espacial y por lo tanto es independiente de la estructura de la escena. De todas formas, esta información no será relevante para el control ya que la distribución espacial de la escena no puede ser alterada con los parámetros de adquisición.

4.3.1 Caracterización de las imágenes mediante el histograma

Como ya se ha explicado en capítulos anteriores el sistema MEDES se basa en la reflexión cuasi especular de la zona de desgaste del hilo de contacto o "huella", la cual refleja mucho más que cualquier otra parte del mismo.

El alto contraste de las imágenes obtenidas hace que el histograma de la imagen, considerando a ésta ideal, esté constituido por dos únicas clases (Figura 4-12). Por un lado la clase correspondiente a la zona de la cámara donde no hay huella, que agrupa a la mayoría de los píxeles de la imagen y cuyo nivel de gris es cero. La otra clase está constituida por los píxeles pertenecientes a la huella, cuyo nivel de gris será 255 (resolución de 8 bits).

![Histograma IDEAL](image)

Figura 4-12. Histograma de una imagen ideal

Si el tiempo de integración es bajo, los píxeles no llegan a la saturación y en las clases cercanas a 255 no habrá elementos. A medida que el tiempo de integración aumente, los píxeles aumentarán su nivel de gris y se irán desplazando hacia las clases en torno a 255.

Cuando el tiempo de integración es alto, se produce la amplificación del ruido y aparece el efecto blooming (ver apartado 4.2.1), con lo que se tendrán píxeles en las clases correspondientes a niveles de gris mayores que cero.

En la Figura 4-13 se muestran los histogramas característicos de las imágenes adquiridas con un tiempo de integración alto y bajo.
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

Figura 4-13. Histogramas de imágenes con tiempo de integración alto y bajo

Para caracterizar las imágenes en función del histograma, trabajar con sus 256 clases no es efectivo. Las clases en las que se va a dividir el histograma deben permitir identificar que el tiempo de integración no es el adecuado, es decir, deben caracterizar los efectos descritos en el apartado 4.2, tales como el blooming. Por otro lado, en una imagen real hay que tener en cuenta otros factores como la presencia de nivel de ruido o zonas en la huella con distintas propiedades reflexivas.

Para establecer las clases de estudio, también hay que considerar cómo se va diseñar el sistema de control. De acuerdo con el histograma de la imagen ideal (Figura 4-12) el control debería activarse cuando hay píxeles en las zonas centrales del histograma. Definido de esta manera, se trata de un control sencillo, basado en contar el número de elementos pertenecientes a cada clase.

Es decir, mediante el estudio del histograma se podrá establecer lo que es y no es huella. Dentro del caso de la zona de no huella, habrá que considerar el nivel de ruido, y habrá que definir una clase de control que permita identificar el desbordamiento de los píxeles debido a un alto tiempo de integración.

De acuerdo con las consideraciones anteriores se ha dividido el histograma en cinco clases (Tabla 4-1).

<table>
<thead>
<tr>
<th>Clases del histograma</th>
<th>Rango</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>[0, Nivel_Ruido +9]</td>
<td>Zona de NO HUELLA (nivel de ruido)</td>
</tr>
<tr>
<td>a</td>
<td>[Nivel_Ruido +10, Nivel_Ruido +25]</td>
<td>Zona BLOOMING</td>
</tr>
<tr>
<td>b</td>
<td>[70,100]</td>
<td>Zona INESTABLE</td>
</tr>
<tr>
<td>c</td>
<td>[101,130]</td>
<td>HUELLA y COCAS</td>
</tr>
<tr>
<td>d</td>
<td>[131,255]</td>
<td>HUELLA DEFINIDA</td>
</tr>
</tbody>
</table>

Tabla 4-1. Clases del histograma
La clase r corresponde a la zona de la cámara donde no hay huella. A la hora de definirla se ha tenido en cuenta que en las imágenes puede aparecer ruido, añadiendo un nivel indeseable a la señal, que hace que los píxeles del CCD donde no hay huella no tengan un nivel de gris igual a cero (Figura 4-14).

La clase a, que se define para detectar el fenómeno de blooming, se establece en función del nivel de ruido de la cámara. Para el caso de tiempo de integración óptimo no habrá elementos con ese nivel de gris. La presencia de un número considerable de píxeles será el indicador, en el caso de que también haya píxeles pertenecientes a la clase d, de que el tiempo de integración es alto, ya que representa el efecto de desbordamiento de carga.

La clase b está relacionada con el valor del umbral que se emplea en el procesamiento de la imagen. Se recuerda que el valor que se ha establecido por encima del cual se considera que el píxel pertenece a la huella se sitúa para un nivel de iluminación entre 70 y 100 (ver apartado 3.5.2.1).

A medida que aumente el tiempo de integración los píxeles aumentarán su nivel de gris. En la clase c se incluyen los que ya pertenecen a la huella y también pueden corresponder al caso de cercas o zonas con poca reflexión dentro de ella.

En el caso de imagen ideal, todos los píxeles pertenecientes a la huella tendrían un nivel de iluminación de 255. En el caso real, una imagen adquirida con tiempo de integración óptimo no tiene por qué estar toda ella saturada (Figura 4-15). De hecho,
que todos los píxeles lleguen a la saturación no es lo más conveniente ya que podrían producirse desbordamientos de carga. Se ha considerado que una huella está definida si sus píxeles tienen un nivel de iluminación entre 131 y 255. De esta forma se ha definido la última clase en la que se ha dividido el histograma, la clase d que agrupa a los píxeles con esos niveles de iluminación.

Figura 4-15. Imagen con tiempo de integración óptimo en la que no todos los píxeles están saturados.

4.4 Diseño del algoritmo de control del tiempo de integración

El objetivo que se persigue al diseñar el algoritmo de control del tiempo de integración de las cámaras CCD es la obtención de las imágenes en condiciones óptimas, independientemente de las propiedades reflexivas y de la posición de los hilos de contacto.

En función del histograma de la imagen, se determinará si el tiempo de integración con el que se ha adquirido es el óptimo, y de no ser así, que incremento o decremento hay que aplicar. Es decir, el algoritmo tendrá como entrada el histograma de la imagen y como salida, un coeficiente \(\alpha \). El tiempo de integración para adquirir la siguiente imagen será el que se obtiene al multiplicar el tiempo de integración por ese coeficiente \(\alpha \).
En el diseño del algoritmo vamos a seguir el enfoque empleado por los sistemas de reconocimiento automático de formas. En esencia, se trata de analizar el aspecto de la imagen, caracterizada por su histograma, y en función de los parámetros que se deriven de éste, clasificar el tiempo de integración con el que se ha adquirido, para después realizar las acciones necesarias que permitan optimizar el proceso de adquisición.

Un **sistema de reconocimiento automático de formas** opera siempre con un universo de trabajo previamente definido. Este universo de trabajo está formado por los objetos individuales que se van a reconocer de forma automática. Estos objetos predefinidos suelen denominarse patrones, que es la traducción literal del término anglosajón *pattern*.

Para proceder al reconocimiento automático de los objetos individualizados se realiza una transformación de los mismos, se convierten en un vector cuyos componentes se denominan características o rasgos. Cada vector de características se compara con un conjunto de vectores preestablecidos o diccionario, compuesto por los vectores de características de todos los objetos del universo de trabajo.

Una vez calculado el vector asociado a un objeto individual, su reconocimiento automático se basa en determinar su grado de semejanza con los vectores característicos prototipos de cada posible clase de objetos previamente definidos.

El diseño de un sistema de reconocimiento de formas se puede dividir en tres etapas [Maravall93].

La primera etapa consiste en el establecimiento de las clases, es decir, definir el universo de trabajo del sistema. La siguiente operación, que constituye la etapa fundamental en el diseño del sistema, es la elección de un conjunto de características que definan cada una de las clases. En la última etapa se calculan las funciones de decisión o funciones que discriminan de forma inequívoca las clases.

A continuación se va a particularizar este proceso de diseño para la aplicación que nos ocupa, es decir, para el control del tiempo de integración.

El **universo de trabajo** se va a componer por los “objetos” que se derivan del estudio de la variación del ancho de la superficie de desgaste con el tiempo de integración (ver 4.2.2). Se han definido las siguientes clases u “objetos”:

- Tiempo de integración muy bajo.
• Tiempo de integración bajo.
• Tiempo de integración ligeramente bajo.
• Tiempo de integración óptimo.
• Tiempo de integración ligeramente alto.
• Tiempo de integración alto.
• Tiempo de integración muy alto.
• Tiempo de integración excesivamente alto.

El vector de características que definen cada uno de estos “objetos” se obtiene del histograma de la imagen.

Antes de continuar, hay que significar que el tratamiento de imágenes digitales tiene un marcado carácter experimental, por lo que el aparato matemático subyacente es sensiblemente inferior al empleado en otros campos.

4.4.1 Parámetros de control

Los parámetros de control deben ser independientes del ancho de la huella. Se han de elegir parámetros adimensionales definidos como la relación entre las distintas clases en las que se ha dividido el histograma (Tabla 4-1).

Los parámetros de control que se han elegido son los siguientes:

• Parámetro que establece la relación entre las clases b y d del histograma:

 \[b / d = \left(\frac{b}{d} \right) \]

• Parámetro que establece la relación entre la clase c y d del histograma:

 \[c / d = \left(\frac{c}{d} \right) \]

• Parámetro que representa el número de píxeles pertenecientes a la clase a.

Con los dos primeros parámetros, b/d y c/d, se va a determinar si la huella está o no definida.

Con el valor de la clase a se establecerá si se está por encima del valor óptimo del tiempo de integración. Esta clase está relacionada con el efecto de desplazamiento de la carga o blooming. La elección del valor de control se basa en el análisis de los bordes de la imagen, cuyas conclusiones más significativas son las siguientes:
• Debido al blooming, a medida que aumenta el tiempo de integración la carga va desplazándose y el número de píxeles desplazados es proporcional al exceso del nivel de iluminación (Figura 4-4).

• Si se considera que la imagen de una huella está definida, es decir, imagen enfocada y en la que no aparecen los efectos de blooming o de diente de sierra descritos en el apartado 4.2, el ancho de la huella se puede calcular como la suma del ancho resultante de aplicar el algoritmo de segmentación, más el número de píxeles de los flancos de subida y bajada pertenecientes al intervalo entre 0 y el valor del nivel de corte primario \((0,NCP)\). El valor promedio del número de píxeles pertenecientes a ese intervalo es de 3 píxeles en cada flanco.

Para poder establecer los criterios de control se ha seguido la siguiente metodología.

En primer lugar se ha realizado un estudio con imágenes reales adquiridas en estático por el equipo instalado en el coche laboratorio de RENFE. Se ha de elegir una muestra no sesgada, es decir, catenarias con distintas propiedades reflexivas y distintos grados de desgaste. Al realizarse las medidas en estático, ha sido posible cambiar las condiciones de medida, en cuanto a iluminación, altura del hilo de contacto, posición y cámara. Además, se ha podido hacer una evaluación cuantitativa de las medidas, ya que el valor de referencia con el que compararlas es conocido y se calcula a partir del espesor de las catenarias objeto de estudio.

La plataforma de desarrollo se ha implementado en Matlab\(^*\). En ella se han implementado todos los algoritmos de procesamiento del sistema, en los que se han tenido en cuenta tanto el número máximo de huellas que puede haber en una cámara (cuatro), como los distintos parámetros de procesamiento que emplea el sistema MEDES (niveles de corte primario y secundario, ancho de huella máxima y separación mínima entre huellas).

Como resultado de este estudio se ha obtenido un modelo de la imagen en base a su histograma, la curva de variación del ancho de la huella con el tiempo de integración (ver apartado 4.2) y una primera evaluación de los parámetros del algoritmo.

Una vez determinados los parámetros del algoritmo a través de los estudios realizados en estático, se probó su comportamiento en condiciones reales de funcionamiento, es decir, en vía. Con este estudio se intentó responder a otras preguntas tales como cada cuánto hay que tomar una imagen o cuáles son los efectos característicos que tenemos en vía y que no se han dado en las pruebas realizadas en estático.

En los siguientes apartados se describen los experimentos realizados, cuyo resultado final ha llevado a la formulación del algoritmo de control del tiempo de integración de los CCDs.
4.4.2 Medidas en estático

Como resultado del estudio realizado con las medias obtenidas en estático se va hacer una primera evaluación de los parámetros del algoritmo. El valor real del ancho de la huella es conocido. Se va a definir cuál es el tiempo de integración que nos determina el ancho real, tiempo de integración que se debería corresponder con el óptimo. Además de esa evaluación cuantitativa habrá que hacer un análisis de la calidad de la imagen. Habrá que comprobar que la imagen que se obtiene al utilizar ese tiempo de integración corresponde al de una imagen en la que no aparecen efectos como el blooming, característico de un tiempo de integración alto, o los correspondientes a un tiempo de integración bajo.

4.4.2.1 Descripción de las muestras utilizadas

Las pruebas se han realizado con cuatro muestras distintas, las cuales proceden de catenarias de la red ferroviaria española. Las cuatro catenarias tienen sección circular de 107 mm².

Figura 4-17. Catenaria 10-1

Figura 4-18. Catenaria 10-2

Figura 4-19. Catenaria 10-4-1

Figura 4-20. Catenaria 10-4-2

Los datos de cada una de las catenarias, y de la sección de medida aparecen en la Tabla 4-2.
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

Medidas en estático: catenarias objeto de estudio.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>11.5</td>
<td>5.83</td>
<td>97.28</td>
<td>69</td>
</tr>
<tr>
<td>10-2</td>
<td>9.18</td>
<td>10.87</td>
<td>76.72</td>
<td>129</td>
</tr>
<tr>
<td>10-4-1</td>
<td>11.21</td>
<td>6.80</td>
<td>95.56</td>
<td>61</td>
</tr>
<tr>
<td>10-4-2</td>
<td>10.60</td>
<td>8.74</td>
<td>89.88</td>
<td>104</td>
</tr>
</tbody>
</table>

Tabla 4-2. Medidas en estático: catenarias objeto de estudio

Las medidas se realizaron a las alturas nominal (valor de resolución 10.63) y mínima (resolución 8.413), con las muestras en distintas posiciones, en concreto, en los ejes de las cámaras y de los láseres. Para ello se utilizó un bastidor fabricado para tal efecto, que se colocó en el techo del coche laboratorio. Con él, fue posible realizar las medidas bajo las condiciones de repetitividad que exigían los experimentos (ver Figura 4-21). Se adquirieron imágenes con tiempos de integración desde 100µs a 1000µs en intervalos de 50µs.

Figura 4-21. Bastidor utilizado en las pruebas en estático

También se evaluó el nivel de iluminación en las zonas de medida. Obteniéndose en los ejes de las cámaras los valores que se muestra en la Tabla 4-3.

<table>
<thead>
<tr>
<th>Relación de los niveles de iluminación en los ejes de las cámaras</th>
<th>Cámara 1</th>
<th>Cámara 2</th>
<th>Cámara 3</th>
<th>Cámara 4</th>
<th>Cámara 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura mínima</td>
<td>0.26</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
</tr>
<tr>
<td>Altura nominal</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Tabla 4-3. Relación de los niveles de iluminación en los ejes de las cámaras
4.4.2.2 Resultados

Para cada una de las imágenes se ha calculado el ancho de la huella y los valores de los parámetros de control. En función de la curva ancho de la huella - tiempo de integración y de una evaluación cualitativa de la imagen, se ha clasificado el tiempo de integración con el que ha sido adquirida (alto, óptimo, bajo). Con el análisis de los datos obtenidos se trata de determinar cuáles son los valores de los parámetros de control que caracterizan cada una de las categorías que definen el tiempo de integración.

Como ejemplo del estudio realizado, a continuación se adjuntan los resultados obtenidos para todas las muestras, a altura mínima, en los ejes de las cámaras. Se muestran los valores de los parámetros de control para el caso de tiempo de integración óptimo, es decir, aquel con el que se consigue el ancho real de la huella. Asimismo se incluye la imagen, con la que se puede comprobar si se ajusta al modelo de imagen adquirida con un tiempo de integración óptimo.
<table>
<thead>
<tr>
<th>Cámara1</th>
<th>T.Int. [µs]</th>
<th>b/d</th>
<th>c/d</th>
<th>a</th>
<th>Imagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1000</td>
<td>0,07</td>
<td>0,29</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cámara2</td>
<td>400</td>
<td>0,05</td>
<td>0,06</td>
<td>3,55</td>
<td></td>
</tr>
<tr>
<td>Cámara3</td>
<td>450-550</td>
<td>0,03</td>
<td>0,04</td>
<td>1,7-2,4</td>
<td></td>
</tr>
<tr>
<td>Cámara4</td>
<td>300</td>
<td>0,04</td>
<td>0,03</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cámara5</td>
<td>200</td>
<td>0,07</td>
<td>0,05</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>Cámara</td>
<td>T.Int. [µs]</td>
<td>b/d</td>
<td>c/d</td>
<td>a</td>
<td>Imagen</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Cámara1</td>
<td>>1000</td>
<td>0,23</td>
<td>0,21</td>
<td>5,1</td>
<td></td>
</tr>
<tr>
<td>Cámara2</td>
<td>400-450</td>
<td>0,13</td>
<td>0,33-0,22</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cámara3</td>
<td>>1000</td>
<td>0,06</td>
<td>0,07</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cámara4</td>
<td>>1000</td>
<td>0,15</td>
<td>0,13</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td>Cámara5</td>
<td>>1000</td>
<td>0,31</td>
<td>0,32</td>
<td>5,8</td>
<td></td>
</tr>
</tbody>
</table>

Catenaria 10-2. Altura mínima Ancho real: 129 píxeles

T.Int.: 1000 µs
Ancho: 116 pix.
<table>
<thead>
<tr>
<th>Cámara</th>
<th>T.Int. [µs]</th>
<th>b/d</th>
<th>c/d</th>
<th>a</th>
<th>Imagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cámara1</td>
<td>1000</td>
<td>0.05</td>
<td>0.08</td>
<td>2.9</td>
<td>T.Int: 1000µs Ancho:78pix.</td>
</tr>
<tr>
<td>Cámara2</td>
<td>350</td>
<td>0.02</td>
<td>0.04</td>
<td>3.6</td>
<td>T.Int: 350µs Ancho:81pix.</td>
</tr>
<tr>
<td>Cámara3</td>
<td>300</td>
<td>0.07</td>
<td>0.07</td>
<td>2.9</td>
<td>T.Int: 300µs Ancho:81pix.</td>
</tr>
<tr>
<td>Cámara4</td>
<td>350-400</td>
<td>0.03</td>
<td>0.02</td>
<td>0.83</td>
<td>T.Int: 400µs Ancho:82pix.</td>
</tr>
<tr>
<td>Cámara5</td>
<td>550-600</td>
<td>0.08</td>
<td>0.07</td>
<td>4.5</td>
<td>T.Int: 600µs Ancho:82pix.</td>
</tr>
</tbody>
</table>
Catenaria 10-4-2. Altura mínima Ancho real: 104 pixeles

<table>
<thead>
<tr>
<th>Cámara</th>
<th>T.Int. [μs]</th>
<th>b/d</th>
<th>c/d</th>
<th>a</th>
<th>Imagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cámara1</td>
<td>>1000</td>
<td>0,31</td>
<td>0,53</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cámara2</td>
<td>400-450</td>
<td>0,12-0,1</td>
<td>0,1-0,09</td>
<td>10,6-8,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T.Int: 400μs Ancho:104 pix.</td>
</tr>
<tr>
<td>Cámara3</td>
<td>900-950</td>
<td>0,04</td>
<td>0,07</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T.Int: 900μs Ancho:104 pix</td>
</tr>
<tr>
<td>Cámara4</td>
<td>700-750</td>
<td>0,05</td>
<td>0,06</td>
<td>2,6-3,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T.Int: 700μs Ancho:104pix</td>
</tr>
<tr>
<td>Cámara5</td>
<td>650</td>
<td>0,3</td>
<td>0,27</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T.Int: 650μs Ancho:104pix</td>
</tr>
</tbody>
</table>
Como puede verse en las tablas anteriores, el nivel de iluminación de la cámara 1, es inferior al de las cámaras centrales, no obteniéndose buenas imágenes salvo en el caso de la catenaria 10-4-1. Por otra parte, las imágenes que se obtienen de la cámara 5 aparecen ligeramente desenfocadas. Por todo ello, a la hora de realizar el análisis y establecer los criterios de control, se han utilizados los datos obtenidos con las cámaras centrales. Además hay que significar que en condiciones reales de funcionamiento son las cámaras 2, 3, y 4 las que adquieren alrededor del 95% de las imágenes.

En cuanto a las propiedades reflexivas de las muestras, las de las catenarias 10-4-2 y 10-2 son peores que en los casos de las catenarias 10-4-1 y 10-1, no obteniéndose buenas imágenes a altura nominal, con los tiempos de integración empleados.

En la Tabla 4-4 se pueden ver los valores de los parámetros obtenidos para las catenarias 10-4-1 y 10-1 a altura nominal, para el caso de las cámaras centrales 2, 3 y 4.

<table>
<thead>
<tr>
<th>Medidas en estático. Altura nominal</th>
<th>T. Int. [µs]</th>
<th>b/d</th>
<th>c/d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cámara 2</td>
<td>250</td>
<td>0,03</td>
<td>0,03</td>
<td>2,6</td>
</tr>
<tr>
<td>Cámara 3</td>
<td>150</td>
<td>0,06</td>
<td>0,06</td>
<td>2,6</td>
</tr>
<tr>
<td>Cámara 4</td>
<td>350</td>
<td>0,04</td>
<td>0,1</td>
<td>2,9</td>
</tr>
<tr>
<td>Cámara 2</td>
<td>200</td>
<td>0,02</td>
<td>0,02</td>
<td>7,1</td>
</tr>
<tr>
<td>Cámara 3</td>
<td>150</td>
<td>0,05</td>
<td>0,1</td>
<td>2,6</td>
</tr>
<tr>
<td>Cámara 4</td>
<td>300</td>
<td>0,03</td>
<td>0,03</td>
<td>8,5</td>
</tr>
</tbody>
</table>

Tabla 4-4. Medidas en estático: altura nominal. Catenarias 10-1 y 10-4-1

Los datos del estudio realizado se adjuntan en el Anexo II del documento. Tras el análisis de los resultados obtenidos se estableció una **primera estimación del algoritmo de control** (Figura 4-22).

```plaintext
if (b/d ≤ 0,1) & (c/d ≤ 0,1) & (a ≤ 4) 
  T.Integración **optimo**
else
  T.Integración **alto**
end
else
  T.Integración **bajo**
end
```

Figura 4-22. Medidas manuales: estimación del algoritmo de control
4.4.3 Medidas en vía

Al realizar el estudio con imágenes adquiridas en vía, durante la auscultación en condiciones reales de funcionamiento, se trata de analizar si el tratamiento de las imágenes y el comportamiento de los parámetros de control es el mismo que en el caso de las imágenes adquiridas en estático.

