Component-Resolved in Vitro Diagnosis in Peach-Allergic Patients

PM Gamboa,1 ML Sanz,2 M Lombardero,3 D Barber,3 R Sánchez-Monje,4 MJ Goikoetxea,2 I Antépara,1 M Ferrer,2 G Salcedo4

1 Allergy Service, Basurto Hospital, Bilbao, Spain
2 Department of Allergology and Clinical Immunology, University Clinic, University of Navarra, Pamplona, Spain
3 Departamento I+D, ALK Abelló, Madrid, Spain
4 Department of Biotechnology, ETS Ingenieros Agrónomos, UPM, Madrid, Spain

Abstract

Background: The in vitro diagnosis of pollen-related food allergy presents low specificity and reproducibility with many conventional extracts. This can be improved using natural purified allergens, recombinant purified allergens, or both.

Objective: We compared specific immunoglobulin E determination (sIgE), the basophil activation test (BAT), the histamine release test (HRT), and the cellular allergen stimulation test (CAST) using natural and recombinant allergens in the diagnosis of peach allergy.

Methods: Thirty-two peach allergic patients were studied. Skin prick tests were performed with commercial peach and extract with Mal d 1, nPru p 3, and profilin (nPho d 2). sIgE, BAT, CAST, and HRT were determined using nPru p 3, rMal d 3, rBet v 1, rMal d 1, and rMal d 4. With nPru p 3, sIgE, CAST, BAT, and HRT showed sensitivity values of 88%, 81%, 72%, and 69% and specificity values of 100%, 93%, 97%, and 83%, respectively. In patients with systemic symptoms or contact urticaria, the values were 100%, 85%, 81%, and 81%. In patients with oral allergy syndrome, sensitivity to profilins or homologues of Bet v 1 was detected in 100% of the cases by all the techniques, except by HRT with rMal d 1, which detected 66% of the cases.

Conclusions: The use of single allergens in the in vitro diagnosis of peach allergy by specific IgE determination, BAT, and CAST offers high specificity and sensitivity, with better results than the HRT.

Resumen

Antecedentes: El diagnóstico de alergia alimentaria relacionada con pólenes es poco específico y muestra una baja reproducibilidad entre los diferentes lotes de extractos convencionales utilizados para tal fin. Este problema puede minimizarse utilizando alérgenos purificados naturales y/o recombinantes.

Objetivos: En este estudio comparamos la fiabilidad diagnóstica de dichos alérgenos purificados naturales y/o recombinantes en la determinación de IgE específica, test de activación de basófilos (TAB), test de liberación de histamina (TLH), y en la producción antígeno específica de sulfidoleucoctiénos (CAST), en el diagnóstico de alergia a melocotón.

Métodos: Se incluyeron en el estudio 32 pacientes alérgicos a melocotón a los que se realizaron pruebas cutáneas (prick test) con extracto comercial de melocotón y extracto enriquecido en Mal d 1, nPru p 3 y profilina (nPho d 2). Se realizaron IgE específica, TAB, CAST y TLH utilizando nPru p 3, rMal d 3, rBet v 1, rMal d 1 y rMal d 4.

Resultados: En cuanto a los resultados obtenidos la concordancia entre las diferentes técnicas fue buena con todos los alérgenos, excepto para el test de liberación de histamina con Mal d 1 y Mal d 4. Utilizando como alérgeno nPru p 3 la IgE específica, el CAST, TAB y TLH mostraron valores de sensibilidad de 68%, 81%, 72% y 69% con unas especificidades de 100%, 93%, 97% y 83% respectivamente. En pacientes con síntomas sistémicos o con urticaria de contacto los valores de sensibilidad de dichas técnicas fueron de 100%, 85%, 81% y 81%. En los pacientes con síndrome de alergia oral la sensibilidad de las técnicas con profilina o con homólogos de Bet v 1 fue del 100% para todas las técnicas, excepto para el TLH con Mal d1 que detecta el 66% de los casos.

Conclusiones: Mediante la determinación de IgE específica, TAB y CAST con alérgenos purificados obtenemos unos altos valores de sensibilidad y especificidad en el diagnóstico in vitro de alergia a melocotón, por encima de los observados mediante TLH.