Se han tomado imágenes en recta, en curva y dentro de túneles, con distintos tiempos de integración. Los tramos de línea auscultada han sido Venta de Baños-Vitoria y Vitoria-Irún.

Al igual que se hizo con las medidas en estático, para cada imagen se han calculado los valores de los parámetros del algoritmo de control del tiempo de integración (b/d, c/d y clase a). Es decir, se ha calculado el histograma de la imagen y de él se han obtenido los valores de la relación entre las distintas clases en el que se ha dividido. Además se ha hecho una evaluación de la calidad de la imagen.

Sin embargo, a diferencia de lo que ocurre con las pruebas realizadas en estático, no es posible calcular cuanto se aleja el ancho de la huella del ancho real, debido a que se desconoce el valor de referencia con el que comparar, ya que no se han tomado medidas manuales en vía.

Por lo tanto, la evaluación del comportamiento del algoritmo sólo se puede hacer de una manera cualitativa. Es por ello por lo que para establecer los parámetros de control se ha seguido el siguiente procedimiento: tomando como base la estimación del algoritmo, deducida de las medidas en estático (Figura 4-22), y considerando las conclusiones de los análisis que se han realizado con las imágenes obtenidas durante al auscultación en vía en condiciones reales de funcionamiento, se estiman los parámetros de control. Para validarlos se hace una evaluación cuantitativa con las imágenes del estudio en estático (ver apartado 4.4.4).

Se trata de un proceso iterativo, en el que se aplica el algoritmo a las imágenes y se evalúa si el tiempo de integración con el que se había adquirido la imagen se corresponde con el modelo establecido. Como resultado de este proceso iterativo se obtiene la formulación del algoritmo dada por el flujograma de la Figura 4-23.
A continuación se presentan las conclusiones de los análisis realizados en vía y que han constituido la base para la obtención de los valores definitivos de los parámetros de control.

4.4.3.1 **Conclusiones de los análisis realizados con imágenes adquiridas en vía**

En cuanto a las imágenes adquiridas dentro de los túneles no tienen ninguna particularidad respecto al resto de las imágenes adquiridas fuera de ellos.
Los cambios en las condiciones de reflexión de las catenarias se producen en la mayoría de los casos cada 40 metros. La mínima distancia en la que cambia la tendencia es de 10 metros.

En una misma cámara pueden aparecer imágenes de distintas catenarias con diferentes propiedades reflexivas, por ejemplo, en el caso en el que se tiene hilo nuevo e hilo viejo. Al aplicar el algoritmo a cada una de las imágenes se obtendrán dos valores distintos para el tiempo de integración de la cámara.

Una de las características propias de las imágenes adquiridas en vía y que no se da en las medidas en estático, es el aumento del nivel de ruido que se produce en la zona de la cámara cuando hay huella, disminuyendo cuando no hay imagen. Este hecho, al que se le ha denominado “efecto cola”, es debido al movimiento transversal del coche laboratorio y se ve favorecido cuando el tiempo de integración es alto, ya que se le suma el blooming. Para ilustrarlo se adjunta la secuencia de imágenes de la Figura 4-24.

Figura 4-24. Medidas en vía: “efecto cola”
4.4.4 Evaluación del algoritmo

Una vez formulado el algoritmo, éste se va evaluar con las muestras utilizadas en las medidas en estático (ver apartado 4.4.2.1).

Como ya se explicó en el apartado 4.4.2 las imágenes de la cámara 5 están ligeramente desenfocadas, y la iluminación en la cámara 1 es muy baja, no obteniéndose buenas imágenes. Por ello, la evaluación del algoritmo sólo se va a hacer en las cámaras centrales.

Los resultados obtenidos al aplicar el algoritmo para cada una de las catenarias son los que aparecen en las siguientes tablas.

<table>
<thead>
<tr>
<th>Catenaria 10-1</th>
<th>Ancho [píxeles]</th>
<th>Tiempo Integración[µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>Altura mínima</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>Altura nominal</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>58</td>
</tr>
</tbody>
</table>

Tabla 4-6. Resultados del algoritmo: catenaria 10-1.

<table>
<thead>
<tr>
<th>Catenaria 10-2</th>
<th>Ancho [píxeles]</th>
<th>Tiempo Integración[µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>Altura mínima</td>
<td>130</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>132</td>
<td>127</td>
</tr>
</tbody>
</table>

Tabla 4-7. Resultados del algoritmo: catenaria 10-2.

<table>
<thead>
<tr>
<th>Catenaria 10-4-1</th>
<th>Ancho [píxeles]</th>
<th>Tiempo Integración[µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>Altura mínima</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>Altura nominal</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>66</td>
</tr>
</tbody>
</table>

Tabla 4-8. Resultados del algoritmo: catenaria 10-4-1
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

<table>
<thead>
<tr>
<th>Catenaria 10-4-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho [pixeles]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Altura mínima</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabla 4-9. Resultados del algoritmo: catenaria 10-4-2

Basándonos en los datos de las tablas anteriores y aplicando las ecuaciones del capítulo 3 se han calculado los valores del ancho de huella [mm], espesor [mm] y sección útil [%] que se obtendrían si el tiempo de integración con el que se tomara la imagen fuese el determinado por el algoritmo.

<table>
<thead>
<tr>
<th></th>
<th>Resultados del algoritmo: ancho, espesor y sección útil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ancho [pixeles]</td>
</tr>
<tr>
<td>10-1 Altura mínima</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>10-1 Altura nominal</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>10-2 Altura mínima</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>C3</td>
</tr>
<tr>
<td>10-2 Altura nominal</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>10-4-1 Altura mínima</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>10-4-1 Altura nominal</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>C3</td>
</tr>
</tbody>
</table>

Tabla 4-10. Resultados del algoritmo: ancho, espesor y sección útil

Comparando los datos de la tabla anterior con los correspondientes al valor real que aparecen en la Tabla 4-2 se calculan los errores que se cometen en el cálculo del ancho de la huella (en pixeles), en el espesor y en la sección útil.
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

<table>
<thead>
<tr>
<th>Altura mínima</th>
<th>Altura nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>10-1</td>
<td>10-2</td>
</tr>
<tr>
<td>Error Ancho [píxeles]</td>
<td>Error Espesor [%]</td>
</tr>
<tr>
<td>-1.35</td>
<td>-2.35</td>
</tr>
<tr>
<td>2.65</td>
<td>3.65</td>
</tr>
<tr>
<td>0.26</td>
<td>0.46</td>
</tr>
<tr>
<td>-0.54</td>
<td>-0.75</td>
</tr>
<tr>
<td>0.17</td>
<td>0.29</td>
</tr>
<tr>
<td>-0.35</td>
<td>-0.50</td>
</tr>
</tbody>
</table>

Tabla 4-11. Resultados del algoritmo: errores

En la Figura 4-25 se muestra el gráfico en el que se representa el error expresado en píxeles en la medida del ancho de la huella, que se corresponde con las dos primeras columnas de la Tabla 4-11.

Figura 4-25. Error en la medida del ancho de la huella

ERRORES EN LA MEDIDA DEL ANCHO DE LA HUELLA [PÍXELES]
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

El estudio estadístico de los errores calculados en la Tabla 4-11, se muestra en la siguiente tabla.

<table>
<thead>
<tr>
<th></th>
<th>Error [píxeles]</th>
<th>Error sección [%]</th>
<th>Error espesor [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>-1.56</td>
<td>1.12</td>
<td>-0.10</td>
</tr>
<tr>
<td>Error típico</td>
<td>0.46</td>
<td>0.47</td>
<td>0.33</td>
</tr>
<tr>
<td>Mediana</td>
<td>-1.83</td>
<td>1.22</td>
<td>0.37</td>
</tr>
<tr>
<td>Moda</td>
<td>-1.78</td>
<td>1.22</td>
<td>0.44</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>1.83</td>
<td>1.86</td>
<td>1.31</td>
</tr>
<tr>
<td>Varianza de la muestra</td>
<td>3.34</td>
<td>3.47</td>
<td>1.72</td>
</tr>
<tr>
<td>Curtosis</td>
<td>2.34</td>
<td>-0.53</td>
<td>3.38</td>
</tr>
<tr>
<td>Coeficiente de asimetría</td>
<td>0.93</td>
<td>-0.59</td>
<td>-1.98</td>
</tr>
<tr>
<td>Rango</td>
<td>8.09</td>
<td>6.00</td>
<td>4.88</td>
</tr>
<tr>
<td>Mínimo</td>
<td>-4.93</td>
<td>-2.35</td>
<td>-3.40</td>
</tr>
<tr>
<td>Máximo</td>
<td>3.16</td>
<td>3.65</td>
<td>1.48</td>
</tr>
<tr>
<td>Mayor</td>
<td>3.16</td>
<td>3.65</td>
<td>1.48</td>
</tr>
<tr>
<td>Menor</td>
<td>-4.93</td>
<td>-2.35</td>
<td>-3.40</td>
</tr>
<tr>
<td>Nivel de confianza (95.0%)</td>
<td>0.97</td>
<td>0.99</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Tabla 4-12. Resultados del algoritmo: estadísticas

4.4.4.1 Discusión de los resultados

Un aspecto importante a la hora de evaluar los resultados obtenidos en los apartados anteriores es la sensibilidad de la medida del espesor y de la sección con el ancho de la huella o lo que es lo mismo con el desgaste (apartado 3.2). Cuanto menor es el desgaste menor influencia tiene el error cometido en la medida del ancho.

Aparentemente, los errores cometidos en el cálculo de la sección y el espesor son muy bajos ya que se obtiene una media inferior al 1%. Sin embargo estos resultados hay que matizarlos ya que tres de las catenarias objeto de estudio tienen desgastes bajos, con superficies útiles iguales o superiores al 90%. Más significativos son los resultados obtenidos para la catenaria 10-2, una superficie útil del 77%. De acuerdo con los resultados de la Tabla 4-11 para esta catenaria el error máximo cometido en el cálculo del ancho está en torno a 3 píxeles lo que se traduce en un error del 5.30% en el cálculo del espesor y del 4% en el cálculo de la sección.

Del análisis de los datos de las tablas del apartado anterior se pueden extraer las siguientes conclusiones:

- El error máximo por defecto es de 5 píxeles (Catenaria 10-4-1, cámara 4 a altura nominal) y por exceso es de 4 píxeles (Catenaria 10-1, cámara 3 a altura mínima)
Para una misma posición el mayor ancho de intervalo se da para el caso de la catenaria 10-1, cámara 3 a altura mínima con -2 píxeles como límite inferior y +4 píxeles como límite superior.

Considerando todos los casos estudiados el error no siempre está centrado en el valor nominal.

4.4.4.2 Comparativa con los resultados obtenidos con un tiempo de integración fijo.

Una medida cualitativa de la “bondad” del algoritmo es cuantificar qué ganamos con el algoritmo respecto al empleo de un tiempo de integración fijo para todo el campo de medida. El tiempo de integración establecido para la auscultación se fija entre 500µs y 650µs. Para realizar la comparativa con el algoritmo vamos a utilizar estos límites.

Al igual que se hizo en la Tabla 4-11 se calculan los errores que se cometen en la medida del ancho de la huella, en el espesor y en la sección útil.

<table>
<thead>
<tr>
<th></th>
<th>Error Ancho [píxeles]</th>
<th>Error Espesor [%]</th>
<th>Error Sección útil [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 µs</td>
<td>650 µs</td>
<td>500 µs</td>
</tr>
<tr>
<td>10-1 Altura mínima</td>
<td>C2</td>
<td>2.65</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>-0.35</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>5.65</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>2.11</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>4.11</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>1.11</td>
<td>2.11</td>
</tr>
<tr>
<td>10-2 Altura mínima</td>
<td>C2</td>
<td>0.75</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>-8.25</td>
<td>-6.25</td>
</tr>
<tr>
<td>10-4-1 Altura mínima</td>
<td>C2</td>
<td>0.22</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>2.22</td>
<td>4.22</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>1.22</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>8.07</td>
<td>13.07</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>4.07</td>
<td>7.07</td>
</tr>
<tr>
<td>10-4-2 Altura mínima</td>
<td>C2</td>
<td>1.16</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>-5.84</td>
<td>-2.84</td>
</tr>
</tbody>
</table>

Tabla 4-13. Errores con tiempo de integración fijo

En la Figura 4-26 se representa gráficamente el error cometido en la medida del ancho de la huella (en número de píxeles) aplicando un tiempo de integración fijo
(500µ y 650µs) o el algoritmo, representándose en este último caso los errores para los límites inferior y superior del intervalo que determina el algoritmo. Se observa que los errores cometidos con el tiempo de integración fijo son superiores, que los que se obtiene al aplicar el algoritmo. Obteniéndose en algunos casos errores inadmisibles de hasta 28 píxeles (catenaria 10-4-1, altura nominal, cámara 3).

![Gráfico de errores en la medida del ancho de la huella](image)

Figura 4-26. Comparativa de los resultados con tiempo de integración fijo

Además de obtener un error con menor valor absoluto, al aplicar el algoritmo, la dispersión en el campo de medida también disminuye (ver Figura 4-27).

![Gráfico de diferencia en píxeles](image)

Figura 4-27. Diferencia en píxeles en el campo de medida al aplicar el algoritmo y al mantener fijo el tiempo de integración
4.4.5 Cálculo de los coeficientes α del algoritmo

Una vez que se ha comprobado que los parámetros de control y el algoritmo tienen un comportamiento adecuado, es decir, la clasificación del tiempo de integración dada por el algoritmo se ajusta al modelo de imagen, y por otro lado, la medida del ancho de la huella que se obtiene al adquirir la imagen con el tiempo de integración dado por el algoritmo, se corresponde con la real, hay que establecer los valores de los coeficientes α.

El cálculo de los coeficientes α, se ha basado en el número de píxeles que se aleja el ancho de la huella del valor real si la imagen pertenece a cada una de las clases. Así para el caso de tiempos de integración ligeramente altos y ligeramente bajos se estableció en ±2 píxeles y para los de bajo y alto en ±6 píxeles.

En función de los resultados obtenidos se determinan los valores de los coeficientes por los que hay que multiplicar el tiempo de integración (Tabla 4-14).

<table>
<thead>
<tr>
<th>Evaluación</th>
<th>Codificación</th>
<th>Coeficientes α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de integración muy bajo</td>
<td>0</td>
<td>$\alpha_0 = 2,5$</td>
</tr>
<tr>
<td>Tiempo de integración bajo</td>
<td>1</td>
<td>$\alpha_1 = 2$</td>
</tr>
<tr>
<td>Tiempo de integración ligeramente bajo</td>
<td>2</td>
<td>$\alpha_2 = 1,3$</td>
</tr>
<tr>
<td>Tiempo de integración óptimo</td>
<td>3</td>
<td>$\alpha_3 = 1$</td>
</tr>
<tr>
<td>Tiempo de integración ligeramente alto</td>
<td>4</td>
<td>$\alpha_4 = 0,7$</td>
</tr>
<tr>
<td>Tiempo de integración alto</td>
<td>5</td>
<td>$\alpha_5 = 0,5$</td>
</tr>
<tr>
<td>Tiempo de integración muy alto</td>
<td>6</td>
<td>$\alpha_6 = 0,4$</td>
</tr>
<tr>
<td>Tiempo de integración excesivamente alto</td>
<td>7</td>
<td>$\alpha_7 = 0,35$</td>
</tr>
</tbody>
</table>

Tabla 4-14. Coeficientes α del algoritmo

Al aplicar el algoritmo una vez, con los valores de los coeficientes de la Tabla 4-14, a las imágenes de las catenarias 10-4-1 y 10-1, adquiridas con tiempos de integración desde 100μs a 1000μs, se consigue que la dispersión de las medidas en torno al valor real se sitúe en ±2 píxeles.

En los siguientes gráficos se muestra la dispersión en las medidas, en píxeles, en el caso de aplicar el algoritmo una vez y de no aplicarlo.
4.5 Implementación del sistema de control

El resultado de este trabajo de investigación se va a implementar en el nuevo sistema de procesamiento del equipo MEDES2000 que se está desarrollando. En el capítulo 3 (ver apartado 3.5) se explicó en detalle su arquitectura. Primeramente se realiza un preprocesamiento hardware implementado en una FPGA. El control y adquisición de datos se centraliza en un PC, cuyo software se basa en el sistema operativo RTLinux.

A la hora de implementar el algoritmo de control también se ha seguido la misma filosofía. El cálculo del histograma se va a resolver por hardware, y es en la FPGA donde se implementa el módulo que calcula el histograma de la imagen. De esta forma, se evita enviar la imagen completa al PC para realizar su procesamiento software, con la disminución de prestaciones que eso supondría.

Una vez realizado el cálculo del histograma, los valores obtenidos se enviarán al PC donde se efectuará el procesamiento software. Dentro del modelo de capas en el que se ha estructurado el software del PC (ver apartado 3.5.1), es en el módulo de tiempo real, en el que se ha incluido el algoritmo de control.
Cálculo del histograma en la FPGA

El cálculo del histograma se va a realizar en la FPGA y tanto la petición del histograma como los resultados de su cálculo se van a enviar por el enlace de control.

El histograma no se puede hacer sobre toda la imagen ya que en una imagen puede haber hasta cuatro huellas. Habrá que aislar cada una ellas y calcular su histograma.

En el protocolo de comunicación, los tipos de datos que se envían son tipo byte. Con 8 bits se obtiene la resolución suficiente, ya que aún en el peor de los casos, sección útil del 50%, altura mínima e hilo de sección oval de 150 mm², la huella tiene un valor inferior a 200 píxeles. Aún suponiendo que todos los píxeles tienen el mismo valor con un byte es suficiente para almacenarlo.

También se han contemplado los casos singulares en los que no hay huella o en los que se producen errores por desbordamiento.

Cálculo del nivel de ruido

El nivel de ruido es un parámetro a tener en cuenta en el desarrollo del algoritmo. Es por ello por lo que se ha realizado un módulo que lo calcula. De entre los distintos métodos posibles, el que conduce a los mejores resultados experimentales es el que toma como valor del nivel de ruido el valor máximo del ruido presente en toda la cámara.

Por otra parte, debido al “efecto cola” descrito en el apartado 4.4.3, es necesario establecer un nivel mínimo para el parámetro de control dado por la clase a.

Módulo de tiempo real en el PC: tarea del cálculo del tiempo de integración óptimo

A la hora de realizar la implementación, y al tratarse de tareas en tiempo real se han de considerar los siguientes aspectos.

- **Prioridad de la tarea.** Para establecerla se ha de determinar cada cuánto es necesario realizar el histograma. Del análisis de las imágenes adquiridas en vía, los cambios en las propiedades reflexivas de las catenarias se producen, en la mayoría de los casos, cada 40 metros (hay que recordar que la distancia entre postes es de 50 metros). La mínima distancia en la que cambia la tendencia es de 10 metros. Si se establece la pericidad de la tarea en 100ms, es suficiente para cubrir este requisito, ya que aún con una velocidad del coche laboratorio de 120km/h, el cálculo se hará cada 3,3 metros. Por otra parte, si la petición de la tarea se hace cada 100ms, partiendo de una tasa de muestreo de 1000 imágenes/s, ésta se verá reducida en 10^{-t_c} siendo t_c el tiempo de cómputo, es decir la nueva tasa de muestreo vendrá dada por: $(1000 - 10t_c)$ imágenes/s.

- **Tiempo de cómputo.** Este valor tiene que ser menor que el tiempo que transcurre entre peticiones. Además también debe ser menor que el tiempo del resto de
tareas que se encuentran en el módulo de tiempo de real, ya que sino supondría un empeoramiento de las prestaciones del sistema.

Otras consideraciones a tener en cuenta al hora de implementar el algoritmo de control son las siguientes:

En una misma cámara pueden aparecer imágenes de dos hilos con distintas propiedades reflexivas, por ejemplo, un hilo nuevo y otro viejo. En este caso, para elegir el tiempo de integración de la cámara se han evaluado los efectos que tendría elegir uno u otro. Por una parte, si se adopta como tiempo de integración de la cámara el óptimo para el hilo nuevo, se cometerá un error por defecto en el cálculo del desgaste del hilo viejo. En cambio si se elige el valor del tiempo de integración óptimo para el hilo viejo, el error en el cálculo del desgaste del hilo nuevo se cometerá por exceso, aunque al tratarse de un hilo con poco desgaste, donde la sensibilidad en la medida es menor (ver apartado 3.2), el error cometido tendrá menor importancia que el cometido en el primer caso. Es por ello por lo que el criterio que se adoptará para establecer el tiempo de integración de la cámara, será elegir el mayor valor del tiempo de integración resultado de aplicar el algoritmo a las distintas huellas que puede haber en la imagen de la cámara.

En el desarrollo del algoritmo se calcula el tiempo de integración de cada una de las cámaras en función de la imagen adquirida por esa cámara. ¿Qué ocurre cuando la imagen pasa de una cámara a otra? Cuando se realizaron las medidas en estático, se evaluó la relación entre los niveles de iluminación en los ejes de las cámaras (Tabla 4-3). Se comprobó que esa relación se mantiene para los tiempos de integración óptimos. Basándonos en este hecho, para mejorar las prestaciones del algoritmo, se introducen unos parámetros iniciales que corresponden a la relación de los niveles de iluminación entre cámaras. De esta forma cuando se aplica el algoritmo en las cámaras donde no hay huella se corrige su tiempo de integración en función del valor calculado para las cámaras donde hay huella.
4.6 Formulación del control en términos de lógica difusa.

La lógica difusa o borrosa (Fuzzy Logic en la bibliografía anglosajona) fue introducida por L.A. Zadeh en 1965 [Zadeh65]. Surge como un intento de formalización del razonamiento con incertidumbre e intenta abordar problemas definidos en términos lingüísticos, y por tanto imprecisos, donde los datos están expresados en términos cualitativos.

En la teoría clásica, un elemento cualquiera o bien pertenece a un conjunto o bien no pertenece al mismo. En la teoría de conjuntos borrosos, un elemento siempre pertenece en cierto grado a un conjunto y nunca pertenece del todo al mismo.

Un subconjunto borroso A de un universo X={x} es un conjunto de pares ordenados A={x, μA(x)) ∀x∈ X} , donde μA: X→X[0,1] es la función de pertenencia asociada a A.

El grado de pertenencia no tiene un sentido probabilístico, sino más bien representa un grado de posibilidad que éste sea cierto.

Descripción de un controlador borroso

Un regulador fuzzy se compone de un conjunto de reglas lingüísticas que tienen como condiciones variables de entrada, y que concluyen la acción a efectuar en el control, en términos lingüísticos. Esta actuación es transformada posteriormente en un valor determinista.

El proceso de diseño de un regulador borroso consta de las siguientes etapas (Figura 4-32):

1. Borrosificación (Fuzzification)
2. Inferencia
3. Desborrosificación (Defuzzification)
La borrosificación consiste en calcular el grado de pertenencia de las variables de entrada a cada una de las etiquetas lingüísticas mediante las funciones de pertenencia.

En esta etapa hay que definir los conjuntos borrosos y los valores lingüísticos asociado a cada uno. Habitualmente se toman entre 5 y 9 términos, ya que menos no definen el problema, y más se salen fuera de los límites que sería capaz de discernir una persona. Se suelen emplear siete términos.

La función de pertenencia puede ser una curva arbitraria, que se elige en función de la aplicación y del diseñador. Básicamente existen cinco tipos:

- Trapezoidales: pueden derivar en rectangulares y triangulares.
- Rectangulares: no tiene significado físico, pues una variable borrosa no puede pasar bruscamente de valer 1 a valer 0, ó a la inversa. En todo caso, corresponderían a conjuntos clásicos.
- Triangulares: son funciones lineales por tramos. Presentan una discontinuidad en la primera derivada que hereda la acción de control.

Figura 4-32. Controlador borroso
- Exponenciales (distribución normal). Muestran un comportamiento muy adecuado y no presentan discontinuidad en la derivada, aunque tiene el inconveniente de su lentitud de cálculo.
- Polinómicas: funciones sencillas de calcular, tiene una forma similar a la de las funciones de densidad normales, siendo más rápidas de calcular.

Figura 4-33. Funciones de pertenencia

Tras haber traducido los valores deterministas de las variables de entrada a valores borrosos mediante las funciones de pertenencia se pasa a aplicar las reglas borrosas. Se entiende por inferencia borrosa la interpretación de estas reglas con el objetivo de obtener las conclusiones de las variables lingüísticas de salida a partir de los valores de las de entrada.

La estructura general de una regla borrosa es:

IF condición **THEN** actuación

En la lógica difusa, la condición se cumplirá en un cierto porcentaje, por lo que la implicación sobre la conclusión únicamente se realiza en ese porcentaje. La condición o antecedente puede ser simple o compuesta. En este último caso es necesario determinar en qué porcentaje se cumple el antecedente. Para ello hay que redefinir los operadores lógicos tradicionales (and, or, not) para que puedan trabajar con porcentajes de pertenencia.

La forma que se redefinen estos operadores no es única, sino que corresponde a operaciones sobre el grado de cumplimiento de cada uno de los operandos.

El uso de operaciones como el máximo o el mínimo da lugar a funciones discontinuas en la derivada, mientras que el uso de operadores como el producto o la or probabilística da lugar a funciones más suaves.

En la Figura 4-34 se muestra el caso más habitual en el que se emplean las operaciones del mínimo para la función **AND**, el máximo para la función **OR** y el complemento para la función **NOT**.
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

Figura 4-34. Lógica borrosa: definición de los operadores lógicos AND, OR, NOT

A partir de cada regla se obtiene el grado de pertenencia de la variable de salida a una de las clases que la califican. Mediante ese grado de pertenencia se modifica la función de pertenencia asociada a dicha clase (proceso de implicación). El escalado y el truncamiento son los mecanismos más utilizados. En el primer caso se aplica el operador producto y en el caso del truncamiento el operador mínimo.

Truncamiento Escalado Conjunto borroso de salida

Figura 4-35. Lógica borrosa: implicación

El resultado final de la aplicación es un conjunto de conjuntos borrosos con sus respectivas funciones de pertenencia. En el proceso de agregación se unifican todas estas funciones en un solo conjunto borroso.

Finalmente en el proceso de desborrosificación se procede al cálculo del valor numérico de la conclusión. De los distintos métodos que existen, uno de los más utilizados es el cálculo del centro de gravedad del área definida por la función de pertenencia y el eje de abcisas. Se suele emplear para el caso en que el proceso de implicación se ha realizado por truncamiento. Si las funciones se han modificado por escalado, el método empleado para la desborrosificación es el de los centros ponderados.

En la Figura 4-36 aparece un esquema completo de todo el proceso, en el que el método empleado en el proceso de implicación es el de truncamiento (mínimo). Para
la agregación se emplea el máximo. El valor numérico de la salida se calcula como el centro de gravedad.

4.6.1 Control borroso del tiempo de integración

A continuación se va a particularizar el proceso anterior para el diseño del sistema de control del tiempo de integración. Para llevarlo a cabo se ha empleado el Fuzzy Logic Toolbox del Matlab®.

El Fuzzy Logic Toolbox proporciona un entorno gráfico que facilita el diseño del controlador borroso (Figura 4-37). Se compone de un editor de las funciones miembro de las variables entrada y salida y de las reglas del proceso de inferencia. Mediante el visor de reglas es posible representar el proceso completo de deducción. También se incorpora una herramienta que muestra la superficie que se genera al variar alguna de las variables de entrada manteniéndose constantes el resto.
De los dos paradigmas clásicos de control borroso, el enfoque de Mamdani [Mamdani75] y el enfoque de Takagi-Sugeno [Sugeno85], se va a utilizar el de Mamdani que es el descrito en el apartado anterior.

En el enfoque de Takagi-Sugeno se mantiene la misma especificación de particiones borrosas de los dominios de las variables de entrada que en el modelo de Mamdani, pero no se requiere una partición borrosa del dominio de las variables de salida. Es decir, no es necesaria la etapa de desborrosificación. Como inconveniente, la obtención de los consecuentes de las reglas de la base de conocimiento, es más complicada.

El esquema general del controlador borroso del tiempo de integración es el que aparece en la Figura 4-38.
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen

Como variables de entrada se tienen los parámetros que se derivan del histograma de la imagen: b/d, c/d y el número de píxeles pertenecientes a la clase a.

La variable de salida es el coeficiente α por el que hay que multiplicar el tiempo de integración para obtener el óptimo para adquirir la siguiente imagen.

El estudio y análisis de las imágenes adquiridas tanto en estático (apartado 4.4.2) como en dinámico (apartado 4.4.3) es lo que constituye lo que se ha dado en llamar base de conocimiento. En base al análisis que se ha hecho de esas imágenes y de sus histogramas se definen los conjuntos borrosos y el valor lingüístico asociada a cada uno de ellos.

<table>
<thead>
<tr>
<th>Conjuntos borrosos</th>
<th>Valores lingüísticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>b/d</td>
<td>Alto, Medio, Bajo</td>
</tr>
<tr>
<td>c/d</td>
<td>Alto, Medio, Bajo</td>
</tr>
<tr>
<td>a</td>
<td>Muy alto, Alto, Medio, Bajo</td>
</tr>
<tr>
<td>Coeficientes α</td>
<td>Excesivamente Alto, Muy Alto, Alto, Ligeramente Alto, Óptimo, Ligeramente Bajo, Bajo, Muy Bajo</td>
</tr>
</tbody>
</table>

Tabla 4-15. Control fuzzy del tiempo de integración: conjuntos borrosos

Para cada conjunto borroso hay que definir una función de pertenencia que indique el grado en que una variable está incluida en los conceptos representados por las
variables lingüísticas. De acuerdo al análisis realizado, las funciones de pertenencia elegidas son del tipo gaussiano y triangulares.

Figura 4-39. Variables de entrada: funciones de pertenencia
Figura 4-40. Variable de salida: funciones de pertenencia

El conjunto de reglas borrosas que se ha establecido, en el que además cada regla viene modificada por un peso, es el siguiente.

1. IF (b/d es alto) THEN (α es muy bajo) (1)
2. IF (c/d es bajo) and (b/d es medio) and (a es medio) THEN (α es ligeramente bajo) (0.8)
3. IF (c/d es bajo) and (b/d es medio) and (a es bajo) THEN (α es ligeramente bajo) (0.8)
4. IF (c/d es medio) and (b/d es medio) and (a es medio) THEN (α es ligeramente bajo) (0.8)
5. IF (c/d es medio) and (b/d es medio) and (a es bajo) THEN (α es ligeramente bajo) (0.8)
6. IF (c/d es alto) and (b/d es medio) and (a es bajo) THEN (α es bajo) (0.8)
7. IF (c/d es alto) and (b/d es medio) and (a es medio) THEN (α es bajo) (0.8)
8. IF (b/d es medio) and (a es alto) THEN (α excesivamente alto) (1)
9. IF (b/d es medio) and (a es muy alto) THEN (α es excesivamente alto) (1)
10. IF (c/d es bajo) and (b/d es bajo) and (a es bajo) THEN (α es OK) (1)
11. IF (c/d es medio) and (b/d es bajo) and (a es bajo) THEN (α es ligeramente bajo) (1)
12. IF (c/d es alto) and (b/d es bajo) and (a es bajo) THEN (α es ligeramente bajo) (1)
13. IF (c/d es bajo) and (b/d es bajo) and (a es medio) THEN (α es ligeramente alto) (1)

14. IF (c/d es medio) and (b/d es bajo) and (a es medio) THEN (α es ligeramente bajo) (0.8)

15. IF (c/d es alto) and (b/d es bajo) and (a es medio) THEN (α es ligeramente bajo) (0.8)

16. IF (b/d es bajo) and (a es alto) THEN (α es alto) (1)

17. IF (b/d es bajo) and (a es muyalto) THEN (α es muyalto) (1)

En la Figura 4-41 se muestra el proceso completo de deducción borrosa. Cada fila representa una regla, y cada columna una variable. Las tres primeras muestran las funciones de pertenencia de las variables de entrada y la última la de salida. En función de los valores de las variables de entrada se activan las funciones de pertenencia y las reglas correspondientes. La función que se ha utilizado para definir el operador AND es el mínimo, al igual que para el proceso de implicación. El método empleado en la agregación es el del máximo. En el proceso de desborrosificación el valor del coeficiente α es el correspondiente al centro de gravedad.

![Diagrama de reglas de deducción borrosa](image)

Figura 4-41. Control borroso del tiempo de integración: proceso completo
4.6.2 Comparativa entre el diseño clásico y la lógica difusa

En este apartado se van a comparar los resultados que se obtiene al aplicar el sistema de control desarrollado en el apartado 4.4 y el controlador borroso.

El análisis se ha realizado con las imágenes reales, obtenidas en las pruebas en estático (4.4.2). El proceso de evaluación es el que aparece en el esquema de la Figura 4-42. Para tiempos de integración desde 100 µs a 1000 µs, en escalones de 50 µs, se toman imágenes, se calcula su histograma y se aplican los algoritmos de control. El ancho de la huella de la imagen que se obtiene al aplicarlos se compara con el ancho real de del hilo de contacto y se calcula su error.

Figura 4-42. Esquema del proceso de evaluación del algoritmo

En los siguientes gráficos se comparan los errores máximos, por defecto y por exceso. El estudio se realiza para las catenarias 10-1 y 10-4-1, en los ejes de las cámaras 2 y 3, a altura mínima y nominal, en todo el rango de variación del tiempo de integración desde 100 µs a 1000 µs.

Los errores que se comenten son similares, siendo ligeramente peores para el caso del enfoque fuzzy. Estos resultados no han de sorprender ya que en el diseño del controlador borroso, la obtención de las funciones de pertenencia y de las reglas, está basada en el estudio y análisis realizado al desarrollar el algoritmo desde el punto de vista clásico.
4.7 Conclusiones

En este capítulo se ha desarrollado un algoritmo y se ha implementado un sistema de control para optimizar el proceso de adquisición de las imágenes.

La originalidad del sistema radica en que, a diferencia de otros algoritmos que aparecen en las referencias bibliográficas, en los cuales se utilizan parámetros tanto del sensor como del digitalizador (ganancia, offset, referencia del negro) en el sistema propuesto únicamente se actúa sobre el tiempo de integración del CCD, manteniendo los parámetros del proceso de digitalización constantes. De esta forma se simplifica el control y se facilita su implementación sin reducir las prestaciones del sistema.

El sistema de control está basado en el histograma de la imagen. Es conocido, que el histograma es la base de numerosas técnicas de procesado de imágenes, sin embargo, su uso como indicador del tiempo de integración es original de este trabajo de investigación.
El empleo del histograma ha permitido el desarrollo de un algoritmo con bajo coste computacional, lo que ha facilitado su implementación en tiempo real, que era uno de los objetivos perseguidos.

En el modo de funcionamiento normal del sistema MEDES, durante la auscultación en vía, a las imágenes adquiridas por cada cámara, se les hace un preprocesamiento hardware, sintetizado en un dispositivo de lógica programable o FPGA, en el que se detecta el número de huellas, su posición y su ancho. Estos datos se envían al PC donde se calcula el espesor y la sección útil del hilo de contacto.

Al dividir la implementación del algoritmo en una parte software y en otra hardware se consigue que su ejecución no interfiera en el proceso de adquisición de imágenes ni afecte a las prestaciones del sistema.

La implementación hardware del algoritmo, que se corresponde con el cálculo del histograma, se hace en la FPGA encargada del preprocesamiento de la imagen. Se realiza en paralelo y de forma concurrente con los algoritmos de preprocesamiento de la imagen.

Si el cálculo del histograma no se resolviera por hardware, habría que enviar la imagen completa al PC, es decir, N bytes, donde N es el número de píxeles de la cámara (4096 píxeles). En cambio, al calcular el histograma en la FPGA, la cantidad de información que se ha de mandar al PC se reduce drásticamente, en concreto a 16 bytes, los cuatro parámetros del histograma por cada una de las cuatro huellas que puede haber en la imagen de una cámara.

Por otra parte, como se ha explicado anteriormente, en el modo de funcionamiento normal del sistema MEDES, lo que se envía la PC es el número de huellas, su posición y su ancho. Para enviar la imagen, tal como es adquirida por la cámara, el sistema cuenta con otro modo de funcionamiento, que es el que se suele utilizar durante las calibraciones, en el que a las imágenes no se les aplica ningún preprocesamiento, y son enviadas al PC. Debido a la cantidad de información que ha de ser enviada, la tasa de muestreo se ve reducida considerablemente. Es decir, si el cálculo del histograma no se resolviera por hardware, cada vez que se aplicara el algoritmo habría que cambiar el modo de funcionamiento del sistema.

El éxito de las técnicas del control borroso o fuzzy nos llevó a plantear el desarrollo del sistema en términos de lógica difusa. Una vez realizado el estudio y comparando los resultados con los obtenidos con el diseño clásico se concluye que el enfoque fuzzy no aporta ventajas frente al clásico, siendo insuficientes para optar por esa vía.
Algoritmo de control del tiempo de integración de los CCDs basado en el histograma de la imagen
Capítulo 5

Resultados experimentales en vía

Índice

5. RESULTADOS EXPERIMENTALES EN VÍA ..169

5.1 Valor de referencia del ancho de la huella ... 170

5.2 Método de evaluación .. 173

5.3 Auscultación en vía... 174
 5.3.1 Pozuelo-Las Rozas: 400 µs... 175

5.4 Medidas manuales .. 183
 5.4.1 Medidas manuales: perfiles 160-158 .. 188

5.5 Dinámica del algoritmo ... 191
 5.5.1 Tramo en recta: Perfil 156-Perfil 162 ... 192
 5.5.2 Tramo en curva: Perfil 328-Perfil 318... 193

5.6 Conclusiones .. 195
5. **Resultados experimentales en vía**

En el capítulo anterior se han estudiado los aspectos del diseño e implementación del sistema de control del tiempo de integración de los CCDs. En este capítulo se analiza su comportamiento dinámico en vía.

Ya se ha explicado en capítulos anteriores que cuando el equipo esté en funcionamiento, lo que va establecer el algoritmo, en base al histograma de la imagen que se ha adquirido, es el tiempo de integración para adquirir la siguiente imagen en las mejores condiciones.

El análisis del comportamiento del algoritmo se centra en dos aspectos. Por un lado, se van a comparar las medidas del sistema MEDES con medidas manuales del hilo de contacto. Se trata de comparar el ancho real de la huella con el valor calculado por el sistema a partir de la imagen adquirida con el tiempo de integración dado por el algoritmo de control. Además de esta evaluación cuantitativa se ha de estudiar el comportamiento dinámico en vía, es decir, habrá que evaluar cuántas veces hay que aplicar el algoritmo para alcanzar la solución óptima, si se llega a la misma solución cuando se parte de condiciones iniciales distintas o si se obtienen los mismos resultados en el caso que el tiempo de integración óptimo tenga un valor de 100μs o de 800μs.

Otro aspecto que se va estudiar es la mejora en la precisión de las medidas y la reducción de la dispersión, es decir, cuánto se gana al utilizar el nuevo algoritmo.

Por último, en la parte final de discusión de resultados se estudiarán las limitaciones del algoritmo, su porqué, así como las posibles mejoras de éste a plantearse en futuros trabajos.
5.1 Valor de referencia del ancho de la huella

En el caso de la evaluación cuantitativa, la dificultad estriba en establecer el valor de referencia con el que comparar. Por un lado el sistema MEDES mide el ancho de la huella en píxeles. Manualmente no es posible medir de forma precisa este valor. Lo que se mide, con ayuda de un calibre, es el espesor del hilo de contacto. A partir de este valor expresado en milímetros y mediante las ecuaciones deducidas en el capítulo 3 (ver apartado 3.1) se puede calcular el ancho de la huella (Tabla 5-1).

<table>
<thead>
<tr>
<th>Sección circular</th>
<th>ancho(e) = 2r · sen(a cos(e/r) - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección Oval</td>
<td>d<dc ancho(e) = 2R · sen(θ + a cos(e/R - r/R · (1 + cos(asen d/c/2r))))</td>
</tr>
<tr>
<td></td>
<td>d>dc ancho(e) = 2r · sen(a cos(e/r) - 1)</td>
</tr>
</tbody>
</table>

Tabla 5-1. Expresión del ancho de la huella [mm] en función del espesor del hilo

Al aplicar las ecuaciones de la Tabla 5-1 se obtiene el valor del ancho de la huella, expresado en milímetros. Para obtener la magnitud en píxeles, hay que tener en cuenta la resolución, es decir, la altura del hilo de contacto (ecuación [5.1]).

\[
ancho_{\text{pixels}} = \frac{\text{ancho}_{\text{mm}}}{\text{Resolución}} \cdot 100
\]

[5.1]

El esquema del proceso de cálculo del valor de referencia con el que comparar las medidas del sistema MEDES se muestra en Figura 5-1.
Los errores introducidos en el proceso de cálculo que se acaba de describir se deben fundamentalmente a la tolerancia en el radio del hilo de contacto \(r \).

Tabla 5-2. Valores nominales del radio del hilo de contacto con sección circular

Sección circular 107 mm²	6,12
Sección circular 120 mm²	6,482
Sección circular 150 mm²	7,25
Tolerancia de fabricación: ±0,08 mm	

Tabla 5-3. Valores nominales del radio del hilo de contacto con sección oval

| Sección oval 107 mm² | 6,43 | 15,85 | 15º |
| Sección oval 150 mm² | 7,55 | 20 | 15º |
| Tolerancia de fabricación: ±0,08 mm |

Se ha calculado cómo afecta la tolerancia de fabricación al cálculo del ancho de la huella. Es decir, que error se comete al utilizar el valor nominal del radio sin tener en cuenta las tolerancias de fabricación.

En la Tabla 5-4 y Tabla 5-5 se presentan los resultados del estudio realizado. Se ha calculado para que valor de sección útil del hilo de contacto se produce una diferencia de ± 3 pixeles y ± 2 pixeles entre el ancho calculado con el valor del radio nominal y el ancho de la huella teniendo en cuenta las tolerancias de fabricación. Igualmente se adjunta qué error supone esa diferencia en el cálculo de la sección útil del hilo de contacto.
Resultados experimentales en vía

<table>
<thead>
<tr>
<th>Altura máxima</th>
<th>Altura nominal</th>
<th>Altura mínima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sección útil [%]</td>
<td>Error [%]</td>
</tr>
<tr>
<td>Sección Circular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3 píxeles</td>
<td>88,5</td>
<td>2,0</td>
</tr>
<tr>
<td>-3 píxeles</td>
<td>89,7</td>
<td>-1,7</td>
</tr>
<tr>
<td>+2 píxeles</td>
<td>72,5</td>
<td>4,3</td>
</tr>
<tr>
<td>-2 píxeles</td>
<td>73,8</td>
<td>-3,6</td>
</tr>
<tr>
<td>120mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3 píxeles</td>
<td>88,5</td>
<td>1,9</td>
</tr>
<tr>
<td>-3 píxeles</td>
<td>89,6</td>
<td>-1,6</td>
</tr>
<tr>
<td>+2 píxeles</td>
<td>72,6</td>
<td>4,0</td>
</tr>
<tr>
<td>-2 píxeles</td>
<td>73,7</td>
<td>-3,4</td>
</tr>
<tr>
<td>150mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3 píxeles</td>
<td>88,6</td>
<td>1,6</td>
</tr>
<tr>
<td>-3 píxeles</td>
<td>89,5</td>
<td>-1,5</td>
</tr>
<tr>
<td>+2 píxeles</td>
<td>72,6</td>
<td>3,6</td>
</tr>
<tr>
<td>-2 píxeles</td>
<td>73,6</td>
<td>-3,1</td>
</tr>
</tbody>
</table>

Resolución a altura máxima: 12,4
Resolución a altura nominal: 10,63
Resolución a altura mínima: 8,413

(*) Sección útil por debajo del 50%. Ningún hilo llega a esas condiciones de desgaste.

Tabla 5-4. Sección circular: diferencia en el ancho de la huella al considerar las tolerancias de fabricación

El caso de ± 3 píxeles, se da con valores de desgaste bajos, en torno al 90% para altura máxima y del 85% para altura nominal, con lo que el error en el cálculo de la sección es pequeño. Más problemático resulta para la altura mínima, donde ese valor aumenta hasta el 4%.
5.2 Método de evaluación

Las pruebas se han realizado entre las estaciones de Pozuelo y Las Rozas. Se han auscultado la vía par (trayecto Pozuelo-Las Rozas) y la impar (Las Rozas-Pozuelo).

La toma de datos se hará únicamente con la cámara 3, para así facilitar su análisis.

El nuevo sistema de procesamiento del equipo MEDES2000 aun no está instalado en el coche auscultador de la catenaria con el que se han hecho las pruebas. Aunque el sistema está desarrollado y probado en laboratorio, RENFE decidió mantener el actual sistema MEDES en el coche de laboratorio e instalar el MEDES2000 en el nuevo coche que está preparando donde se incorporarán nuevos equipos de instrumentación, no sólo de medida del desgaste del hilo de contacto, sino también de geometría de la catenaria. Con esta política se garantiza que las campañas de auscultación se van a poder realizar con normalidad.

Con el actual sistema de procesamiento, basado en transputers, no es posible cambiar dinámicamente el tiempo de integración. La estrategia que se ha seguido para realizar las pruebas en vía ha sido la que se muestra en el esquema de la Figura 5-2.