Palabras clave: Alergia a melocotón. Diagnóstico basado en componentes. Test de activación de basófilos. Determinación de sulfidoleucoctiénos.
Introduction

In the diagnosis of allergy caused by fruits and vegetable food in general, skin tests with conventional total extracts present 2 drawbacks: low specificity [1,2] and low allergenic potency [3,4]. The use of fresh fruits in skin prick testing (SPT) is an alternative with low reproducibility problems due to variations in the allergenic content of the different species [5-9].

Of all the in vitro methods available today for the diagnosis of fruit allergy, specific immunoglobulin (Ig) E determination in whole extracts presents low specificity due partly to the high content of glycoproteins with IgE-binding capacity, and to the presence of cross-reacting allergens. Natural or recombinant purified food allergens have proven useful in the diagnosis of food allergy, by overcoming the limitations of commercial extracts and fresh foods [10,11].

Different authors have validated the reliability of these allergens for in vivo diagnosis by SPT [12-16]. In the present study, we compared the reliability of specific IgE determination (sIgE) and 3 cellular techniques—the basophil activation test (BAT), the cellular allergen stimulation test (CAST), and the histamine release test (HRT)—in the diagnosis of peach allergy. We used a wide panel of recombinant allergens that include the 3 families of allergens involved in peach allergy (Southern Europe, lipid transfer protein [LTP]; Central Europe; homologues of Bet v 1; and pro-

Material and Methods

Patients and Challenge Tests

Thirty-two patients were studied (12 men, 20 women, age [SD] 26.8 [7 years]). They had all visited the allergy service of the Basurto Hospital in Bilbao, Spain, or the University Clinic of Navarre in Pamplona, Spain because of a potential peach allergy. All the patients presented symptoms compatible with peach allergy (oral allergy syndrome [OAS], contact urticaria, and/or systemic symptoms). A rubbing test with peach peel and skin tests with different allergens were performed on all patients [17]. Dermographism was ruled out in all the patients.

An open oral challenge test was performed on 26 patients starting with 1/8 of the peach weight for ethical reasons. It was not performed on patients with a recent history (<1 year) of anaphylaxis after peach ingestion and with a positive SPT result and specific IgE result to peach for ethical reasons. Anaphylaxis was defined according to the clinical criteria of Sampson [18].

The 6 patients who presented OAS underwent a double-blind oral challenge test. The allergen was prepared and weighed, and administered at an amount equivalent to 1/8 of the peach weight; each dose was duplicated every 20 minutes until the equivalent of a whole peach was reached.

The patients were classified into 3 groups according to their clinical history and oral challenge test result, as follows:

Group I: 6 peach-allergic patients with OAS only.

Group II: 20 peach-allergic patients with systemic symptoms (anaphylaxis, urticaria/angioedema).

Group III: 6 patients with peach-induced contact urticaria. The patients presented hives after contact with peach peel and all of them had a positive rubbing test result with peach peel. Within the group of OAS patients, 5 were allergic to grass pollen and 1 of them also to birch pollen.

Thirty control subjects were also selected (16 men and 14 women): 10 were healthy subjects and 20 were pollen-allergic patients (mean age 30.6 years). Among the pollen allergic patients, 16 were monosensitized to grass pollen and 3 were sensitized to grass and birch pollen.

All control subjects underwent the same in vivo and in vitro determinations as the patients—an open oral challenge test and rubbing test—and the results of both assays were negative.

Prick Test

All the patients and controls underwent prick testing following the usual technique with the most frequent inhalant allergens in our environment and peach extracts (ALK-Abelló SA, Madrid, Spain). In addition, we performed SPT with natural purified Pru p 3 (20 µg/mL), palm tree pollen profilin (nPho d 2) (50 µg/mL), and Mal d 1-enriched golden apple extract [9]. Histamine hydrochloride (10 mg/mL) and physiological serum were used as positive and negative controls, respectively. The SPT result was considered positive when the mean wheal diameter was 3 mm or greater, compared with that produced by the negative control.

In vitro tests

Allergens. We used the following recombinant allergens: rPru p 3, rMal d 3, rMal d 4, rBet v 1, and rMal d. These allergens were obtained, purified, and characterized as described elsewhere [19-21].

Specific IgE determination. Total and specific IgE determinations to apple, peach, Lolium perenne, Betula verrucosa, Artemisia vulgaris, rBet v 1, rBet v 2, and rPhl p 12 were determined by CAP (Phadia, Uppsala, Sweden) following the manufacturer’s instructions. In addition, specific IgE to rBet v 1, rMal d 1, rMal d 3, rMal d 4 and rPru p 3 was also determined using the ADVIA-Centaur platform (Bayer Diagnostics, Barcelona, Spain).