Figura 5-2. Método de evaluación
1. En los tramos objeto de estudio se han hecho varias pasadas con el coche laboratorio, tomando imágenes con diferentes tiempos de integración. La longitud de los ficheros es de aproximadamente un kilómetro, en el tramo Pozuelo-Las Rozas. Para el caso Las Rozas-Pozuelo, en el que la locomotora va en retroceso, es decir, con una velocidad menor, la longitud de los ficheros es de 500 metros. Se reduce la longitud del fichero, ya que al realizarse la auscultación a menor velocidad, como el número de imágenes adquiridas por el sistema MEDES es independiente de la velocidad el tamaño de los ficheros aumentará. La longitud de los ficheros se limita para facilitar el estudio y análisis de los datos.

2. A los ficheros obtenidos en vía se les aplica el algoritmo. Para ello se ha utilizado la plataforma desarrollada en Matlab® en la que se han implementado todos los algoritmos de procesamiento de las imágenes del sistema MEDES, así como el algoritmo de control del tiempo de integración. Para cada imagen, el algoritmo determina cual es el tiempo de integración para adquirir en las mejores condiciones la siguiente imagen. Con el análisis estadístico de los datos obtenidos se han agrupado las zonas con tiempos de integración parecidos que dividirán el trayecto en varios tramos de características similares.

3. Para cada uno de los tramos en los que se ha dividido el trayecto se realiza la auscultación con el tiempo de integración determinado por el algoritmo. Con estas imágenes se calculan los valores del ancho de la huella y el espesor de los hilos de contacto.

4. Para cada tramo objeto del estudio se mide manualmente el espesor en el entorno de los postes y a longitudes de ¼, ½ y ¾ del vano. Asimismo se ha elegido el vano entre dos postes (perfiles 160 y 158), en el que las medidas manuales se han realizado cada 20 centímetros.

5.3 Auscultación en vía

Los tramos auscultados y los tiempos de integración empleados se adjuntan en la Tabla 5-6.

<table>
<thead>
<tr>
<th>Auscultación en vía</th>
<th>Tiempo de Integración[µs]</th>
<th>Condiciones de auscultación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozuelo-Las Rozas</td>
<td>320</td>
<td>Láseres en cola</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>Láseres en cola</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>Láseres en cola</td>
</tr>
<tr>
<td>Las Rozas-Pozuelo</td>
<td>280</td>
<td>Láseres en cabeza</td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>Láseres en cabeza</td>
</tr>
</tbody>
</table>

Tabla 5-6. Auscultación en vía
Resultados experimentales en vía

Dependiendo de la posición del coche laboratorio respecto a la locomotora y al sentido de marcha, se dice que los láseres están en cabeza (Figura 5-3) o en cola (Figura 5-4)

Se va a aplicar el algoritmo a los ficheros del trayecto Pozuelo-Las Rozas, en los que se empleó como tiempo de integración 400 µs. Tras el análisis de los resultados se va dividir el trayecto en varios tramos, en los que se determinará el tiempo de integración óptimo para adquirir las imágenes con las que obtener las medidas para ser comparadas con las medidas manuales.

5.3.1 Pozuelo-Las Rozas: 400 µs

Para cada imagen de los ficheros, el algoritmo determina cual es el coeficiente por el que hay que multiplicar el tiempo de integración para adquirir la siguiente imagen. Los resultados están asociados a la distancia recorrida. Se ha calculado la media del resultado de aplicar el algoritmo a las imágenes adquiridas cada metro. Con estos datos se han agrupado las zonas con tiempos de integración similar.

Hay que tener en cuenta cómo se va a realizar la auscultación. Ya se ha comentado que con el actual sistema de procesamiento basado en transputers no es posible cambiar el tiempo de integración dinámicamente durante la auscultación. Debido a ello, a la hora de establecer los tramos en los que dividir los ficheros, además de elegir zonas con comportamiento parecido en cuanto al tiempo de integración, éstas deben tener una longitud suficiente para facilitar las manipulaciones de arranque y parada de la locomotora. Es decir, no tiene ningún sentido práctico dividir el trayecto en tramos de 20 metros, ya que en las condiciones en las que se van a realizar las pruebas no sería viable.

Los resultados obtenidos se adjuntan en las siguientes tablas. Cada fichero de datos está caracterizado por los puntos kilométricos del trayecto en los que han sido adquiridas las imágenes. Los datos se presentan asociados a la distancia recorrida. Se han agrupado por tramos en los que se muestra la media de los coeficientes obtenidos al aplicar el algoritmo (ver codificación en la Tabla 4-5), y el tiempo de integración resultante. Los tramos y el tiempo de integración que se van a utilizar para obtener las medidas que posteriormente se van a comparar con las manuales aparecen en la última columna.
Resultados experimentales en vía

Pozuelo–Las Rozas P.K. 9,462–P.K. 10,462

<table>
<thead>
<tr>
<th>Distancia [m]</th>
<th>Coef. α [media]</th>
<th>T. Int. [µs]</th>
<th>Tramo a auscultar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Distancia [m]</td>
</tr>
<tr>
<td>13-248</td>
<td>3.02</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>260-329</td>
<td>2.8</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>334-368</td>
<td>2.34</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>374-429</td>
<td>2.96</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>435-465</td>
<td>2.76</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>479-686</td>
<td>2.60</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>573-860</td>
<td>2.20</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>877-990</td>
<td>2.37</td>
<td>485</td>
<td></td>
</tr>
</tbody>
</table>

Pozuelo–Las Rozas P.K. 10,462–P.K. 11,462

<table>
<thead>
<tr>
<th>Distancia [m]</th>
<th>Coef. α [media]</th>
<th>T. Int. [µs]</th>
<th>Tramo a auscultar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Distancia [m]</td>
</tr>
<tr>
<td>2-26</td>
<td>2.05</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>28-65</td>
<td>1.52</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>66-294</td>
<td>2.50</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>296-435</td>
<td>2.70</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>436-484</td>
<td>3</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>486-502</td>
<td>1.07</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>503-738</td>
<td>3</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>740-752</td>
<td>2.18</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>753-778</td>
<td>2.95</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>779-790</td>
<td>2.2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>791-818</td>
<td>3.04</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>819-839</td>
<td>2</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>830-859</td>
<td>3</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>860-910</td>
<td>2</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>910-942</td>
<td>3.20</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>943-949</td>
<td>1.83</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>950-970</td>
<td>3.06</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>971-978</td>
<td>1.67</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>979-985</td>
<td>3</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Resultados experimentales en vía

<table>
<thead>
<tr>
<th>Distancia [m]</th>
<th>Coef. α [media]</th>
<th>T. Int. [μs]</th>
<th>Tramo a auscultar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-105</td>
<td>3.4</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>107-127</td>
<td>3</td>
<td>400</td>
<td>0-650</td>
</tr>
<tr>
<td>128-165</td>
<td>3.2</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>166-170</td>
<td>2.2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>172-209</td>
<td>3.5</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>210-229</td>
<td>3.08</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>231-265</td>
<td>3.30</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>266-276</td>
<td>2.11</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>277-310</td>
<td>3.4</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>311-330</td>
<td>3</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>332-410</td>
<td>3.5</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>411-508</td>
<td>3.05</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>509-524</td>
<td>2.62</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>525-624</td>
<td>2.37</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>625-680</td>
<td>3.6</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>662-680</td>
<td>3.2</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>681-717</td>
<td>3.8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>718-722</td>
<td>2.75</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>723-757</td>
<td>4.1</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>759-782</td>
<td>3.5</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>783-811</td>
<td>4.1</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>813-828</td>
<td>2.55</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>829-955</td>
<td>4.2</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>957-970</td>
<td>3.57</td>
<td>340</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distancia [m]</th>
<th>Coef. α [media]</th>
<th>T. Int. [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-65</td>
<td>2.77</td>
<td>450</td>
</tr>
<tr>
<td>91-134</td>
<td>2.41</td>
<td>475</td>
</tr>
<tr>
<td>144-351</td>
<td>1.25</td>
<td>725</td>
</tr>
<tr>
<td>369-386</td>
<td>1.13</td>
<td>775</td>
</tr>
<tr>
<td>404-431</td>
<td>1.62</td>
<td>650</td>
</tr>
<tr>
<td>446-473</td>
<td>2.35</td>
<td>500</td>
</tr>
<tr>
<td>487-510</td>
<td>2.06</td>
<td>550</td>
</tr>
<tr>
<td>529-671</td>
<td>2.22</td>
<td>500</td>
</tr>
<tr>
<td>685-746</td>
<td>2.67</td>
<td>450</td>
</tr>
<tr>
<td>773-957</td>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>964-988</td>
<td>3.2</td>
<td>375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distancia</th>
<th>T. Int. [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-450</td>
<td>600</td>
</tr>
<tr>
<td>450-700</td>
<td>500</td>
</tr>
<tr>
<td>750-1000</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distancia [m]</th>
<th>Coef. α [media]</th>
<th>T. Int. [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-65</td>
<td>2.77</td>
<td>425</td>
</tr>
<tr>
<td>99-134</td>
<td>2.41</td>
<td>472</td>
</tr>
<tr>
<td>144-351</td>
<td>1.25</td>
<td>725</td>
</tr>
<tr>
<td>369-386</td>
<td>1.13</td>
<td>775</td>
</tr>
<tr>
<td>404-431</td>
<td>1.62</td>
<td>625</td>
</tr>
<tr>
<td>446-473</td>
<td>2.35</td>
<td>485</td>
</tr>
<tr>
<td>487-553</td>
<td>1.76</td>
<td>575</td>
</tr>
<tr>
<td>562-590</td>
<td>2.35</td>
<td>485</td>
</tr>
<tr>
<td>605-671</td>
<td>2.39</td>
<td>475</td>
</tr>
<tr>
<td>685-711</td>
<td>2.61</td>
<td>450</td>
</tr>
<tr>
<td>726-790</td>
<td>2.78</td>
<td>450</td>
</tr>
<tr>
<td>805-833</td>
<td>3.02</td>
<td>400</td>
</tr>
<tr>
<td>844-876</td>
<td>3.02</td>
<td>400</td>
</tr>
<tr>
<td>881-916</td>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>924-957</td>
<td>2.96</td>
<td>400</td>
</tr>
<tr>
<td>964-988</td>
<td>2.91</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distancia</th>
<th>T. Int. [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-800</td>
<td>500</td>
</tr>
<tr>
<td>800-1000</td>
<td>400</td>
</tr>
</tbody>
</table>

Resultados experimentales en vía

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distancia</td>
</tr>
<tr>
<td></td>
<td>1-65</td>
<td>2.77</td>
<td>425</td>
<td>0-500</td>
</tr>
<tr>
<td></td>
<td>99-134</td>
<td>2.41</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>144-351</td>
<td>1.25</td>
<td>725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>369-386</td>
<td>1.13</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td></td>
<td>404-431</td>
<td>1.62</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>446-473</td>
<td>2.35</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td></td>
<td>487-510</td>
<td>1.3</td>
<td>710</td>
<td></td>
</tr>
<tr>
<td></td>
<td>529-671</td>
<td>2.21</td>
<td>500</td>
<td>500-800</td>
</tr>
<tr>
<td></td>
<td>685-746</td>
<td>2.67</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>777-988</td>
<td>3.06</td>
<td>400</td>
<td>800-1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distancia</td>
</tr>
<tr>
<td></td>
<td>2-21</td>
<td>3.88</td>
<td>300</td>
<td>0-350</td>
</tr>
<tr>
<td></td>
<td>30-71</td>
<td>3.97</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96-119</td>
<td>3.15</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>135-172</td>
<td>3.35</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187-221</td>
<td>3.28</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td></td>
<td>237-322</td>
<td>3.4</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>355-421</td>
<td>3.06</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>434-519</td>
<td>2.44</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>538-574</td>
<td>2.9</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>588-628</td>
<td>3.22</td>
<td>365</td>
<td>350-1000</td>
</tr>
<tr>
<td></td>
<td>635-672</td>
<td>2.52</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>686-724</td>
<td>3.1</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td></td>
<td>738-948</td>
<td>2.83</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>975-1035</td>
<td>2.28</td>
<td>484</td>
<td></td>
</tr>
</tbody>
</table>

179
En base a los resultados de las tablas anteriores, la auscultación del trayecto Pozuelo-Las Rozas, se va a realizar en varios tramos, cada uno de ellos con el tiempo de integración resultado de aplicar el algoritmo de control del tiempo de integración (Tabla 5-15).

| Tramos en los que se ha dividido la auscultación del trayecto: Pozuelo - Las Rozas |
|-------------------------------|---------------------------------|------------------|
| Tramo (A + B) | Localización | T. Integración [µs] |
| P.K. 8,98 – P.K. 10,114 | 400 |
| (C) | P.K. 10,114 – P.K.10,478 | 500 |
| (D) | P.K. 10,478 – P.K.11,1 | 400 |
| (E) | P.K. 11,162 – P.K.11,485 | 500 |
| (F) | P.K. 11,485 – P.K.12,112 | 400 |
| (G) | P.K. 12,112 – P.K.12,479 | 300 |
| (H) | P.K. 11,485 – P.K.12,909 | 600 |
| (I) | P.K. 12,909 – P.K.13,267 | 500 |
| (J) | P.K. 13,267 – P.K.13,468 | 400 |
| (K) | P.K. 13,468 – P.K.14,250 | 500 |
| (L) | P.K. 14,250 – P.K.14,517 | 400 |
| (M) | P.K. 14,517 – P.K.15,058 | 600 |
| (N) | P.K. 15,058 – P.K.15,343 | 475 |
| (O) | P.K. 15,343 – P.K.15,481 | 400 |
| (P) | P.K. 15,481 – P.K.15,737 | 350 |
| (Q) | P.K. 15,737 – P.K.16,418 | 400 |
| (R) | P.K. 16,418 – P.K.16,696 | 450 |
| (S) | P.K. 16,696 – | 550 |

Tabla 5-15. Auscultación en vía: tramos del trayecto Pozuelo-Las Rozas
Resultados experimentales en vía

Independientemente de la valoración cuantitativa que se hará en apartados posteriores, en las siguientes figuras se puede ver cómo se ha reducido considerablemente la dispersión en las medidas en los tramos auscultados.

Figura 5-5. Tramo G auscultado con tiempo de integración fijo

En el gráfico que se adjunta en la Figura 5-5, el tramo ha sido auscultado con un tiempo de integración de 500µs. Este es el valor que actualmente se emplea y que permanece constante durante toda la campaña de auscultación. Como puede verse, las medidas presentan una gran dispersión.

Figura 5-6. Tramo G auscultado con el tiempo de integración determinado por el algoritmo
Al aplicar el algoritmo al tramo de la Figura 5-5 (tramo G), se obtiene que el valor del tiempo de integración con el que habría que realizar la auscultación es de 300\(\mu\)s. En la Figura 5-6 se muestra el gráfico de las medidas que se obtienen al emplear este tiempo de integración. Se puede comprobar como la dispersión se ha reducido significativamente.

Otro ejemplo en el que se puede ver la reducción en la dispersión en las medidas es el que se adjunta en las siguientes figuras.

Figura 5-7. Tramo J auscultado con tiempo de integración fijo

Figura 5-8. Tramo J auscultado con el tiempo de integración determinado por el algoritmo
5.4 Medidas manuales

Las medidas manuales del espesor del hilo de contacto se ha realizado utilizando un calibre digital y la carretilla que emplea el equipo de mantenimiento de vía de RENFE (Figura 5-9) Para cada tramo objeto de estudio se mide manualmente el espesor en el entorno de los postes y a longitudes de $\frac{1}{4}$, $\frac{1}{2}$ y $\frac{3}{4}$ del vano.

![Figura 5-9. Medidas manuales: Carretilla de RENFE](image)

Los tramos en los que se han realizado las medidas manualmente han sido los siguientes:

- Postes 328- Poste 314: tramo en curva, corresponde a la parte final del fichero Q.
- Postes 306- Poste 296: tramo en recta. Tramo final del fichero P y comienzo del Q.
- Poste 144- Poste 116. El tramo entre los postes 142 y 126 está en recta (comienzo del fichero F). Del poste 116 al 124 (final del fichero E) corresponde a un tramo en curva.

En el capítulo 2 al plantear la problemática de la medida del desgaste del hilo de contacto (ver apartado 2.2) se explicó que el parámetro determinante en la distribución del desgaste del hilo es el consumo de la línea. En zonas de gran consumo, como ocurre en este trayecto, el mayor desgaste se da en el vano y para ilustrarlo se incluyó la Figura 2-14, que se corresponde con el espesor medido entre los postes 328 y 314.

En las siguientes figuras se adjuntan los valores para el resto de los tramos en los que se han realizado las medidas manuales.
Resultados experimentales en vía

Figura 5-10. Perfiles 306-296: espesor medido manualmente

En el caso del tramo en curva entre los postes 124-116, el mayor desgaste para el hilo exterior, hilo izquierdo, se da en los postes, es decir, el consumo en él es bajo.

Figura 5-11. Perfiles 144-116: espesor medido manualmente. Hilo derecho

Para comparar los valores obtenidos manualmente y los dados por el sistema MEDES, se han buscado en los listados valores puntuales que coincidan con los valores manuales en cada una de las zonas de medidas.

En las siguientes tablas se adjuntan los valores del espesor medido manualmente y el valor dado por el sistema MEDES en el entorno de la zona de la medida manual. Se comparan ambos valores, calculando el error cometido por el sistema MEDES, en tanto por ciento. Hay que señalar que en las tablas existen puntos donde no aparecen los valores de las medidas del sistema MEDES. Ello es debido a que la auscultación se ha realizado únicamente con la cámara 3, y en esos puntos, debido al descentramiento del hilo de contacto, la imagen no se encuentra en el campo de visión de la cámara y por lo tanto no se han podido realizar las medidas.
Resultados experimentales en vía

<table>
<thead>
<tr>
<th>Espesor del hilo de contacto: Postes 328-314. Tramo en curva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>P.328</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>P.326</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>P.324</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>P.322</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>P.320</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>P.318</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>P.316</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>¼</td>
</tr>
<tr>
<td>P.314</td>
</tr>
</tbody>
</table>

Tabla 5.16. Postes 328-314. Espesor del hilo de contacto: medidas manuales y del sistema MEDES.
<table>
<thead>
<tr>
<th></th>
<th>Manual Derecho</th>
<th>Manual Izquierdo</th>
<th>MEDES Derecho</th>
<th>MEDES Izquierdo</th>
<th>Error (%) Derecho</th>
<th>Error (%) Izquierdo</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.306</td>
<td>10,83</td>
<td>10,61</td>
<td>10,59</td>
<td>10,93</td>
<td>-0,47</td>
<td>-0,83</td>
</tr>
<tr>
<td>1/4</td>
<td>10,54</td>
<td>10,84</td>
<td>10,69</td>
<td>10,69</td>
<td>-0,75</td>
<td>-0,75</td>
</tr>
<tr>
<td>1/2</td>
<td>10,61</td>
<td>10,74</td>
<td>10,69</td>
<td>10,69</td>
<td>-0,75</td>
<td>-0,75</td>
</tr>
<tr>
<td>3/4</td>
<td>10,75</td>
<td>10,9</td>
<td>10,69</td>
<td>10,93</td>
<td>-0,75</td>
<td>-0,75</td>
</tr>
<tr>
<td>P.304</td>
<td>11,07</td>
<td>11,4</td>
<td>10,66</td>
<td>10,66</td>
<td>0,47</td>
<td>0,47</td>
</tr>
<tr>
<td>1/4</td>
<td>10,71</td>
<td>10,76</td>
<td>10,65</td>
<td>10,65</td>
<td>0,26</td>
<td>0,26</td>
</tr>
<tr>
<td>1/2</td>
<td>10,63</td>
<td>10,67</td>
<td>10,41</td>
<td>10,41</td>
<td>2,07</td>
<td>2,07</td>
</tr>
<tr>
<td>3/4</td>
<td>10,78</td>
<td>10,73</td>
<td>10,69</td>
<td>10,69</td>
<td>0,37</td>
<td>0,37</td>
</tr>
<tr>
<td>P.302</td>
<td>11,64</td>
<td>10,97</td>
<td>10,69</td>
<td>10,69</td>
<td>2,25</td>
<td>2,25</td>
</tr>
<tr>
<td>1/4</td>
<td>10,75</td>
<td>10,69</td>
<td>10,74</td>
<td>10,74</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>1/2</td>
<td>10,58</td>
<td>10,74</td>
<td>10,74</td>
<td>10,74</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>3/4</td>
<td>10,73</td>
<td>10,64</td>
<td>10,73</td>
<td>10,73</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>P.300</td>
<td>11,12</td>
<td>10,89</td>
<td>10,69</td>
<td>10,69</td>
<td>3,71</td>
<td>3,71</td>
</tr>
<tr>
<td>1/4</td>
<td>10,56</td>
<td>10,46</td>
<td>10,62</td>
<td>10,62</td>
<td>0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>1/2</td>
<td>10,88</td>
<td>10,85</td>
<td>10,56</td>
<td>10,56</td>
<td>4,23</td>
<td>4,23</td>
</tr>
<tr>
<td>3/4</td>
<td>10,76</td>
<td>10,71</td>
<td>10,56</td>
<td>10,56</td>
<td>1,86</td>
<td>1,86</td>
</tr>
<tr>
<td>P.298</td>
<td>11,47</td>
<td>11,38</td>
<td>10,46</td>
<td>10,46</td>
<td>1,77</td>
<td>1,77</td>
</tr>
<tr>
<td>1/4</td>
<td>10,74</td>
<td>10,75</td>
<td>10,74</td>
<td>10,74</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>1/2</td>
<td>11,01</td>
<td>10,96</td>
<td>10,74</td>
<td>10,74</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>3/4</td>
<td>10,85</td>
<td>10,83</td>
<td>10,85</td>
<td>10,85</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>P.296</td>
<td>11,16</td>
<td>10,45</td>
<td>10,45</td>
<td>10,45</td>
<td>1,82</td>
<td>1,82</td>
</tr>
</tbody>
</table>

Tabla 5-17. Postes 306-296. Espesor del hilo de contacto: medidas manuales y MEDES.

<table>
<thead>
<tr>
<th></th>
<th>Manual Derecho</th>
<th>Manual Izquierdo</th>
<th>MEDES Derecho</th>
<th>MEDES Izquierdo</th>
<th>Error (%) Derecho</th>
<th>Error (%) Izquierdo</th>
</tr>
</thead>
<tbody>
<tr>
<td>P124</td>
<td>10,48</td>
<td>10,06</td>
<td>9,08</td>
<td>10,35</td>
<td>3,71</td>
<td>1,62</td>
</tr>
<tr>
<td>1/2</td>
<td>9,43</td>
<td>10,52</td>
<td>9,08</td>
<td>10,35</td>
<td>3,71</td>
<td>1,62</td>
</tr>
<tr>
<td>3/4</td>
<td>9,6</td>
<td>10,52</td>
<td>10,52</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>P122</td>
<td>10,61</td>
<td>10,25</td>
<td>9,61</td>
<td>10,52</td>
<td>-0,21</td>
<td>0,09</td>
</tr>
<tr>
<td>1/4</td>
<td>9,59</td>
<td>10,53</td>
<td>9,61</td>
<td>10,52</td>
<td>-0,21</td>
<td>0,09</td>
</tr>
<tr>
<td>1/2</td>
<td>9,66</td>
<td>10,46</td>
<td>9,46</td>
<td>10,2</td>
<td>2,07</td>
<td>2,49</td>
</tr>
<tr>
<td>3/4</td>
<td>9,52</td>
<td>10,35</td>
<td>9,21</td>
<td>10,37</td>
<td>3,26</td>
<td>-0,19</td>
</tr>
<tr>
<td>P120</td>
<td>11,05</td>
<td>10,09</td>
<td>9,8</td>
<td>10</td>
<td>-0,82</td>
<td>3,85</td>
</tr>
<tr>
<td>1/4</td>
<td>9,72</td>
<td>10,4</td>
<td>9,8</td>
<td>10</td>
<td>-0,82</td>
<td>3,85</td>
</tr>
<tr>
<td>1/2</td>
<td>9,93</td>
<td>10,11</td>
<td>9,63</td>
<td>9,98</td>
<td>3,02</td>
<td>1,29</td>
</tr>
<tr>
<td>3/4</td>
<td>9,8</td>
<td>10,44</td>
<td>9,98</td>
<td>10,49</td>
<td>-1,84</td>
<td>-0,48</td>
</tr>
<tr>
<td>P118</td>
<td>11,11</td>
<td>10,6</td>
<td>9,98</td>
<td>10,39</td>
<td>-1,42</td>
<td>-1,07</td>
</tr>
<tr>
<td>1/4</td>
<td>9,84</td>
<td>10,28</td>
<td>9,98</td>
<td>10,39</td>
<td>-1,42</td>
<td>-1,07</td>
</tr>
<tr>
<td>1/2</td>
<td>9,78</td>
<td>10,39</td>
<td>9,78</td>
<td>9,91</td>
<td>0,00</td>
<td>4,62</td>
</tr>
<tr>
<td>3/4</td>
<td>9,86</td>
<td>10,12</td>
<td>9,92</td>
<td>10,11</td>
<td>-0,61</td>
<td>0,10</td>
</tr>
<tr>
<td>P116</td>
<td>10,99</td>
<td>10,33</td>
<td>10,79</td>
<td>1,82</td>
<td>1,82</td>
<td>1,82</td>
</tr>
</tbody>
</table>

Tabla 5-18. Postes 124-116. Espesor del hilo de contacto: medidas manuales y MEDES.
Resultados experimentales en vía

<table>
<thead>
<tr>
<th>P.144</th>
<th>10.06</th>
<th>10.56</th>
<th>10.07</th>
<th>10.33</th>
<th>10.29</th>
<th>2.78</th>
<th>0.39</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>10.06</td>
<td>10.44</td>
<td>9.8</td>
<td>9.51</td>
<td>2.58</td>
<td>8.91</td>
<td></td>
</tr>
<tr>
<td>P.142</td>
<td>9.48</td>
<td>10.74</td>
<td>9.44</td>
<td>10.19</td>
<td>0.42</td>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>10.62</td>
<td>10.18</td>
<td>10.27</td>
<td>10.15</td>
<td>3.30</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>P.140</td>
<td>9.96</td>
<td>10.71</td>
<td>9.67</td>
<td>10.25</td>
<td>2.91</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>10.19</td>
<td>10.14</td>
<td>9.41</td>
<td>10.17</td>
<td>7.65</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>9.78</td>
<td>10.44</td>
<td>9.75</td>
<td>10.37</td>
<td>0.31</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>P.138</td>
<td>10.5</td>
<td>10.64</td>
<td>10.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>11.37</td>
<td>10.67</td>
<td>10.73</td>
<td>10.38</td>
<td>5.63</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>P.136</td>
<td>10.65</td>
<td>10.8</td>
<td>10.64</td>
<td>10.09</td>
<td>0.09</td>
<td>6.57</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>10.34</td>
<td>10.61</td>
<td>10.33</td>
<td>10.15</td>
<td>0.10</td>
<td>4.34</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P.134</th>
<th>10.24</th>
<th>10.14</th>
<th>10.15</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>10.34</td>
<td>10.11</td>
<td>10.32</td>
<td>9.61</td>
<td>0.19</td>
<td>4.95</td>
</tr>
<tr>
<td>P.132</td>
<td>10.27</td>
<td>10.41</td>
<td>9.54</td>
<td>9.9</td>
<td>7.11</td>
<td>4.90</td>
</tr>
<tr>
<td>1/2</td>
<td>10.22</td>
<td>10.22</td>
<td>10.22</td>
<td>10.28</td>
<td>0.00</td>
<td>0.59</td>
</tr>
<tr>
<td>P.131</td>
<td>10.48</td>
<td>11.03</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>10.26</td>
<td>10.32</td>
<td>10.16</td>
<td>10.49</td>
<td>0.97</td>
<td>-1.65</td>
</tr>
<tr>
<td>3/4</td>
<td>10.19</td>
<td>10.32</td>
<td>9.33</td>
<td>10.17</td>
<td>8.44</td>
<td>1.45</td>
</tr>
<tr>
<td>P.129</td>
<td>10.74</td>
<td>10.41</td>
<td></td>
<td>10.41</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>10.31</td>
<td>10.12</td>
<td>10.25</td>
<td>10.01</td>
<td>0.58</td>
<td>1.09</td>
</tr>
<tr>
<td>P.127</td>
<td>10.21</td>
<td>10.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>9.67</td>
<td>10.77</td>
<td>9.19</td>
<td>10.71</td>
<td>4.96</td>
<td>0.56</td>
</tr>
<tr>
<td>3/4</td>
<td>10.06</td>
<td>10.48</td>
<td>10.02</td>
<td>10.62</td>
<td>0.40</td>
<td>-1.34</td>
</tr>
<tr>
<td>P.125</td>
<td>9.9</td>
<td>10.21</td>
<td>9.7</td>
<td>10.27</td>
<td>2.02</td>
<td>-0.59</td>
</tr>
<tr>
<td>1/2</td>
<td>9.82</td>
<td>10.58</td>
<td>9.71</td>
<td>10.54</td>
<td>1.12</td>
<td>0.38</td>
</tr>
<tr>
<td>3/4</td>
<td>10.49</td>
<td>10.52</td>
<td>10.34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5-19. Postes 144-130. Espesor del hilo de contacto: medidas manuales y MEDES.

Del análisis de las tablas anteriores se puede decir que prácticamente en todas las zonas los valores del espesor medidos manualmente son mayores que los determinados por el sistema MEDES. Es decir, MEDES mide de más (mayor ancho de huella).

En la Tabla 5-20 se muestran los valores máxima, mínimo y promedio de error en el cálculo del espesor en cada uno de los tramos auscultados. De los datos que aparecen en ella se puede concluir, que el error cometido no es muy alto, siendo su valor medio inferior al 3%. Los peores resultados se dan entre los postes 144-130, con valores puntuales máximos superiores al 8%. En el resto de las zonas y en los dos hilos, los valores mínimos no son superiores al -2% y los máximos no superan el 5%.
Resultados experimentales en vía

| Error en el cálculo del espesor [%], comparando las medias del sistema MEDES con las medidas manuales en vía |
|---|---|---|---|---|---|---|
| Perfiles | Hilo derecho | Hilo izquierdo |
| | Media | Máximo | Mínimo | Media | Máximo | Mínimo |
| 328-314 | 2.16 | 4.85 | -0.65 | 1.28 | 6.09 | -0.87 |
| 306-296 | 1.19 | 4.23 | -0.75 | 1.25 | 2.67 | -0.87 |
| 144-130 | 2.52 | 8.44 | -0.19 | 1.92 | 8.91 | -0.59 |
| 124-116 | 0.82 | 3.71 | -1.42 | 1.04 | 4.62 | -0.48 |

Tabla 5-20. Error [%] en la medida del espesor comparando las medidas del sistema MEDES con las medidas manuales en vía

5.4.1 Medidas manuales: perfiles 160-158

Para realizar un estudio más exhaustivo se eligió un tramo entre dos postes, el 160 y el 158, donde se medió manualmente el espesor cada 20 cm. El tramo auscultado corresponde a los puntos kilométricos P.K.12,297- P.K 12,339.

Las medidas manuales se van a contrastar con las medidas realizadas por el sistema MEDES, en las que se ha empleado como tiempo de integración el determinado por el algoritmo que en este caso es de 300μs.

Lo que se va a comparar es el ancho de la huella en píxeles, que es la magnitud que mide el sistema MEDES. El cálculo el ancho de la huella a partir el espesor medido manualmente se ha describo en el apartado 5.1

<table>
<thead>
<tr>
<th>Ancho de la huella [píxeles]</th>
<th>Hilo derecho</th>
<th>Hilo izquierdo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>manual</td>
<td>MEDES</td>
</tr>
<tr>
<td>Poste160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>98</td>
<td>86.46</td>
</tr>
<tr>
<td>6.00</td>
<td>100</td>
<td>85.74</td>
</tr>
<tr>
<td>7.00</td>
<td>98</td>
<td>86.32</td>
</tr>
<tr>
<td>8.00</td>
<td>98</td>
<td>86.67</td>
</tr>
<tr>
<td>9.00</td>
<td>95</td>
<td>87.99</td>
</tr>
<tr>
<td>10.00</td>
<td>100</td>
<td>85.05</td>
</tr>
<tr>
<td>11.00</td>
<td>91</td>
<td>89.11</td>
</tr>
<tr>
<td>12.00</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>13.00</td>
<td>96</td>
<td>89</td>
</tr>
<tr>
<td>14.00</td>
<td>98</td>
<td>93</td>
</tr>
<tr>
<td>15.00</td>
<td>97</td>
<td>95</td>
</tr>
<tr>
<td>16.00</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

188
Resultados experimentales en vía

<table>
<thead>
<tr>
<th>Ancho de la huella [píxeles]</th>
<th>Hilo derecho</th>
<th>Sección [%]</th>
<th>Hilo izquierdo</th>
<th>Sección [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>manual</td>
<td>MEDES</td>
<td>Diferencia</td>
<td>manual</td>
</tr>
<tr>
<td>17,00</td>
<td>99</td>
<td>95</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td>18,00</td>
<td>97</td>
<td>97</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>20,00</td>
<td>101</td>
<td>98</td>
<td>3</td>
<td>84,27</td>
</tr>
<tr>
<td>21,00</td>
<td>101</td>
<td>107</td>
<td>-6</td>
<td>84,10</td>
</tr>
<tr>
<td>22,00</td>
<td>101</td>
<td>110</td>
<td>-9</td>
<td>84,27</td>
</tr>
<tr>
<td>23,00</td>
<td>97</td>
<td>107</td>
<td>-10</td>
<td>85,72</td>
</tr>
<tr>
<td>24,00</td>
<td>98</td>
<td>106</td>
<td>-8</td>
<td>85,11</td>
</tr>
<tr>
<td>25,00</td>
<td>99</td>
<td>108</td>
<td>-9</td>
<td>85,59</td>
</tr>
<tr>
<td>26,00</td>
<td>98</td>
<td>108</td>
<td>-10</td>
<td>86,78</td>
</tr>
<tr>
<td>27,00</td>
<td>96</td>
<td>107</td>
<td>-11</td>
<td>88,48</td>
</tr>
<tr>
<td>28,00</td>
<td>92</td>
<td>102</td>
<td>-10</td>
<td>88,22</td>
</tr>
<tr>
<td>29,00</td>
<td>93</td>
<td>104</td>
<td>-11</td>
<td>87,25</td>
</tr>
<tr>
<td>30,00</td>
<td>95</td>
<td>105</td>
<td>-10</td>
<td>86,02</td>
</tr>
<tr>
<td>31,00</td>
<td>97</td>
<td>107</td>
<td>-10</td>
<td>88,16</td>
</tr>
<tr>
<td>32,00</td>
<td>93</td>
<td>103</td>
<td>-10</td>
<td>88,56</td>
</tr>
<tr>
<td>33,00</td>
<td>92</td>
<td>102</td>
<td>-10</td>
<td>88,63</td>
</tr>
<tr>
<td>34,00</td>
<td>92</td>
<td>101</td>
<td>-9</td>
<td>87,00</td>
</tr>
<tr>
<td>35,00</td>
<td>95</td>
<td>100</td>
<td>-5</td>
<td>89,95</td>
</tr>
<tr>
<td>36,00</td>
<td>89</td>
<td>99</td>
<td>-10</td>
<td>88,61</td>
</tr>
<tr>
<td>37,00</td>
<td>92</td>
<td>102</td>
<td>-10</td>
<td>87,13</td>
</tr>
<tr>
<td>38,00</td>
<td>95</td>
<td>96</td>
<td>-1</td>
<td>88,09</td>
</tr>
<tr>
<td>39,00</td>
<td>93</td>
<td>98</td>
<td>-5</td>
<td>87,18</td>
</tr>
<tr>
<td>40,00</td>
<td>95</td>
<td>100</td>
<td>-5</td>
<td>89,80</td>
</tr>
<tr>
<td>41,00</td>
<td>89</td>
<td>95</td>
<td>-6</td>
<td>88,73</td>
</tr>
<tr>
<td>42,00</td>
<td>91</td>
<td>96</td>
<td>-5</td>
<td>89,00</td>
</tr>
<tr>
<td>43,00</td>
<td>91</td>
<td>93</td>
<td>-2</td>
<td>88,24</td>
</tr>
<tr>
<td>44,00</td>
<td>92</td>
<td>95</td>
<td>-3</td>
<td>88,57</td>
</tr>
<tr>
<td>45,00</td>
<td>91</td>
<td>87</td>
<td>4</td>
<td>95</td>
</tr>
</tbody>
</table>

Tabla 5-21: Postes 160-158Ancho de la huella [píxeles] medido por el sistema MEDES y el calculado a partir del espesor medido manualmente
De los resultados de la tabla anterior, se localiza una zona donde la discrepancia en los valores es importante. Con el objeto de localizar la causa de esta discrepancia se estudió si estaba asociada a la posición de la imagen en la cámara. La distribución de la diferencia entre el valor manual y el medido por MEDES en cada una de las cinco zonas en las que se ha dividido la cámara aparece en las siguientes tablas.

<table>
<thead>
<tr>
<th>Diferencia en [píxeles]</th>
<th>Hilo Derecho</th>
<th>Hilo Izquierdo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zona 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>zona 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-9</td>
<td>0</td>
</tr>
<tr>
<td>zona 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>zona 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-8</td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>-11</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>7</td>
</tr>
<tr>
<td>zona 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabla 5-22. Diferencia [pixels] entre el valor manual y el medido por MEDES
Resultados experimentales en vía

<table>
<thead>
<tr>
<th>Zona</th>
<th>Hilo Derecho</th>
<th>Hilo Izquierdo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona 1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Zona 2</td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>Zona 3</td>
<td>-10</td>
<td>-9</td>
</tr>
<tr>
<td>Zona 4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>Zona 5</td>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

Tabla 5-23. Diferencia [pixels] entre el valor manual y el medido por MEDES. Media en cada zona de la cámara.

El problema se localiza cuando las imágenes se encuentran entre la mitad de la zona 2 y la mitad de la zona 4 de la cámara. Analizándolas se observa que la imagen que se obtiene está desenfocada. El desenfoque de la imagen no es detectable mediante el histograma ya que no hay amplificación del ruido, sólo se produce un ensanchamiento de la base.

5.5 Dinámica del algoritmo

En este apartado se va a evaluar si partiendo de condiciones distintas se llega a los mismos resultados.

Para realizar el estudio se tienen los ficheros de auscultación adquiridos con distintos tiempos de integración y las medidas manuales del espesor. A cada uno de los ficheros se les aplica el algoritmo, obteniéndose el tiempo de integración óptimo con el que habría que adquirir la siguiente imagen.

Con los datos obtenidos se va a establecer si el valor del tiempo de integración óptimo depende de las condiciones de las que se parte, es decir, del tiempo de integración con el que se ha adquirido la imagen a la que se le aplica el algoritmo.

También se ha hecho un estudio comparativo de los espesores obtenidos, tomando como valor de referencia el valor del espesor medido manualmente.

Se han evaluado dos tramos, en recta y en curva:

- Perfil 156 - Perfil 162. Tramo en recta en el que se han tomado imágenes con tiempos de integración de 300µs, 320µs, 400µs y 520µs. Cuando se realizó el estudio para dividir el trayecto Pozuelo–Las Rozas en varios tramos, se estableció que el tiempo de integración óptimo para esta zona era de 300µs.
- Perfil 328 - Perfil 314. Tramo en curva en el que se han tomado imágenes con tiempos de integración de 280µs, 320µs y 400µs y 520µs. El tiempo de integración óptimo calculado en el apartado 5.3.1 para este tramo fue de 400µs.
5.5.1 Tramo en recta: Perfil 156-Perfil 162

En las siguientes tablas se muestran los resultados obtenidos al aplicar el algoritmo a cada uno de los ficheros.

| Tiempo de integración al aplicar el algoritmo a ficheros obtenidos con distintos tiempos de integración |
|---|---|---|---|
| Auscultación con 300µs | Auscultación con 320µs | Auscultación con 400µs | Auscultación con 520µs |
| 1/4 Vano P156-P158 | 300 | 320 | 280 | 364 |
| P158-P160 | 300 | 320 | 280 | 364 |
| P160-P162 | 300 | 320 | 400 | 364 |
| 1/4 Vano P156-P158 | 300 | 320 | 380 | 208 |
| P158-P160 | 300 | 224 | 200 | 322 |
| P160-P162 | 300 | 320 | 280 | 208 |

Tabla 5-24. Resultados de aplicar el algoritmo a ficheros obtenidos con distintos tiempos de integración. Perfil 156 -162

Con los datos de la tabla anterior, se puede decir que aún partiendo de tiempos de integración distintos, al aplicar el algoritmo se obtiene resultados similares, situándose el tiempo de integración óptimo en un intervalo de 100µs.

De acuerdo con los resultados del estudio de la variación del ancho de la huella con el tiempo de integración (ver apartado 4.2.2), esta variación de 100µs en el tiempo de integración, considerando que estamos en la zona estable de la curva, debe traducirse en una variación en el ancho de la huella entre 1 ó 2 píxeles.

A continuación, para verificar en cuánto se ve afectada la medida del espesor se van a comparar los valores medidos manualmente y los obtenidos por el sistema MEDES, a partir de las imágenes adquiridas con el tiempo de integración determinado por el algoritmo. No se han podido adjuntar todos los valores ya que hay tiempos de integración, como por ejemplo 200µs, con los que no se realizaron las auscultaciones.

<table>
<thead>
<tr>
<th>Postes 158-160.1/4 Vano.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auscultación con 300µs</td>
</tr>
<tr>
<td>T.Integración resultado del algoritmo</td>
</tr>
<tr>
<td>Espesor [mm]</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,03 mm</td>
</tr>
<tr>
<td>Sección útil: 86,48%</td>
</tr>
</tbody>
</table>

Resultados experimentales en vía

<table>
<thead>
<tr>
<th>Postes 160-162.1/4 Vano.</th>
<th>Auscultación con 300µs</th>
<th>Auscultación con 320µs</th>
<th>Auscultación con 400µs</th>
<th>Auscultación con 520µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Integración resultado del algoritmo</td>
<td>300</td>
<td>320</td>
<td>400</td>
<td>364</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>10,58</td>
<td>10,59</td>
<td>10,59</td>
<td>10,58</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,59 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección útil: 91,14%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postes 156-158.1/2 Vano.</th>
<th>Auscultación con 300µs</th>
<th>Auscultación con 320µs</th>
<th>Auscultación con 400µs</th>
<th>Auscultación con 520µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Integración resultado del algoritmo</td>
<td>300</td>
<td>320</td>
<td>280</td>
<td>364</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>9,71</td>
<td>9,86</td>
<td>9,71</td>
<td>9,90</td>
</tr>
<tr>
<td>Medida manual del espesor: 9,82mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección útil: 84,6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5-27. Valor del espesor. Postes 156-158. 1/2 Vano. Hilo izquierdo

<table>
<thead>
<tr>
<th>Postes 160-162.1/2 Vano.</th>
<th>Auscultación con 300µs</th>
<th>Auscultación con 320µs</th>
<th>Auscultación con 400µs</th>
<th>Auscultación con 520µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Integración resultado del algoritmo</td>
<td>300</td>
<td>320</td>
<td>280</td>
<td>208</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>10,05</td>
<td>10,33</td>
<td>10,05</td>
<td>No medido</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,50 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección útil: 90,43%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerando los datos de las tablas anteriores, independientemente del tiempo de integración del que se parta, si se aplica el algoritmo y se adquiere la imagen con el tiempo de integración determinado por él, el error cometido al medir el espesor con el tiempo de integración determinado por el algoritmo no es superior al 1%, salvo para la mitad del vano entre los postes 160 y 162 en el que el error es del 4%.

5.5.2 Tramo en curva: Perfil 328-Perfil 318

Tramo en curva en el que se han tomado imágenes con tiempos de integración de 280µs, 320 µs y 400µs y 520µs.
Resultados experimentales en vía

En la siguiente tabla se muestran los datos del estudio realizado en los centros de los vanos entre los postes 328 y 318.

<table>
<thead>
<tr>
<th>Vano</th>
<th>P328-P326</th>
<th>P326-P324</th>
<th>P324-P322</th>
<th>P322-320</th>
<th>P320-318</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de integración</td>
<td>280 µs</td>
<td>320 µs</td>
<td>400 µs</td>
<td>364 µs</td>
<td>400 µs</td>
</tr>
<tr>
<td></td>
<td>280 µs</td>
<td>320 µs</td>
<td>400 µs</td>
<td>440 µs</td>
<td>440 µs</td>
</tr>
</tbody>
</table>

Tabla 5-29. Resultados de aplicar el algoritmo a ficheros obtenidos con distintos tiempos de integración. Perfil 328-318

El comportamiento del algoritmo en curva, es similar al encontrado con los ficheros adquiridos en recta, obteniéndose un intervalo para el tiempo de integración en torno a 100 µs.