BAT. BAT was performed as previously described [15,22,23]. Briefly, blood was collected in 6-mL EDTA tubes and resuspended in 100-µg HEPES calcium buffer containing interleukin (IL) 3 (10 ng/mL).

In the cellular stimulation phase, and simultaneously with CAST, 2 final concentrations of the tested samples were assayed as follows: 2 and 0.5 mg/mL for peach peel, 2 and 0.3 mg/mL for apple peel, and 0.3 and 0.1 µg/mL for the purified recombinant allergens rPru p 3, rMal d 3, rBet v 1, rMal d 1, and rMal d 4. As a positive control, a monoclonal anti-IgE receptor antibody (Bühlmann Laboratories, Allschwil, Switzerland) at a concentration of 1 µg/mL was used.

In order to evaluate baseline values without stimulation, 50 µL of stimulation buffer was added to another well and 50 µL of cell suspension was added to all wells. Soon afterwards, plates were centrifuged at 1000g for 5 min at 4°C and 100 µL of supernatant was pipetted and saved for the sulphidoleukotriene (sLT) analysis by CAST–enzyme-
In vitro diagnosis in peach allergy

Figure. Individual results of specific IgE determination (A), basophil activation test (B), histamine release (C), and antigen-specific sulfidoleukotriene production (D) to purified and/or recombinant proteins in peach allergic patients with systemic reactions and OAS, and in pollen-allergic or healthy controls.

© 2009 Esmon Publicidad
In Vitro Tests

The results of BAT and sIgE for Pru p 3, Mal d 3, Bet v 1, Mal d 1, Bet v 2, and Phl p 12 in 20 of these patients have already been published [29]. Given the similarity of the results obtained in groups I and II and the lack of significant differences in all the in vitro and in vivo tests used, we decided to merge both groups into one. The results are summarized in the figure and in Table 1.

Table 2. Agreement Between the 4 In Vitro Techniques for the Different Allergens Studied

<table>
<thead>
<tr>
<th>Allergen</th>
<th>Prick Test</th>
<th>BAT</th>
<th>sIgE</th>
<th>CAST</th>
<th>BAT</th>
<th>sIgE</th>
<th>CAST</th>
<th>BAT</th>
<th>sIgE</th>
<th>CAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pru p 3</td>
<td>26/30</td>
<td>25/30</td>
<td>0.98</td>
<td></td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mal d 3</td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mal d 1</td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bet v 1</td>
<td>21/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mal d 4</td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BAT, basophil activation test; CAST, cellular allergen stimulation test; HRT, histamine release test; p, patients; sIgE, specific immunoglobulin E.

Results

Of the 22 patients studied, 30 presented a positive response with the pollen-induced gold apple extract. Six patients had positive in vitro results with the OAS group and clear differences with the systemic symptoms group. Of the 30 patients, only 34% (10 of 29) showed positive skin tests. The results of the 4 techniques. Sensitivity of the results obtained in groups II.

Statistical Analyses

The data were analyzed with the statistical program SPSS 13.0 (SPSS Inc., Chicago, Ill., USA). Qualitative variables were compared using the chi-square or Fisher exact test. A P value of less than .05 was considered statistically significant. The agreement between the 4 diagnostic techniques used was analyzed using the Kappa statistic. Variables were expressed as a percentage of the total number of patients with the respective diagnosis.

Table 2

<table>
<thead>
<tr>
<th>Allergen</th>
<th>Prick Test</th>
<th>BAT</th>
<th>sIgE</th>
<th>CAST</th>
<th>BAT</th>
<th>sIgE</th>
<th>CAST</th>
<th>BAT</th>
<th>sIgE</th>
<th>CAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pru p 3</td>
<td>26/30</td>
<td>25/30</td>
<td>0.98</td>
<td></td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mal d 3</td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mal d 1</td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bet v 1</td>
<td>21/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mal d 4</td>
<td>24/30</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the other 3 techniques, the sensitivity in the global study group reached 70%-80%, which increased to 80%-85% in the systemic symptoms group. The specificity of the 3 techniques, as well as CAP, was near 100% for both LTPs except in HRT with Pru p 3, which had a value of 83%. In the group of pollen-allergic controls, the specificity of specific IgE, BAT, and CAST with LTP was greater than that with peach commercial extract (P < .05).