<table>
<thead>
<tr>
<th>Postes 328-326.1/2 Vano.</th>
<th>Auscultación con 280 µs</th>
<th>Auscultación con 320 µs</th>
<th>Auscultación con 400 µs</th>
<th>Auscultación con 520 µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Integración resultado del algoritmo</td>
<td>280 µs</td>
<td>320 µs</td>
<td>400 µs</td>
<td>364 µs</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>9,76</td>
<td>9,68</td>
<td>9,75</td>
<td>9,70</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,22 mm</td>
<td>Sección útil: 88,12%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5-30. Valor del espesor. Postes 328-326. ½ Vano. Hilo derecho

<table>
<thead>
<tr>
<th>Postes 326-324.1/2 Vano.</th>
<th>Auscultación con 280 µs</th>
<th>Auscultación con 320 µs</th>
<th>Auscultación con 400 µs</th>
<th>Auscultación con 520 µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Integración resultado del algoritmo</td>
<td>280 µs</td>
<td>320 µs</td>
<td>400 µs</td>
<td>364 µs</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>10,42</td>
<td>10,30</td>
<td>10,13</td>
<td>10,20</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,48 mm</td>
<td>Sección útil: 90,27%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados experimentales en vía

<table>
<thead>
<tr>
<th>Postes 324-322.1/2 Vano.</th>
<th>Auscultación con 280µs</th>
<th>Auscultación con 320µs</th>
<th>Auscultación con 400µs</th>
<th>Auscultación con 520µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Integración resultado del algoritmo</td>
<td>280</td>
<td>320</td>
<td>400</td>
<td>440</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>10,04</td>
<td>9,95</td>
<td>9,95</td>
<td>No medido</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,52 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección útil: 90,60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5-32. Valor del espesor. Postes 324-322. ½ Vano. Hilo derecho

<table>
<thead>
<tr>
<th>Postes 322-320.1/2 Vano.</th>
<th>Auscultación con 280µs</th>
<th>Auscultación con 320µs</th>
<th>Auscultación con 400µs</th>
<th>Auscultación con 520µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Integración resultado del algoritmo</td>
<td>280</td>
<td>320</td>
<td>400</td>
<td>440</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>10,27</td>
<td>10,02</td>
<td>9,82</td>
<td>No medido</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,51 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección útil: 90,51%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postes 320-318.1/2 Vano.</th>
<th>Auscultación con 280µs</th>
<th>Auscultación con 320µs</th>
<th>Auscultación con 400µs</th>
<th>Auscultación con 520µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Integración resultado del algoritmo</td>
<td>280</td>
<td>320</td>
<td>400</td>
<td>440</td>
</tr>
<tr>
<td>Espesor [mm]</td>
<td>10,43</td>
<td>10,29</td>
<td>10,29</td>
<td>No medido</td>
</tr>
<tr>
<td>Medida manual del espesor: 10,43 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección útil: 90,00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5-34. Valor del espesor. Postes 320-318. ½ Vano. Hilo derecho

Para este tramo, los errores respecto al valor medido manualmente son ligeramente superiores, con un valor promedio del 3,5%. En todos los casos el valor calculado por el sistema MEDES es inferior al medido con el calibre, es decir, el sistema mide un ancho de huella mayor que el real.

5.6 Conclusiones

En este capítulo se ha analizado el comportamiento en vía del algoritmo de control del tiempo de integración. Para ello se ha auscultado el tramo Pozuelo-Las Rozas con distintos tiempos de integración. Asimismo se ha medido manualmente el espesor en
Resultados experimentales en vía

varias zonas del trayecto, para poder compararlas con las medidas que se obtienen con el tiempo de integración determinado por el algoritmo.

La primera conclusión que se puede deducir del análisis de los datos es que el comportamiento en curva y en recta es similar.

En cuanto a la evaluación cuantitativa, el error promedio cometido al comparar con el espesor medido manualmente, está alrededor del 3%, aunque existen zonas puntuales con errores del 8%. Considerando que las tolerancias de fabricación del hilo de contacto pueden introducir errores en torno al 2% para hilos con sección útil del 84%, que es aproximadamente el valor que se tiene en los tramos auscultados, los resultados al aplicar el algoritmo, en cuanto a la precisión en la medida se pueden considerar satisfactorios.

Por otra parte hay que señalar que prácticamente en todas las zonas los valores del espesor medidos manualmente son mayores que los determinados por el sistema MEDES. Es decir, MEDES mide un mayor ancho de huella.

Debido a la variabilidad con la que se establece el valor de referencia parece más interesante la evaluación cualitativa. Al comparar los gráficos que se obtiene al auscultar con un tiempo de integración fijo y al aplicar el algoritmo es significativa la reducción en la dispersión de las medidas.

En cuanto a la dinámica del algoritmo, aún partiendo de tiempos de integración distintos, se obtiene resultados similares, situándose el tiempo de integración óptimo en un intervalo de 100µs. Se ha verificado que esta variación en el tiempo de integración, se traduce en 1 ó 2 píxeles en la medida del ancho de la huella.

Del estudio realizado con las medias manuales cada 20 centímetros se ha puesto de manifiesto una de las limitaciones del algoritmo. El desenfoque de la imagen no es detectable con el algoritmo, ya que el histograma no se ve afectado, al no producirse una amplificación del ruido.

Otro de los problemas detectados y que no soluciona el algoritmo son las variaciones de iluminación dentro de una misma cámara, ya que el tiempo de integración es común a toda la cámara.

Una posible solución podría ser la siguiente. Por una parte, al igual que se han establecido las relaciones de niveles de iluminación entre cámaras se podría hacer para las distintas zonas de la cámara. A esto habría que añadir el dotar al algoritmo de capacidad para saber donde se va adquirir la siguiente imagen. Para ello junto el histograma de la imagen, habría que enviar su posición. Con este dato no parece difícil dotar al algoritmo de capacidad “predictiva”. Sin embargo no hay que olvidar, como ya se explicó en el capítulo 3, que durante la auscultación se pueden producir pérdidas de imágenes de cualquiera de los hilos o incluso de varios a la vez, complicando el desarrollo del algoritmo. Queda planteada una de las posibles líneas de continuación del trabajo presentado en la tesis doctoral.
Capítulo 6

6 Conclusiones y líneas futuras

Del estudio realizado sobre la problemática de la medida del desgaste del hilo de contacto y de las conclusiones del análisis comparativo de los distintos sistemas desarrollados para realizar la medida de forma automática se puede concluir que el sistema MEDES ha adoptado las mejores soluciones, haciendo que sea el que ofrece mejores prestaciones y el más competitivo. Esta afirmación se ve respaldada por el hecho de que actualmente el sistema está siendo utilizado por las compañías ferroviarias española (RENFE) y francesa (SNCF).

RENFE ha patentado el sistema a nivel europeo. Además ha apostado por desarrollar un tercer equipo MEDES2000 que constituye el marco donde se ha desarrollado el trabajo de investigación que se presenta en esta tesis doctoral.

Las aportaciones del trabajo de investigación presentado se centran en la mejora de la precisión de los sistemas que miden el desgaste del hilo de contacto en las líneas electrificadas de ferrocarril.

La solución propuesta y que constituye la aportación fundamental se basa en el control en tiempo real de los parámetros de adquisición.

La originalidad de la solución radica en el empleo únicamente del tiempo de integración de los CCDs como parámetro de control, sin la necesidad de tener en cuenta otros parámetros como la ganancia o el offset de la cámara.

El sistema de control diseñado está basado en el histograma de la imagen. El uso del histograma como indicador del tiempo de integración con el que se ha adquirido la imagen es original de este trabajo de investigación.

A continuación se desglosan con mayor detalle las aportaciones realizadas en esta tesis doctoral, cuyo resultado final ha culminado con el desarrollo e implementación de un sistema de control en tiempo real del tiempo de integración de los CCDs.

- Se ha realizado un análisis exhaustivo de las variables que intervienen en los procesos de formación y procesamiento de las imágenes. Asimismo se han estudiado y cuantificado los factores que distorsionan la imagen. En base a los resultados obtenidos se han identificado como principales causas de la dispersión en las medidas la variabilidad en las propiedades reflexivas de los hilos de contacto y la no uniformidad en la distribución de la luz.
Conclusiones y líneas futuras

- Se ha propuesto un modelo original de la imagen en función de su histograma. En este modelo se evalúa con qué tiempo de integración ha sido adquirida la imagen.

- Se ha propuesto un algoritmo original de asignación de las medidas a los hilos de contacto que ha sido implementado en el equipo utilizado por la SNCF. Con este nuevo algoritmo se han solucionado los problemas de aparición e inversion de hilos dentro de una sección o cantón. Asimismo, se ha conseguido aumentar considerablemente la tasa de detección de los seccionamientos (de un 20% a un 60%).

Todos los resultados de esta tesis han sido probados experimentalmente en vía en condiciones reales de funcionamiento. Los resultados obtenidos avalan las propuestas de la tesis, obteniéndose una considerable mejora en las prestaciones del sistema, con una drástica reducción en la dispersión de las medidas y un aumento en la precisión del sistema.

Como conclusión final se puede afirmar que se ha propuesto un sistema de control del proceso de adquisición de las imágenes en los sistemas de medida del desgaste del hilo de contacto que permite adquirir las imágenes en las mejores condiciones, independientemente del hilo de contacto y de su posición. El sistema de control se caracteriza por su simplicidad y bajo coste computacional lo que ha permitido su implementación en tiempo real sin reducir las prestaciones del sistema de medida.

Como líneas futuras para la continuación de este trabajo cabría destacar las siguientes:

- Estudio de algunos de los parámetros que intervienen en la distorsión de la imagen del hilo de contacto cuyo efecto aún no ha sido cuantificado. Sería conveniente analizar en detalle las propiedades reflexivas en los bordes del hilo así como la influencia del movimiento transversal del coche laboratorio. Por otra parte, y pensando en posibles aplicaciones del sistema a otro tipo líneas como la del METRO, sería deseable realizar el estudio de la reflexión en otro tipo de catenarias como la catenaria rígida.

- En cuanto al sistema de control del tiempo de integración, una posible mejora sería hacer el control predictivo, de esta manera se podría resolver la problemática de las variaciones de iluminación dentro de una misma cámara.

- Se ha comprobado que el desenfoque en la imagen no es detectable con el algoritmo de control, ya que el histograma no se ve afectado. Como otra posible línea de continuación podría plantearse el desarrollo de un sistema que detectara si la imagen está desenfocada.

Documentación del Curso de Especialización en Tecnologías Ferroviarias organizado por el Centro de Investigación en Tecnología Ferroviaria (CITEF) en la Escuela Superior de Ingenieros Industriales de Madrid.

http://www.cybernetix.fr/
[Fagnano01] F. Fagnano y P. Raschiatore, "Use of image processing systems for automated and high speed inspection of wheel and pantograph", WCRR'01, Nov. 2001.

[Naganuma01] Y.Naganuma,H.Tanaka, “High Speed Track Inspection Car in New Dr. Yelow” WCRR'01, Nov.2001

Bibliografía

[Tecnogamma] http://www.tecnoeurope.it/

<table>
<thead>
<tr>
<th>ANEXO I</th>
<th>ESTUDIO DE LA SENSIBILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1 Sección circular</td>
<td>I-3</td>
</tr>
<tr>
<td>I.1.1 Cálculo de la sección efectiva y el espesor</td>
<td>I-3</td>
</tr>
<tr>
<td>I.1.1.1 Cálculo de la sección</td>
<td>I-3</td>
</tr>
<tr>
<td>I.1.1.2 Cálculo del espesor</td>
<td>I-3</td>
</tr>
<tr>
<td>I.1.2 Cálculo de la sensibilidad</td>
<td>I-4</td>
</tr>
<tr>
<td>I.1.2.1 Sensibilidad en el cálculo de la sección</td>
<td>I-4</td>
</tr>
<tr>
<td>I.1.2.2 Error en el cálculo de la sección</td>
<td>I-4</td>
</tr>
<tr>
<td>I.1.2.3 Sensibilidad en el cálculo del espesor</td>
<td>I-4</td>
</tr>
<tr>
<td>I.1.3 Resultados</td>
<td>I-4</td>
</tr>
<tr>
<td>I.1.3.1 Circular 107 mm²</td>
<td>I-4</td>
</tr>
<tr>
<td>I.1.3.2 Circular 120 mm²</td>
<td>I-6</td>
</tr>
<tr>
<td>I.1.3.3 Circular 150 mm²</td>
<td>I-7</td>
</tr>
<tr>
<td>I.2 Sección Oval</td>
<td>I-9</td>
</tr>
<tr>
<td>I.2.1 Cálculo de la sección efectiva y el espesor</td>
<td>I-9</td>
</tr>
<tr>
<td>I.2.1.1 Cálculo de la sección</td>
<td>I-9</td>
</tr>
<tr>
<td>I.2.1.2 Cálculo del espesor</td>
<td>I-10</td>
</tr>
<tr>
<td>I.2.2 Cálculo de la sensibilidad</td>
<td>I-10</td>
</tr>
<tr>
<td>I.2.2.1 Sensibilidad en el cálculo de la sección</td>
<td>I-10</td>
</tr>
<tr>
<td>I.2.2.2 Error en el cálculo de la sección</td>
<td>I-11</td>
</tr>
<tr>
<td>I.2.2.3 Sensibilidad en el cálculo del espesor</td>
<td>I-11</td>
</tr>
<tr>
<td>I.2.3 Resultados</td>
<td>I-12</td>
</tr>
<tr>
<td>I.2.3.1 Oval 107 mm²</td>
<td>I-12</td>
</tr>
<tr>
<td>I.2.3.2 Oval 150 mm²</td>
<td>I-13</td>
</tr>
</tbody>
</table>
ANEXO II..I-17

II ALGORITMO DE CONTROL DEL TIEMPO DE INTEGRACIÓN. ESTUDIO DE LAS MEDIDAS REALIZADAS EN ESTÁTICO..II-17

II.1 Catenaria 10-1...II-17
 II.1.1 Ancho de la huella..II-17
 II.1.2 Resultados del algoritmo...II-18

II.2 Catenaria 10-2...II-20
 II.2.1 Ancho de la huella..II-20
 II.2.2 Resultados del algoritmo...II-21

II.3 Catenaria 10-4-1...II-23
 II.3.1 Ancho de la huella..II-23
 II.3.2 Resultados del algoritmo...II-24

II.4 Catenaria 10-4-2...II-26
 II.4.1 Ancho de la huella..II-26
 II.4.2 Resultados del algoritmo...II-27
Anexo I

I Estudio de la sensibilidad

I.1 Sección circular

<table>
<thead>
<tr>
<th>Sn[mm²]</th>
<th>RENFE[mm]</th>
<th>RSNCF[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>6.12</td>
<td>6.12</td>
</tr>
<tr>
<td>120</td>
<td>6.482</td>
<td>6.425</td>
</tr>
<tr>
<td>150</td>
<td>7.25</td>
<td>7.25</td>
</tr>
</tbody>
</table>

I.1.1 Cálculo de la sección efectiva y el espesor

I.1.1.1 Cálculo de la sección

\[S_{\text{efectiva}}(Sn, d, R) := Sn - \left[\left(R^2 - \frac{d}{2} \right) \cdot \frac{\sin \left(\frac{d}{2R} \right)}{2} \right] \]

\[S_{\text{efectiva}}\%(Sn, d, R) := \frac{S_{\text{efectiva}}(Sn, d, R)}{Sn} \cdot 100 \]

I.1.1.2 Cálculo del espesor

\[e(d, R) := R \left[1 + \cos \left(\frac{d}{2} \right) \right] \]
I.1.2 Cálculo de la sensibilidad

I.1.2.1 Sensibilidad en el cálculo de la sección

\[
\frac{d}{dd} \text{Sefectiva}(Sn, d, R) \to \frac{-R}{4} + \frac{1}{4} \left(4R^2 - d^2\right)^2 - \frac{1}{4} \cdot \frac{d^2}{4R^2 - d^2} - \frac{1}{4R^2 - d^2} \cdot \frac{\left(4R^2 - d^2\right)^2}{R^2}
\]

\[
\text{Sens}(Sn, d, R, \text{Sefectiva}) := \left(\frac{d}{dd} \text{Sefectiva}(Sn, d, R)\right) \cdot \frac{d}{\text{Sefectiva}(Sn, d, R)}
\]

I.1.2.2 Error en el cálculo de la sección

\[
\text{error}(d, \text{precision}, Sn, R, \text{Sefectiva}) := \frac{\text{precision}}{\text{Sens}(Sn, d, R, \text{Sefectiva})} \cdot d
\]

I.1.2.3 Sensibilidad en el cálculo del espesor

\[
\frac{d}{dd} e(d, R) \to -\frac{1}{2} \cdot \frac{1}{d}
\]

\[
2 \cdot R \left(4 - \frac{d^2}{R^2}\right)
\]

\[
\text{SE}(d, R) := \left(\frac{d}{dd} e(d, R)\right) \cdot \frac{d}{e(d, R)}
\]

\[
\text{SEA}(d, R) := |\text{SE}(d, R)|
\]

I.1.3 Resultados

I.1.3.1 Circular 107 mm²

\[
\text{Sn} := 107
\]

\[
\text{R} := 6.12
\]

\[
\text{d} := 11.394
\]
Anexos

<table>
<thead>
<tr>
<th>precision</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sefectiva(Sn, d, R)</td>
<td>74.901</td>
</tr>
<tr>
<td>Sefectiva% (Sn, d, R)</td>
<td>70.001</td>
</tr>
<tr>
<td>SE(d, R)</td>
<td>-1.738</td>
</tr>
<tr>
<td>Sens(Sn, d, R, Sefectiva)</td>
<td>-2.21</td>
</tr>
<tr>
<td>error(d, precision, Sn, R, Sefectiva)</td>
<td>-0.258</td>
</tr>
<tr>
<td>d := 11.715</td>
<td></td>
</tr>
<tr>
<td>Sefectiva(Sn, d, R)</td>
<td>69.551</td>
</tr>
<tr>
<td>Sefectiva% (Sn, d, R)</td>
<td>65.001</td>
</tr>
<tr>
<td>SE(d, R)</td>
<td>-2.453</td>
</tr>
<tr>
<td>Sens(Sn, d, R, Sefectiva)</td>
<td>-3.262</td>
</tr>
<tr>
<td>error(d, precision, Sn, R, Sefectiva)</td>
<td>-0.18</td>
</tr>
<tr>
<td>d := 11.951</td>
<td></td>
</tr>
<tr>
<td>Sefectiva(Sn, d, R)</td>
<td>64.2</td>
</tr>
<tr>
<td>Sefectiva% (Sn, d, R)</td>
<td>60</td>
</tr>
<tr>
<td>Sens(Sn, d, R, Sefectiva)</td>
<td>-5.036</td>
</tr>
<tr>
<td>SE(d, R)</td>
<td>-3.636</td>
</tr>
<tr>
<td>error(d, precision, Sn, R, Sefectiva)</td>
<td>-0.119</td>
</tr>
</tbody>
</table>

Figura I-1. Sección circular 107 mm2. Sensibilidad en el cálculo de la sección y el espesor
Figura I-2 Sección circular 107 mm². Error

I.1.3.2 Circular 120 mm²

\[
\begin{align*}
S_n & := 120 \\
R & := 6.482 \\
d & := 12.068 \\
\text{precision} & := 0.05 \\
\text{Sefectiva}(S_n, d, R) & = 84 \\
\text{Sefectiva}\%(S_n, d, R) & = 70 \\
\text{Sens}(S_n, d, R, \text{Sefectiva}) & = -2.209 \\
SE(d, R) & = -1.738 \\
\text{error}(d, \text{precision}, S_n, R, \text{Sefectiva}) & = -0.273 \\
d & := 12.408 \\
\text{Sefectiva}(S_n, d, R) & = 78.002 \\
\text{Sefectiva}\%(S_n, d, R) & = 65.001 \\
SE(d, R) & = -2.452 \\
\text{Sens}(S_n, d, R, \text{Sefectiva}) & = -3.26 \\
\text{error}(d, \text{precision}, S_n, R, \text{Sefectiva}) & = -0.19 \\
\end{align*}
\]

\[
\begin{align*}
d & := 12.658 \\
\text{Sefectiva}(S_n, d, R) & = 72 \\
\text{Sefectiva}\%(S_n, d, R) & = 60 \\
SE(d, R) & = -3.632 \\
\text{Sens}(S_n, d, R, \text{Sefectiva}) & = -5.033 \\
\text{error}(d, \text{precision}, S_n, R, \text{Sefectiva}) & = -0.126 \\
\end{align*}
\]
Figura I-3. Sección circular 120 mm² Sensibilidad en el cálculo de la sección y el espesor

Figura I-4. I-5 Sección circular 120 mm². Error

1.1.3.3 Circular 150 mm²

\[
\begin{align*}
 S_n & := 150 \\
 R & := 7.25 \\
 d & := 13.4954 \\
 \text{precision} & := 0.05 \\
 \text{Sefectiva}(S_n, d, R) & = 105 \\
 \text{Sefectiva\%}(S_n, d, R) & = 70 \\
 \text{Sens}(S_n, d, R, \text{Sefectiva}) & = -2.208 \\
 \text{SE}(d, R) & = -1.735 \\
 \text{error}(d, \text{precision}, S_n, R, \text{Sefectiva}) & = -0.306 \\
 d & := 13.876 \\
 \text{Sefectiva}(S_n, d, R) & = 97.509 \\
 \text{Sefectiva\%}(S_n, d, R) & = 65.006 \\
 \text{SE}(d, R) & = -2.446
\end{align*}
\]
Sens(Sn, d, R, Sefectiva) = −3.256
error(d, precision, Sn, R, Sefectiva) = −0.213

d := 14.156

Sefectiva(Sn, d, R) = 90.003
Sefectiva%(Sn, d, R) = 60.002
SE(d, R) = −3.622
Sens(Sn, d, R, Sefectiva) = −5.024
error(d, precision, Sn, R, Sefectiva) = −0.141

Sn := 15
R := 7.2

d := 12.3

precision := 0.05
Sefectiva(Sn, d, R) = 119.983
Sefectiva%(Sn, d, R) = 79.989
Sens(Sn, d, R, Sefectiva) = −1.028
SE(d, R) = −0.904
error(d, precision, Sn, R, Sefectiva) = −0.6

Figura I-6. Sección circular 150 mm². Sensibilidad en el cálculo de la sección y el espesor
I.2 Sección Oval

<table>
<thead>
<tr>
<th>Sn[mm²]</th>
<th>Saux[m²]</th>
<th>R[mm]</th>
<th>r[mm]</th>
<th>dc[mm]</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>112.3297</td>
<td>15.85</td>
<td>6.43</td>
<td>8.20456</td>
<td>15°</td>
</tr>
<tr>
<td>150</td>
<td>159.8924256</td>
<td>20</td>
<td>7.55</td>
<td>10.3527</td>
<td>15°</td>
</tr>
</tbody>
</table>

I.2.1 Cálculo de la sección efectiva y el espesor

I.2.1.1 Cálculo de la sección

\[
\text{Sefectiva}(Sn, Saux, R, r, d, dc) := \begin{cases}
Sn - \left(R^2 \cdot \text{asín} \left(\frac{d}{2 \cdot R} \right) \right) - \frac{d}{2} \cdot \sqrt{R^2 - \left(\frac{d}{2} \right)^2} & \text{if } d < dc \\
Saux - \left(r^2 \cdot \text{asín} \left(\frac{d}{2 \cdot r} \right) \right) - \frac{d}{2} \cdot \sqrt{r^2 - \left(\frac{d}{2} \right)^2} & \text{if } d > dc
\end{cases}
\]