Profilin. HRT with Mal d 4 was only positive in 1 OAS patient. Nevertheless, slgE (4 patients), BAT (5 patients), and CAST (6 patients) showed a totally different frequency of sensitization to profilin compared with the patients with systemic symptoms (with a maximum of 23% detected by CAST with Mal d 4).

Sensitizations to profilin in the control subjects were only detected with all 4 techniques in the pollenic group.

Bet v 1 homologues. The 4 techniques detected sensitization to rBet v 1 in approximately 50% of the patients with OAS. Nevertheless, as with Mal d 4, HRT only detected 1 case of sensitization to rMal d 1 in that group, whereas the other 3 techniques detected sensitization in 3-5 patients out of 6.

Specific IgE to rBet v 1 and rMal d 1 was positive in only 1 of the 26 patients with systemic symptoms, whereas in the OAS group, 3 out of 6 were positive, and they all had positive SPT results with golden apple. Only one control patient, who was allergic to birch pollen, showed positive results to rMal d 1.

Sensitization to these allergens in the pollen-allergic control group was very low (5%), as determined by any of the 4 techniques.

Agreement Between In Vitro Allergy Tests

The results are summarized in Table 2. Agreement was good and shows statistical significance between the 4 techniques used, particularly for LTP. Only 2 antigens, rMal d1 and rMal d 4, behaved differently, with no significant agreement between HRT and the other in vitro tests. This is mainly due to the low sensitivity of HRT in the OAS group when using these allergens.

The agreements are particularly good between slgE, SLT, and BAT for all the allergens tested.

Discussion

Our results show that the sensitivity of the 4 in vitro diagnostic techniques used is good, especially in the identification of patients who are sensitized to Pru p 3, which is the main allergen of peach-allergic patients in southern Europe [30].

The specificity of the 4 techniques using this allergen is also excellent, with values near 100% in slgE, CAST, and BAT. Their specificity is greater using rPru p 3 and rMal d 3 than with the commercial peach extract, which shows low specificity in the pollen-allergic control group for all the techniques used, except HRT.

These results support the use of single allergens, and help us solve one of the main problems of the conventional extracts in daily clinical practice, that is, its low specificity [1,2], particularly when these techniques are applied to pollen-allergic patients, who are the most difficult to diagnose properly [31-33].

It is worth noting that, in our study, agreement between skin prick testing and the different in vitro techniques carried out with rPru p 3 was good, as was agreement between the in vitro techniques. Therefore, the 4 in vitro techniques can be considered reliable when detecting sensitization to LTP in our peach-allergic patients.

These values are comparable to those obtained in a multicenter European study carried out in cherry-allergic patients [12]. The authors showed that the agreement between SPT and slgE was higher than 90% in patients sensitized to cherry LTP (rPru av 3).

In patients with OAS, sensitization to profilin, the predominant allergen in our environment [13,14], was identified in 80%-100% of cases by all the techniques studied except HRT. Agreement between the 4 in vitro tests is similar to those obtained with LTPs and to those of Reuter et al [12], who established agreement of almost 100% between skin testing and slgE with rPru av 4 in cherry-allergic patients. In short, and despite the small number of patients sensitized to profilins in our series, which does not enable us to obtain conclusive results, it seems that, except for HRT, all the other techniques present similar diagnostic reliability.

Regarding the results obtained with rBet v 1 and rMal d 1, the usefulness of the 4 in vitro techniques to detect sensitization is similar to that of profilins. In our study, HRT with rMal d 1 did not show significant agreement with the other techniques, and its sensitivity is particularly low in the group of patients with OAS. This result is not consistent with the findings of Purohit et al [34] in Central Europe. These authors obtained positive results with HRT to rBet v 1 in all the patients studied with OAS caused by apple allergy, although with a low correlation between HRT and specific IgE determination.

Osterballe et al [35] studied 10 patients with OAS by apple allergy, obtaining 70% sensitivity using HRT with Mal d 1. The small number of patients included in our study prevents us from comparing results. One possible explanation could be a lower degree of sensitivity among southern European patients, or a higher concentration of rBet v 1 needed to obtain a similar histamine release level in patients with OAS [35]. Nevertheless, our results in BAT are similar to those of other authors. Ebo et al [32] obtained high sensitivity and specificity values (80%) in apple-allergic patients from central Europe using BAT and an apple extract with a high Mal d 1 content. Similarly, Erdmann et al found 75% sensitivity and 80% specificity in central European birch pollen–allergic patients with OAS caused by different foods [36].