Soval(Sn, Saux, d, R, r) := Sn - \left(R^2 \cdot \text{asín} \left(\frac{d}{2 \cdot R} \right) \right) - \frac{d}{2} \cdot \sqrt{R^2 - \left(\frac{d}{2} \right)^2} \quad d<dc

Scircular(Sn, Saux, d, R, r) := Saux - \left(r^2 \cdot \text{asín} \left(\frac{d}{2 \cdot r} \right) \right) - \frac{d}{2} \cdot \sqrt{r^2 - \left(\frac{d}{2} \right)^2} \quad d>dc
I.2.1.2 Cálculo del espesor

e(Sn, Saux, R, r, d, dc, θ) := \begin{cases}
 r \left(1 + \cos \left(\frac{dc}{2r} \right) \right) + R \left(\cos \left(\frac{d}{2R} \right) \right) - \cos(\theta) & \text{if } d < dc \\
 r \left(1 + \cos \left(\frac{dc}{2r} \right) \right) & \text{if } d > dc
\end{cases}

eoval(Sn, Saux, R, r, d, dc, θ) := r \left(1 + \cos \left(\frac{dc}{2r} \right) \right) + R \left(\cos \left(\frac{d}{2R} \right) \right) - \cos(\theta)

ecircular(Sn, Saux, R, r, d) := r \left(1 + \cos \left(\frac{d}{2r} \right) \right)

I.2.2 Cálculo de la sensibilidad

I.2.2.1 Sensibilidad en el cálculo de la sección

d<dc

\[\frac{d}{dd} eoval(Sn, Saux, d, R, r) \rightarrow -\frac{R}{4} + \frac{1}{4} \left(4R^2 - d^2 \right)^{\frac{1}{2}} - \frac{1}{4} \frac{d^2}{4R^2 - d^2} \]

\[\frac{d}{dd} eoval(Sn, Saux, d, R, r) \rightarrow -\frac{R}{4} + \frac{1}{4} \left(4R^2 - d^2 \right)^{\frac{1}{2}} - \frac{1}{4} \frac{d^2}{4R^2 - d^2} \]

d>dc

\[\frac{d}{dd} ecircular(Sn, Saux, d, R, r) \rightarrow -\frac{R}{4} + \frac{1}{4} \left(4r^2 - d^2 \right)^{\frac{1}{2}} - \frac{1}{4} \frac{d^2}{4r^2 - d^2} \]

Senscircular(Sn, Saux, d, R, r) := \left(\frac{d}{dd} ecircular(Sn, Saux, d, R, r) \right) \frac{d}{ecircular(Sn, Saux, d, R, r)}
Anexos

\begin{align*}
\text{Sensoval (Sn, Saux, d, R, r)} & := \left(\frac{d}{dd} \text{Soval (Sn, Saux, d, R, r)}\right) \frac{d}{\text{Soval (Sn, Saux, d, R, r)}} \\
& \left(\frac{-1}{2} \frac{R}{\sqrt{1 - \frac{d^2}{4 R^2}}} + \frac{1}{4} \sqrt{4 R^2 - d^2} - \frac{1}{4} \frac{d^2}{\sqrt{4 R^2 - d^2}}\right) \left(\frac{d}{\text{Soval (Sn, Saux, d, R, r)}}\right)
\end{align*}

1.2.2.2 Error en el cálculo de la sección

\[
\text{error (d, precision, Sn, R, Saux, r)} := \frac{d}{\text{precision}} \left(\text{Senscircular (Sn, Saux, d, R, r)}\right)
\]

\[
\text{errorabs (d, precision, Sn, Saux, R, r)} := \left|\frac{d}{\text{precision}} \left(\text{Senscircular (Sn, Saux, d, R, r)}\right)\right|
\]

1.2.2.3 Sensibilidad en el cálculo del espesor

\[
d < dc \\
\frac{d}{\text{deoval (Sn, Saux, R, r, d, dc, } \theta)} \rightarrow \frac{-1}{2} \frac{d}{dd} \left(\frac{R}{\sqrt{1 - \frac{d^2}{4 R^2}}} + \frac{1}{4} \sqrt{4 R^2 - d^2} - \frac{1}{4} \frac{d^2}{\sqrt{4 R^2 - d^2}}\right)
\]

\[
d > dc \\
\frac{d}{\text{deoval (Sn, Saux, R, r, d, dc, } \theta)} \rightarrow \frac{-1}{2} \frac{d}{dd} \left(\frac{R}{\sqrt{1 - \frac{d^2}{4 R^2}}} + \frac{1}{4} \sqrt{4 R^2 - d^2} - \frac{1}{4} \frac{d^2}{\sqrt{4 R^2 - d^2}}\right)
\]

\[
\text{Senseoval (Sn, Saux, R, r, d, dc, } \theta) := \left(\frac{d}{dd} \text{deoval (Sn, Saux, R, r, d, dc, } \theta)\right) \frac{d}{\text{deoval (Sn, Saux, R, r, d, dc, } \theta)}
\]

\[
\left[\frac{2 \left(\frac{R}{\sqrt{1 - \frac{d^2}{4 R^2}}}\right)}{\frac{1}{2} \sqrt{\frac{4 - \frac{d^2}{R^2}}{4 R^2}} + \frac{1}{2} \sqrt{\frac{4 - \frac{d^2}{R^2}}{4 R^2} - \cos(\theta)}\right] \frac{d^2}{dd} \text{deoval (Sn, Saux, R, r, d)} \frac{d}{\text{deoval (Sn, Saux, R, r, d)}}
\]

\[
\text{SEcircular (Sn, Saux, R, r, d)} := \left(\frac{d}{dd} \text{deoval (Sn, Saux, R, r, d)}\right) \frac{d}{\text{deoval (Sn, Saux, R, r, d)}}
\]
Anexos

I-12

\[SE_{\text{circular}}(S_n, S_{aux}, R, r, d) \rightarrow -1 \left(\frac{d^2}{2} \right) \left(\frac{4 - \left(\frac{d^2}{r^2} \right)^2}{r^2} \right) \left(1 + \frac{1}{2} \left(4 - \left(\frac{d^2}{r^2} \right)^2 \right) \right) \]

\[\text{Scircular}(S_n, S_{aux}, d, r) := \frac{100}{S_n} \cdot \frac{\text{Scircular}(S_n, S_{aux}, d, r, r)}{\text{SE}_{\text{circular}}(S_n, S_{aux}, R, r, d)} \]

\[\text{errorEsp}(d, \text{precision}, S_n, S_{aux}, R, r) := \frac{\text{precision}}{\text{SE}_{\text{circular}}(S_n, S_{aux}, R, r, d)} \cdot d \]

\[\text{errorEsp}(d, \text{precision}, S_n, S_{aux}, R, r) := \frac{\text{precision}}{\text{SE}_{\text{circular}}(S_n, S_{aux}, R, r, d)} \cdot d \]

1.2.3 Resultados

1.2.3.1 Oval 107 mm²

\(S_n := 107 \)
\(R := 15.85 \)
\(r := 6.43 \)
\(S_{aux} := 112.329 \)
\(d := 11.27 \)
\(\text{precision} := 0.05 \)
\(\text{Scircular}(S_n, S_{aux}, d, R, r) = 85.615 \)
\(\text{Scircular}(S_n, S_{aux}, d, R, r) = 80.014 \)
\(\text{Senscircular}(S_n, S_{aux}, d, R, r) = -1.35 \)
\(\text{SE}_{\text{circular}}(S_n, S_{aux}, R, d, r) = -1.076 \)
\(\text{error}(d, \text{precision}, S_n, S_{aux}, R, r) = -0.418 \)
\(\text{errorEsp}(d, \text{precision}, S_n, S_{aux}, R, r) = -0.524 \)

\(d := 12.377 \)
\(\text{Scircular}(S_n, S_{aux}, d, R, r) = 69.556 \)
\(\text{Scircular}(S_n, S_{aux}, d, R, r) = 65.005 \)
\(\text{Senscircular}(S_n, S_{aux}, d, R, r) = -3.904 \)
\(\text{SE}_{\text{circular}}(S_n, S_{aux}, R, r, d) = -2.683 \)
\(\text{error}(d, \text{precision}, S_n, S_{aux}, R, r) = -0.159 \)
\(d := 12.587 \)

\(\text{Scircular}(S_n, S_{aux}, d, R, r) = 64.214 \)
\(\text{Scircular}(S_n, S_{aux}, d, R, r) = 60.013 \)
Senscircular(\(S_n, S_{aux}, d, R, r\)) = -5.891
SEcircular(\(S_n, S_{aux}, R, r, d\)) = -3.879
error(\(d, precision, S_n, S_{aux}, R, r\)) = -0.107

\(R := 15.85\)
\(r := 6.43\)
\(S_{aux} := 112.329\)^°
\(d := 2, 2.01 \ldots 12\)
precision := 0.05

Figura I-8. Sección oval 107 mm². Sensibilidad en el cálculo de la sección y el espesor

\(\text{Sensibilidad} = \text{Sensibilidadcircular}(S_n, S_{aux}, d, R, r) - \text{SEcircular}(S_n, S_{aux}, R, r, d)\)

Figura I-9. Sección oval 107 mm². Error

1.2.3.2 Oval 150 mm²

\(S_n := 150\)
R := 20
r := 7.55
Saux := 159.892425
d := 12.13
precision := 0.05
Scircular(Sn, Saux, d, R, r) = 133.99
Scircular%(Sn, Saux, d, R, r) = 89.326
Senscircular(Sn, Saux, d, R, r) = -0.741
SEcircular(Sn, Saux, R, r, d) = -0.679
error(d, precision, Sn, Saux, R, r) = -0.819
errorEsp(d, precision, Sn, Saux, R, r) = -0.893
d := 14.656:
Scircular(Sn, Saux, d, R, r) = 97.505
Scircular%(Sn, Saux, d, R, r) = 65.003
Senscircular(Sn, Saux, d, R, r) = -4.446
SEcircular(Sn, Saux, R, r, d) = -3.158
error(d, precision, Sn, Saux, R, r) = -0.165
d := 14.871:
Scircular(Sn, Saux, d, R, r) = 90.003
Scircular%(Sn, Saux, d, R, r) = 60.002
Senscircular(Sn, Saux, d, R, r) = -6.985
SEcircular(Sn, Saux, R, r, d) = -4.773

Figura I-10 Sección oval 150 mm². Sensibilidad en el cálculo de la sección y el espesor
Figura I-11 Sección oval 150 mm². Error
Anexo II

II Algoritmo de control del tiempo de integración. Estudio de las medidas realizadas en estático

II.1 Catenaria 10-1

II.1.1 Ancho de la huella

<table>
<thead>
<tr>
<th>Tint [µs]</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>56</td>
<td>55</td>
<td>63</td>
<td>61</td>
<td>8</td>
<td>49</td>
<td>52</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td>61</td>
<td>59</td>
<td>66</td>
<td>66</td>
<td>25</td>
<td>51</td>
<td>54</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>63</td>
<td>62</td>
<td>67</td>
<td>68</td>
<td>31</td>
<td>53</td>
<td>55</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td>37</td>
<td>54</td>
<td>56</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>300</td>
<td>2</td>
<td>67</td>
<td>66</td>
<td>70</td>
<td>72</td>
<td>42</td>
<td>55</td>
<td>57</td>
<td>53</td>
<td>49</td>
</tr>
<tr>
<td>350</td>
<td>14</td>
<td>68</td>
<td>67</td>
<td>71</td>
<td>73</td>
<td>45</td>
<td>56</td>
<td>58</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>400</td>
<td>25</td>
<td>69</td>
<td>68</td>
<td>73</td>
<td>74</td>
<td>47</td>
<td>56</td>
<td>59</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>450</td>
<td>45</td>
<td>70</td>
<td>69</td>
<td>74</td>
<td>75</td>
<td>49</td>
<td>57</td>
<td>58</td>
<td>55</td>
<td>52</td>
</tr>
<tr>
<td>500</td>
<td>54</td>
<td>72</td>
<td>69</td>
<td>75</td>
<td>75</td>
<td>52</td>
<td>57</td>
<td>59</td>
<td>56</td>
<td>53</td>
</tr>
<tr>
<td>550</td>
<td>56</td>
<td>72</td>
<td>69</td>
<td>77</td>
<td>76</td>
<td>53</td>
<td>57</td>
<td>59</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>600</td>
<td>58</td>
<td>73</td>
<td>70</td>
<td>79</td>
<td>77</td>
<td>54</td>
<td>57</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>650</td>
<td>61</td>
<td>73</td>
<td>71</td>
<td>80</td>
<td>79</td>
<td>56</td>
<td>58</td>
<td>62</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td>700</td>
<td>61</td>
<td>74</td>
<td>71</td>
<td>83</td>
<td>79</td>
<td>56</td>
<td>58</td>
<td>64</td>
<td>58</td>
<td>55</td>
</tr>
<tr>
<td>750</td>
<td>63</td>
<td>75</td>
<td>72</td>
<td>86</td>
<td>80</td>
<td>57</td>
<td>59</td>
<td>65</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>800</td>
<td>63</td>
<td>75</td>
<td>72</td>
<td>91</td>
<td>81</td>
<td>57</td>
<td>59</td>
<td>71</td>
<td>59</td>
<td>56</td>
</tr>
<tr>
<td>850</td>
<td>63</td>
<td>75</td>
<td>72</td>
<td>94</td>
<td>82</td>
<td>57</td>
<td>60</td>
<td>74</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>900</td>
<td>63</td>
<td>75</td>
<td>73</td>
<td>98</td>
<td>83</td>
<td>57</td>
<td>60</td>
<td>81</td>
<td>60</td>
<td>57</td>
</tr>
<tr>
<td>950</td>
<td>64</td>
<td>76</td>
<td>73</td>
<td>102</td>
<td>84</td>
<td>58</td>
<td>60</td>
<td>86</td>
<td>61</td>
<td>57</td>
</tr>
<tr>
<td>1000</td>
<td>63</td>
<td>76</td>
<td>73</td>
<td>108</td>
<td>85</td>
<td>58</td>
<td>61</td>
<td>91</td>
<td>62</td>
<td>57</td>
</tr>
</tbody>
</table>

Tabla II-1. Catenaria 10-1. Ancho de la huella
II.1.2 Resultados del algoritmo

Tabla II-2. Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-1. Altura mínima

<table>
<thead>
<tr>
<th>Cámara 1</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>1,19</td>
<td>13,5</td>
<td>26,1</td>
<td>21,6</td>
<td>18,1</td>
<td>17,0</td>
<td>16,7</td>
<td>9,92</td>
<td>6,08</td>
<td>3,92</td>
<td>3,26</td>
<td>3,38</td>
<td>3,60</td>
<td>3,22</td>
<td>3,09</td>
<td>2,38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b/d</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>112</td>
<td>7,61</td>
<td>4,54</td>
<td>3,35</td>
<td>2,26</td>
<td>1,27</td>
<td>0,61</td>
<td>0,32</td>
<td>0,15</td>
<td>0,09</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c/d</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>18,4</td>
<td>4,13</td>
<td>2,52</td>
<td>1,93</td>
<td>1,44</td>
<td>1,28</td>
<td>0,80</td>
<td>0,61</td>
<td>0,45</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alg</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 2</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>3.43</td>
<td>3.77</td>
<td>2.37</td>
<td>3.29</td>
<td>3.58</td>
<td>2.53</td>
<td>2.67</td>
<td>2.47</td>
<td>2.77</td>
<td>3.90</td>
<td>4.14</td>
<td>3.90</td>
<td>3.48</td>
<td>4.40</td>
<td>6.17</td>
<td>7.25</td>
<td>8.00</td>
<td>9.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b/d</td>
<td>16.7</td>
<td>0.11</td>
<td>0.13</td>
<td>0.10</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>c/d</td>
<td>15.2</td>
<td>0.39</td>
<td>0.29</td>
<td>0.19</td>
<td>0.11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 3</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>2.33</td>
<td>2.54</td>
<td>1.93</td>
<td>0.71</td>
<td>1.22</td>
<td>2.17</td>
<td>1.80</td>
<td>1.64</td>
<td>1.69</td>
<td>2.17</td>
<td>2.12</td>
<td>2.31</td>
<td>1.93</td>
<td>2.45</td>
<td>2.75</td>
<td>3.09</td>
<td>2.86</td>
<td>2.52</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>b/d</td>
<td>7.97</td>
<td>0.25</td>
<td>0.15</td>
<td>0.16</td>
<td>0.10</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>c/d</td>
<td>4.08</td>
<td>0.52</td>
<td>0.21</td>
<td>0.25</td>
<td>0.17</td>
<td>0.09</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 4</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>4.25</td>
<td>5.59</td>
<td>8.67</td>
<td>14.1</td>
<td>20.1</td>
<td>24.4</td>
<td>27.4</td>
<td>30.7</td>
<td>32.1</td>
<td>31.8</td>
<td>31.8</td>
<td>32.7</td>
<td>29.9</td>
<td>34.1</td>
<td>34.2</td>
<td>30.3</td>
<td>33.0</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b/d</td>
<td>0.11</td>
<td>0.07</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
<td>0.15</td>
<td>0.18</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>c/d</td>
<td>0.09</td>
<td>0.06</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alg</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 5</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>6.24</td>
<td>3.43</td>
<td>3.29</td>
<td>3.60</td>
<td>4.20</td>
<td>4.73</td>
<td>5.21</td>
<td>6.79</td>
<td>8.31</td>
<td>10.4</td>
<td>17.1</td>
<td>26.3</td>
<td>35.4</td>
<td>45.4</td>
<td>47.3</td>
<td>52.7</td>
<td>55.0</td>
<td>60.4</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td>b/d</td>
<td>0.32</td>
<td>0.05</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>c/d</td>
<td>0.21</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Alg</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Anexos
<table>
<thead>
<tr>
<th>Cámara 1</th>
<th>Tint</th>
<th>a</th>
<th>b/d</th>
<th>c/d</th>
<th>Alg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>8,63</td>
<td>6,93</td>
<td>3,33</td>
</tr>
<tr>
<td>b/d</td>
<td>201</td>
<td>1,73</td>
<td>0,43</td>
<td>0,23</td>
<td>0,19</td>
</tr>
<tr>
<td>c/d</td>
<td>27,0</td>
<td>1,09</td>
<td>0,53</td>
<td>0,32</td>
<td>0,20</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td>4</td>
<td>2,11</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td>b/d</td>
<td>0,16</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,05</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>700</td>
<td>750</td>
<td>800</td>
<td>850</td>
</tr>
<tr>
<td>a</td>
<td>7</td>
<td>8</td>
<td>2,46</td>
<td>2,56</td>
<td>3,35</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>950</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11</td>
<td>12</td>
<td>5,16</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>b/d</td>
<td>0,15</td>
<td>0,19</td>
<td>0,15</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>c/d</td>
<td>0,25</td>
<td>0,16</td>
<td>0,14</td>
<td>0,06</td>
<td>0,11</td>
</tr>
<tr>
<td>Alg</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 2</th>
<th>Tint</th>
<th>a</th>
<th>b/d</th>
<th>c/d</th>
<th>Alg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>a</td>
<td>1,63</td>
<td>2,11</td>
<td>1,02</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td>b/d</td>
<td>0,16</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>700</td>
<td>750</td>
<td>800</td>
<td>850</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>950</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11</td>
<td>12</td>
<td>5,16</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>b/d</td>
<td>0,15</td>
<td>0,19</td>
<td>0,15</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>c/d</td>
<td>0,25</td>
<td>0,16</td>
<td>0,14</td>
<td>0,06</td>
<td>0,11</td>
</tr>
<tr>
<td>Alg</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 3</th>
<th>Tint</th>
<th>a</th>
<th>b/d</th>
<th>c/d</th>
<th>Alg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>700</td>
<td>750</td>
<td>800</td>
<td>850</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>950</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11</td>
<td>12</td>
<td>5,16</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>b/d</td>
<td>0,15</td>
<td>0,19</td>
<td>0,15</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>c/d</td>
<td>0,25</td>
<td>0,16</td>
<td>0,14</td>
<td>0,06</td>
<td>0,11</td>
</tr>
<tr>
<td>Alg</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 4</th>
<th>Tint</th>
<th>a</th>
<th>b/d</th>
<th>c/d</th>
<th>Alg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>700</td>
<td>750</td>
<td>800</td>
<td>850</td>
</tr>
<tr>
<td>a</td>
<td>2,46</td>
<td>2,83</td>
<td>3,35</td>
<td>2,56</td>
<td>2,47</td>
</tr>
<tr>
<td>b/d</td>
<td>0,14</td>
<td>0,06</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>c/d</td>
<td>0,27</td>
<td>0,06</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>950</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11</td>
<td>12</td>
<td>5,16</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>b/d</td>
<td>0,15</td>
<td>0,19</td>
<td>0,15</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>c/d</td>
<td>0,25</td>
<td>0,16</td>
<td>0,14</td>
<td>0,06</td>
<td>0,11</td>
</tr>
<tr>
<td>Alg</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 5</th>
<th>Tint</th>
<th>a</th>
<th>b/d</th>
<th>c/d</th>
<th>Alg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>a</td>
<td>4,89</td>
<td>3,30</td>
<td>2,03</td>
<td>2,00</td>
<td>2,38</td>
</tr>
<tr>
<td>b/d</td>
<td>0,12</td>
<td>0,26</td>
<td>0,18</td>
<td>0,09</td>
<td>0,07</td>
</tr>
<tr>
<td>c/d</td>
<td>0,07</td>
<td>0,10</td>
<td>0,17</td>
<td>0,13</td>
<td>0,08</td>
</tr>
<tr>
<td>Alg</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

| Tabla II-3. Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-1. Altura nominal |
II.2 Catenaria 10-2

II.2.1 Ancho de la huella

<table>
<thead>
<tr>
<th></th>
<th>Catenaria 10-2</th>
<th>Altura mínima</th>
<th>Altura nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tint [µs]</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td>103</td>
<td>19</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>115</td>
<td>65</td>
</tr>
<tr>
<td>250</td>
<td>23</td>
<td>119</td>
<td>94</td>
</tr>
<tr>
<td>300</td>
<td>52</td>
<td>124</td>
<td>100</td>
</tr>
<tr>
<td>350</td>
<td>75</td>
<td>126</td>
<td>115</td>
</tr>
<tr>
<td>400</td>
<td>91</td>
<td>129</td>
<td>117</td>
</tr>
<tr>
<td>450</td>
<td>92</td>
<td>129</td>
<td>120</td>
</tr>
<tr>
<td>500</td>
<td>94</td>
<td>130</td>
<td>121</td>
</tr>
<tr>
<td>550</td>
<td>95</td>
<td>131</td>
<td>121</td>
</tr>
<tr>
<td>600</td>
<td>95</td>
<td>132</td>
<td>122</td>
</tr>
<tr>
<td>650</td>
<td>99</td>
<td>133</td>
<td>123</td>
</tr>
<tr>
<td>700</td>
<td>99</td>
<td>133</td>
<td>124</td>
</tr>
<tr>
<td>750</td>
<td>104</td>
<td>133</td>
<td>125</td>
</tr>
<tr>
<td>800</td>
<td>107</td>
<td>134</td>
<td>125</td>
</tr>
<tr>
<td>850</td>
<td>111</td>
<td>135</td>
<td>126</td>
</tr>
<tr>
<td>900</td>
<td>112</td>
<td>135</td>
<td>127</td>
</tr>
<tr>
<td>950</td>
<td>114</td>
<td>135</td>
<td>127</td>
</tr>
<tr>
<td>1000</td>
<td>116</td>
<td>135</td>
<td>127</td>
</tr>
</tbody>
</table>

Tabla II-4. Catenaria 10-2. Ancho de la huella
II.2.2 Resultados del algoritmo

<table>
<thead>
<tr>
<th>Cámara 1</th>
<th>T (ms)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b/d</td>
<td>NaN</td>
<td>NaN</td>
<td>Inf</td>
<td>Inf</td>
<td></td>
</tr>
<tr>
<td>c/d</td>
<td>NaN</td>
<td>NaN</td>
<td>Inf</td>
<td>Inf</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 2</th>
<th>T (ms)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b/d</td>
<td>0.57</td>
<td>1.54</td>
<td>0.80</td>
<td>0.56</td>
<td>0.36</td>
<td>0.20</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>c/d</td>
<td>1.44</td>
<td>0.64</td>
<td>0.50</td>
<td>0.33</td>
<td>0.33</td>
<td>0.20</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 3</th>
<th>T (ms)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b/d</td>
<td>NaN</td>
<td>2.85</td>
<td>0.65</td>
<td>0.50</td>
<td>0.50</td>
<td>0.51</td>
<td>0.48</td>
<td>0.38</td>
<td>0.29</td>
<td>0.18</td>
<td>0.12</td>
<td>0.08</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>c/d</td>
<td>1.44</td>
<td>0.64</td>
<td>0.50</td>
<td>0.33</td>
<td>0.33</td>
<td>0.20</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 4</th>
<th>T (ms)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b/d</td>
<td>0.57</td>
<td>1.54</td>
<td>0.80</td>
<td>0.56</td>
<td>0.36</td>
<td>0.20</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>c/d</td>
<td>1.44</td>
<td>0.64</td>
<td>0.50</td>
<td>0.33</td>
<td>0.33</td>
<td>0.20</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 5</th>
<th>T (ms)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b/d</td>
<td>0.57</td>
<td>1.54</td>
<td>0.80</td>
<td>0.56</td>
<td>0.36</td>
<td>0.20</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>c/d</td>
<td>1.44</td>
<td>0.64</td>
<td>0.50</td>
<td>0.33</td>
<td>0.33</td>
<td>0.20</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla II-5. Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-2. Altura mínima
Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-2. Altura nominal.

<table>
<thead>
<tr>
<th>Cámaras</th>
<th>Tint (ms)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B/Δ</td>
<td></td>
</tr>
<tr>
<td>C/Δ</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td></td>
</tr>
</tbody>
</table>

Tabla II-6, Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-2. Altura nominal

II-22
II.3 Catenaria 10-4-1

II.3.1 Ancho de la huella

<table>
<thead>
<tr>
<th>Tint [µs]</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>72</td>
<td>72</td>
<td>71</td>
<td>54</td>
<td>42</td>
<td>62</td>
<td>63</td>
<td>56</td>
<td>32</td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>66</td>
<td>45</td>
<td>63</td>
<td>64</td>
<td>59</td>
<td>46</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>78</td>
<td>79</td>
<td>77</td>
<td>70</td>
<td>54</td>
<td>64</td>
<td>66</td>
<td>62</td>
<td>59</td>
</tr>
<tr>
<td>250</td>
<td>24</td>
<td>79</td>
<td>78</td>
<td>73</td>
<td>57</td>
<td>63</td>
<td>62</td>
<td>63</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>61</td>
<td>80</td>
<td>80</td>
<td>74</td>
<td>58</td>
<td>67</td>
<td>67</td>
<td>64</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>71</td>
<td>81</td>
<td>82</td>
<td>80</td>
<td>75</td>
<td>60</td>
<td>67</td>
<td>69</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>400</td>
<td>71</td>
<td>81</td>
<td>83</td>
<td>82</td>
<td>77</td>
<td>61</td>
<td>69</td>
<td>70</td>
<td>66</td>
<td>63</td>
</tr>
<tr>
<td>450</td>
<td>72</td>
<td>81</td>
<td>83</td>
<td>82</td>
<td>79</td>
<td>61</td>
<td>71</td>
<td>74</td>
<td>67</td>
<td>64</td>
</tr>
<tr>
<td>500</td>
<td>73</td>
<td>81</td>
<td>83</td>
<td>82</td>
<td>79</td>
<td>63</td>
<td>72</td>
<td>76</td>
<td>68</td>
<td>65</td>
</tr>
<tr>
<td>550</td>
<td>73</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>80</td>
<td>63</td>
<td>73</td>
<td>80</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>600</td>
<td>73</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>82</td>
<td>63</td>
<td>74</td>
<td>86</td>
<td>70</td>
<td>67</td>
</tr>
<tr>
<td>650</td>
<td>74</td>
<td>83</td>
<td>85</td>
<td>82</td>
<td>82</td>
<td>64</td>
<td>77</td>
<td>92</td>
<td>71</td>
<td>67</td>
</tr>
<tr>
<td>700</td>
<td>75</td>
<td>84</td>
<td>86</td>
<td>83</td>
<td>83</td>
<td>66</td>
<td>79</td>
<td>97</td>
<td>72</td>
<td>67</td>
</tr>
<tr>
<td>750</td>
<td>77</td>
<td>84</td>
<td>87</td>
<td>84</td>
<td>82</td>
<td>67</td>
<td>81</td>
<td>103</td>
<td>73</td>
<td>67</td>
</tr>
<tr>
<td>800</td>
<td>77</td>
<td>84</td>
<td>87</td>
<td>84</td>
<td>81</td>
<td>67</td>
<td>85</td>
<td>109</td>
<td>76</td>
<td>67</td>
</tr>
<tr>
<td>850</td>
<td>77</td>
<td>85</td>
<td>87</td>
<td>85</td>
<td>82</td>
<td>67</td>
<td>88</td>
<td>113</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>900</td>
<td>77</td>
<td>85</td>
<td>88</td>
<td>85</td>
<td>82</td>
<td>68</td>
<td>92</td>
<td>118</td>
<td>82</td>
<td>67</td>
</tr>
<tr>
<td>950</td>
<td>78</td>
<td>85</td>
<td>89</td>
<td>86</td>
<td>82</td>
<td>69</td>
<td>98</td>
<td>124</td>
<td>84</td>
<td>68</td>
</tr>
<tr>
<td>1000</td>
<td>78</td>
<td>85</td>
<td>90</td>
<td>86</td>
<td>82</td>
<td>71</td>
<td>102</td>
<td>130</td>
<td>87</td>
<td>69</td>
</tr>
</tbody>
</table>

Tabla II-7. Catenaria 10-4-1. Ancho de la huella
II.3.2 Resultados del algoritmo

Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-4-1. Altura mínima

Cámara 1	Tint	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
a	17,4	24,6	19,0	16,3	8,87	4,27	3,22	4,22	2,54	2,52	3,99	1,92	1,60	2,79	2,12	2,70	2,63			
b/d	NaN	NaN	NaN	NaN	46,4	1,46	0,49	0,20	0,08	0,05	0,04	0,05	0,05	0,05	0,05	0,05	0,05			
c/d	NaN	NaN	NaN	NaN	NaN	13,1	4,42	1,46	0,49	0,20	0,08	0,05	0,04	0,05	0,05	0,05	0,05			
Alg	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Cámara 2	Tint	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
a	3,23	2,71	0,66	2,98	3,19	1,56	0,86	1,19	2,10	3,17	5,09	6,10	6,84	7,24	7,38	9,80	11,9	13,1		
b/d	0,41	0,10	0,05	0,06	0,04	0,03	0,02	0,02	0,02	0,02	0,04	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,02	
c/d	1,04	0,22	0,06	0,05	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	
Alg	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Cámara 3	Tint	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
a	4,96	3,29	3,41	3,78	3,17	3,54	4,00	4,49	5,04	5,54	6,93	8,23	10,16	11,6	13,8	18,5	22,4	25,3	27,1	
b/d	0,30	0,10	0,04	0,06	0,05	0,04	0,04	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,05	0,05	0,05	0,06	0,06	
c/d	0,75	0,29	0,12	0,05	0,07	0,06	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,02	
Alg	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Cámara 4	Tint	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
a	2,30	2,46	3,56	2,74	9,88	2,47	8,02	3,88	4,48	6,01	7,98	10,8	13,3	15,9	18,8	21,0	24,4	26,6	28,4	
b/d	0,60	0,19	0,19	0,07	0,05	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	
c/d	0,40	0,26	0,16	0,09	0,08	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	
Alg	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Cámara 5	Tint	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
a	8,06	5,18	4,14	4,08	4,42	2,96	2,33	3,64	4,33	4,46	4,60	3,40	3,64	3,74	4,00	4,60	5,25	7,79	9,44	
b/d	0,70	0,61	0,41	0,27	0,18	0,12	0,10	0,08	0,08	0,08	0,07	0,06	0,06	0,05	0,03	0,01	0,01	0,01	0,01	
c/d	2,13	0,46	0,40	0,20	0,13	0,08	0,09	0,09	0,07	0,08	0,04	0,05	0,04	0,02	0,02	0,02	0,02	0,02	0,02	
Alg	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Tabla II-8. Parámetros del algoritmo y resultados de aplicarlo a las imágenes de la catenaria 10-4-1. Altura mínima

Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-4-1. Altura nominal.

Cámara 1

<table>
<thead>
<tr>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.07</td>
<td>4.89</td>
<td>3.57</td>
<td>2.94</td>
<td>3.02</td>
<td>4.47</td>
<td>8.54</td>
<td>15.9</td>
<td>18.5</td>
<td>25.5</td>
<td>25.2</td>
<td>41.0</td>
<td>45.6</td>
<td>51.3</td>
<td>57.3</td>
<td>57.8</td>
<td>59.3</td>
<td>57.1</td>
<td>49.7</td>
</tr>
<tr>
<td>b/d</td>
<td>0.22</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>c/d</td>
<td>0.14</td>
<td>0.10</td>
<td>0.14</td>
<td>0.14</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Cámara 2

<table>
<thead>
<tr>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.97</td>
<td>1.25</td>
<td>2.68</td>
<td>8.51</td>
<td>12.2</td>
<td>28.4</td>
<td>32.2</td>
<td>34.7</td>
<td>38.2</td>
<td>40.9</td>
<td>41.9</td>
<td>41.4</td>
<td>39.0</td>
<td>40.5</td>
<td>44.6</td>
<td>45.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b/d</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.10</td>
<td>0.14</td>
<td>0.16</td>
<td>0.21</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c/d</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Cámara 3

<table>
<thead>
<tr>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.25</td>
<td>2.26</td>
<td>2.31</td>
<td>4.92</td>
<td>6.65</td>
<td>9.67</td>
<td>15.9</td>
<td>24.0</td>
<td>32.8</td>
<td>41.4</td>
<td>46.0</td>
<td>51.9</td>
<td>55.4</td>
<td>58.0</td>
<td>62.1</td>
<td>65.3</td>
<td>66.7</td>
<td>67.3</td>
<td>67.6</td>
</tr>
<tr>
<td>b/d</td>
<td>0.17</td>
<td>0.06</td>
<td>0.06</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
<td>0.16</td>
<td>0.23</td>
<td>0.28</td>
<td>0.35</td>
<td>0.39</td>
<td>0.41</td>
<td>0.46</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c/d</td>
<td>0.10</td>
<td>0.10</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.10</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Cámara 4

<table>
<thead>
<tr>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.03</td>
<td>2.03</td>
<td>2.63</td>
<td>3.56</td>
<td>5.34</td>
<td>9.41</td>
<td>13.1</td>
<td>21.1</td>
<td>23.5</td>
<td>26.4</td>
<td>27.7</td>
<td>29.5</td>
<td>30.0</td>
<td>30.3</td>
<td>27.8</td>
<td>26.9</td>
<td>27.1</td>
<td>26.6</td>
<td>28.0</td>
</tr>
<tr>
<td>b/d</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.12</td>
<td>0.16</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c/d</td>
<td>0.11</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Cámara 5

<table>
<thead>
<tr>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.28</td>
<td>3.40</td>
<td>3.21</td>
<td>1.35</td>
<td>3.15</td>
<td>3.00</td>
<td>4.33</td>
<td>4.91</td>
<td>4.38</td>
<td>3.57</td>
<td>2.84</td>
<td>3.30</td>
<td>4.70</td>
<td>5.75</td>
<td>7.02</td>
<td>7.69</td>
<td>7.38</td>
<td>8.17</td>
<td></td>
</tr>
<tr>
<td>b/d</td>
<td>1.62</td>
<td>0.30</td>
<td>0.38</td>
<td>0.14</td>
<td>0.09</td>
<td>0.06</td>
<td>0.13</td>
<td>0.17</td>
<td>0.09</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>c/d</td>
<td>1.09</td>
<td>0.25</td>
<td>0.37</td>
<td>0.52</td>
<td>0.21</td>
<td>0.06</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Tabla II-9. Parámetros del algoritmo y resultado al aplicarlo a las imágenes de la catenaria 10-4-1. Altura nominal
II.4 Catenaria 10-4-2

II.4.1 Ancho de la huella

<table>
<thead>
<tr>
<th></th>
<th>Catenaria 10-4-2</th>
<th>Altura mínima</th>
<th>Altura nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tint [µs]</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>1</td>
<td>66</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>350</td>
<td></td>
<td>1</td>
<td>102</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>3</td>
<td>104</td>
</tr>
<tr>
<td>450</td>
<td></td>
<td>17</td>
<td>104</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>54</td>
<td>105</td>
</tr>
<tr>
<td>550</td>
<td></td>
<td>61</td>
<td>106</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>63</td>
<td>106</td>
</tr>
<tr>
<td>650</td>
<td></td>
<td>63</td>
<td>107</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>64</td>
<td>107</td>
</tr>
<tr>
<td>750</td>
<td></td>
<td>65</td>
<td>108</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td>65</td>
<td>108</td>
</tr>
<tr>
<td>850</td>
<td></td>
<td>66</td>
<td>108</td>
</tr>
<tr>
<td>900</td>
<td></td>
<td>66</td>
<td>109</td>
</tr>
<tr>
<td>950</td>
<td></td>
<td>67</td>
<td>109</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>67</td>
<td>109</td>
</tr>
</tbody>
</table>

Tabla II.10. Catenaria 10-4-2. Ancho de la huella
Anexos

II.4.2 Resultados del algoritmo

<table>
<thead>
<tr>
<th>Cámara 1</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.32</td>
<td>5.39</td>
<td>22.3</td>
<td>24.7</td>
<td>18.5</td>
<td>25.0</td>
<td>22.5</td>
<td>18.1</td>
<td>14.1</td>
<td>10.4</td>
<td>8.97</td>
<td>6.32</td>
<td>6.67</td>
<td>6.29</td>
<td>7.26</td>
<td>7.23</td>
<td>6.94</td>
<td>6.73</td>
<td>7.04</td>
<td></td>
</tr>
<tr>
<td>b / d</td>
<td>NaN</td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
</tr>
<tr>
<td>Alg</td>
<td>0.32</td>
<td>5.39</td>
<td>22.3</td>
<td>24.7</td>
<td>18.5</td>
<td>25.0</td>
<td>22.5</td>
<td>18.1</td>
<td>14.1</td>
<td>10.4</td>
<td>8.97</td>
<td>6.32</td>
<td>6.67</td>
<td>6.29</td>
<td>7.26</td>
<td>7.23</td>
<td>6.94</td>
<td>6.73</td>
<td>7.04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 2</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.96</td>
<td>8.36</td>
<td>9.90</td>
<td>8.56</td>
<td>11.2</td>
<td>10.9</td>
<td>10.5</td>
<td>8.71</td>
<td>8.55</td>
<td>7.00</td>
<td>5.98</td>
<td>4.75</td>
<td>3.71</td>
<td>2.69</td>
<td>3.17</td>
<td>3.04</td>
<td>4.76</td>
<td>5.12</td>
<td>5.03</td>
<td></td>
</tr>
<tr>
<td>b / d</td>
<td>11.6</td>
<td>0.42</td>
<td>0.16</td>
<td>0.11</td>
<td>0.15</td>
<td>0.13</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>0.10</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>c / d</td>
<td>6.02</td>
<td>0.78</td>
<td>0.26</td>
<td>0.36</td>
<td>0.17</td>
<td>0.08</td>
<td>0.12</td>
<td>0.09</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 3</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>25.7</td>
<td>23.4</td>
<td>10.2</td>
<td>4.23</td>
<td>2.98</td>
<td>2.62</td>
<td>2.65</td>
<td>2.86</td>
<td>2.22</td>
<td>1.75</td>
<td>1.94</td>
<td>1.47</td>
<td>1.52</td>
<td>1.42</td>
<td>2.22</td>
<td>2.38</td>
<td>2.96</td>
<td>2.15</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>b / d</td>
<td>inf</td>
<td>0.71</td>
<td>1.03</td>
<td>0.61</td>
<td>0.40</td>
<td>0.26</td>
<td>0.18</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
<td>97.0</td>
<td>3.51</td>
<td>0.93</td>
<td>0.48</td>
<td>0.47</td>
<td>0.34</td>
<td>0.30</td>
<td>0.22</td>
<td>0.18</td>
<td>0.14</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 4</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>29.0</td>
<td>7.30</td>
<td>3.93</td>
<td>3.71</td>
<td>3.80</td>
<td>4.97</td>
<td>4.38</td>
<td>8.18</td>
<td>5.64</td>
<td>6.59</td>
<td>5.88</td>
<td>5.10</td>
<td>4.00</td>
<td>3.80</td>
<td>4.96</td>
<td>5.58</td>
<td>6.21</td>
<td>6.16</td>
<td>6.64</td>
<td></td>
</tr>
<tr>
<td>b / d</td>
<td>inf</td>
<td>6.82</td>
<td>0.30</td>
<td>0.08</td>
<td>0.18</td>
<td>0.30</td>
<td>0.43</td>
<td>0.40</td>
<td>0.29</td>
<td>0.18</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
<td>8.86</td>
<td>0.79</td>
<td>0.16</td>
<td>0.15</td>
<td>0.24</td>
<td>0.41</td>
<td>0.42</td>
<td>0.26</td>
<td>0.16</td>
<td>0.09</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 5</th>
<th>Tint</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>27.0</td>
<td>32.0</td>
<td>4.47</td>
<td>4.38</td>
<td>4.69</td>
<td>4.65</td>
<td>1.36</td>
<td>2.68</td>
<td>3.16</td>
<td>4.66</td>
<td>4.50</td>
<td>6.98</td>
<td>7.00</td>
<td>6.15</td>
<td>6.04</td>
<td>6.13</td>
<td>5.24</td>
<td>5.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b / d</td>
<td>NaN</td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
</tr>
<tr>
<td>Alg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Tabla II-11, Parámetros del algoritmo y resultados de aplicarlo a las imágenes de la catenaria 10-4-2. Altura mínima |</p>
<table>
<thead>
<tr>
<th>Cámara 1</th>
<th>(T)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,07</td>
<td>0,81</td>
<td>3,06</td>
<td>3,35</td>
<td>4,72</td>
<td>8,55</td>
<td>0,57</td>
<td>11,3</td>
<td>11,3</td>
<td>11,3</td>
<td>11,3</td>
<td>11,3</td>
<td>11,3</td>
<td>NaN</td>
</tr>
<tr>
<td>b / d</td>
<td>NaN</td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
</tr>
<tr>
<td>Alg.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 2</th>
<th>(T)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>0,69</td>
<td>7,83</td>
<td>21,2</td>
<td>26,1</td>
<td>23,7</td>
<td>24,5</td>
<td>19,7</td>
<td>11,6</td>
<td>7,40</td>
<td>4,30</td>
<td>3,48</td>
<td>4,09</td>
<td>3,36</td>
<td>3,28</td>
<td>3,17</td>
<td>3,33</td>
<td>3,52</td>
<td>3,26</td>
<td>3,96</td>
</tr>
<tr>
<td>b / d</td>
<td>NaN</td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
</tr>
<tr>
<td>Alg.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 3</th>
<th>(T)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>2,25</td>
<td>9,33</td>
<td>18,7</td>
<td>27,5</td>
<td>30,6</td>
<td>31,1</td>
<td>28,3</td>
<td>22,3</td>
<td>17,9</td>
<td>15,3</td>
<td>12,5</td>
<td>8,98</td>
<td>8,38</td>
<td>6,00</td>
<td>5,18</td>
<td>3,98</td>
<td>3,23</td>
<td>3,20</td>
<td>2,25</td>
</tr>
<tr>
<td>b / d</td>
<td>NaN</td>
<td>989</td>
<td>68,8</td>
<td>26,6</td>
<td>12,1</td>
<td>7,75</td>
<td>5,53</td>
<td>3,37</td>
<td>2,48</td>
<td>1,64</td>
<td>1,08</td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
<td>178</td>
<td>11,6</td>
<td>5,20</td>
<td>3,17</td>
<td>2,94</td>
<td>2,68</td>
<td>2,66</td>
<td>2,23</td>
<td>1,76</td>
<td>1,26</td>
</tr>
<tr>
<td>Alg.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 4</th>
<th>(T)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>0,00</td>
<td>0,02</td>
<td>1,17</td>
<td>3,96</td>
<td>11,7</td>
<td>21,7</td>
<td>27,7</td>
<td>28,5</td>
<td>28,2</td>
<td>22,5</td>
<td>16,2</td>
<td>9,63</td>
<td>8,49</td>
<td>6,49</td>
<td>4,64</td>
<td>3,49</td>
<td>2,23</td>
<td>1,26</td>
<td>1,12</td>
</tr>
<tr>
<td>b / d</td>
<td>NaN</td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
</tr>
<tr>
<td>Alg.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cámara 5</th>
<th>(T)</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>0,00</td>
<td>0,02</td>
<td>0,48</td>
<td>2,23</td>
<td>4,79</td>
<td>8,93</td>
<td>11,9</td>
<td>15,2</td>
<td>17,9</td>
<td>18,7</td>
<td>20,3</td>
<td>20,2</td>
<td>16,4</td>
<td>17,6</td>
<td>14,8</td>
<td>14,1</td>
<td>12,8</td>
<td>12,2</td>
<td>11,4</td>
</tr>
<tr>
<td>b / d</td>
<td>NaN</td>
</tr>
<tr>
<td>c / d</td>
<td>NaN</td>
</tr>
<tr>
<td>Alg.</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla II-12. Parámetros del algoritmo y resultados al aplicarlo a las imágenes de la catenaria 10-4-2. Altura nominal

II-28