In our series, BAT detected 87% of patients with positive SPT results using Mal d 1–enriched apple extract. This result was similar to the values obtained with slgE (90%). Osterballe et al [35] obtained 100% sensitivity with slgE to rMal d 1 in central European patients with OAS to apple. Purohit et al [34] found 100% sensitivity with slgE to rBet v 1 in central European birch-allergic patients with OAS by Rosaceae. These results are similar to ours in the few patients sensitized to homologues of Bet v 1.
recombinant birch pollen allergen Bet v 1 with authentic N-
terminal, cloned in fusion with maltose-binding protein. Prot
cross-reactivity between group 1 major allergens from birch
22. Sanz ML, Maselli JP, Gamboa PM, Oehling A, Diéguez I, de
Week AL. Flow cytometric basophil activation test: A review. J
23. Sanz ML, Gamboa PM, Antépara I, Usaf C, Vila L, García-
Avilés C, Chazot M, de Week AL. Flow cytometric basophil
activation test by detection of CD63 expression in patients with
immediate-type reactions to beta-lactam antibiotics. Clin Exp
All. 2002;32:277-86.
24. De Weck AL, Sanz ML. Cellular Allergen Stimulation Test (CAST)
25. Shore PA, Burkhalter A, Cohn VH. A method for the
fluorometric assay of histamine in tissues. J Pharmacol Exp Ther.
26. Shiragian RP, Brodsky MJ. Automated histamine analysis for
in vitro allergy testing. I. A method utilizing allergen-induced
27. Gamboa PM, Sánchez-Monge R, Díaz-Perales A, Salcedo G,
Ansótegui J, Sanz ML. Latex-vegetable syndrome due to custard
apple and aubergine: new variations of the hevein symphony. J
28. Sanz ML, Ferrer M, Prieto I, Oehling A. Sulphidoleukotriene
and histamine releasability in atopic patients. Int Arch Allergy
29. Gamboa PM, Caceres O, Antepara I, Sanchez-Monge R,
Ahrazem O, Salcedo G, Barber D, Lombardero M, Sanz ML. Two
different profiles of peach allergy in the north of Spain. Allergy.
Barber D. Plant non-specific lipid transfer proteins as food and
allergens are highly prevalent in patients allergic to pollen,
32. Ebo DG, Hagedoresen MM, Bridges CH, Schuerwegh AJ, De
Ciseck LS, Stevens WJ. Flow cytometric analysis of in vitro
activated basophils, specific IgE and skin tests in the diagnosis

33. Pastorello EA, Pravettoni V, Bigi A, Qualizza R, Vasselliatti D,
Schilke ML, Stocchi I, Tedeschi A, Ansaloni R, Zarussia C. IgE-
R, Pauli G. Poor association between allergen-specific serum
immunoglobulin E levels, skin sensitivity and basophil
degranulation: a study with recombinant birch pollen allergen
Bet v 1 and an immunoglobulin E detection system measuring
immunoglobulin E capable of binding to Fe Rl. Clin Exp Allergy.
35. Osterballe M, Scheller R, Stahl Skov P, Andersen KE, Bindslev-
Jensen C. Diagnostic value of scratch-chamber test, skin prick
test, histamine release and specific IgE in birch-allergic patients
with oral allergy syndrome to apple. Allergy. 2003;58:950-3.
36. Erdmann SM, Heussen N, Moll-Slodovy S, Merk HF, Sachs B.
CD63 expression on basophils as a tool for the diagnosis of
37. Vila L, Sanz ML, Sánchez G, Usaf CG, Ferrer M, Barrio M,
Diéguez I. Study of the in vitro sulphotideoleukotriene production
Human basophil activation measured by CD63 expression and
LT4 release in IgE-mediated food allergy. Ann Allergy Asthma
different apple varieties. Ann Allergy Asthma Immunol.
2006;96:564-70.
non-specific lipid transfer proteins: An interface between

II Manuscript received July 4, 2008; accepted for
publication August 19, 2008.

II María L. Sanz
Department of Allergology and Clinical Immunology
University Clinic of Navarra
Apartado 4209
31080 Pamplona, Spain
E-mail: mlsanzlar@unav.es