Statistical characterization of noise for spatial standardization of CT scans: Enabling comparison with multiple kernels and doses

Vegas Sánchez-Ferrero, Gonzalo; Ledesma Carbayo, Maria Jesus; Washko, George R. y San José Estépar, Raúl (2017). Statistical characterization of noise for spatial standardization of CT scans: Enabling comparison with multiple kernels and doses. "Medical Image Analysis", v. 40 ; pp. 44-59. ISSN 1361-8415. https://doi.org/10.1016/j.media.2017.06.001.

Descripción

Título: Statistical characterization of noise for spatial standardization of CT scans: Enabling comparison with multiple kernels and doses
Autor/es:
  • Vegas Sánchez-Ferrero, Gonzalo
  • Ledesma Carbayo, Maria Jesus
  • Washko, George R.
  • San José Estépar, Raúl
Tipo de Documento: Artículo
Título de Revista/Publicación: Medical Image Analysis
Fecha: 1 Agosto 2017
Volumen: 40
Materias:
Palabras Clave Informales: Computerized tomography, non-stationary noise, statistical characterization
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Ingeniería Electrónica
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img] PDF (Document Portable Format) - Acceso permitido solamente a usuarios en el campus de la UPM hasta 1 Junio 2019 - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (8MB)

Resumen

Computerized tomography (CT) is a widely adopted modality for analyzing directly or indirectly functional, biological and morphological processes by means of the image characteristics. However, the potential utilization of the information obtained from CT images is often limited when considering the analysis of quantitative information involving different devices, acquisition protocols or reconstruction algorithms. Although CT scanners are calibrated as a part of the imaging workflow, the calibration is circumscribed to global reference values and does not circumvent problems that are inherent to the imaging modality. One of them is the lack of noise stationarity, which makes quantitative biomarkers extracted from the images less robust and stable. Some methodologies have been proposed for the assessment of non-stationary noise in reconstructed CT scans. However, those methods focused on the non-stationarity only due to the reconstruction geometry and are mainly based on the propagation of the variance of noise throughout the whole reconstruction process. Additionally, the philosophy followed in the state-of-the-art methods is based on the reduction of noise, but not in the standardization of it. This means that, even if the noise is reduced, the statistics of the signal remain non-stationary, which is insufficient to enable comparisons between different acquisitions with different statistical characteristics. In this work, we propose a statistical characterization of noise in reconstructed CT scans that leads to a versatile statistical model that effectively characterizes different doses, reconstruction kernels, and devices. The statistical model is generalized to deal with the partial volume effect via a localized mixture model that also describes the non-stationarity of noise. Finally, we propose a stabilization scheme to achieve stationary variance. The validation of the proposed methodology was performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The results confirmed its suitability to enable comparisons with different doses, and acquisition protocols

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Comunidad de Madrid291820Sin especificarSin especificarSin especificar
Gobierno de EspañaTEC-2013-48251-C2-2-RSin especificarSin especificarSin especificar

Más información

ID de Registro: 50704
Identificador DC: http://oa.upm.es/50704/
Identificador OAI: oai:oa.upm.es:50704
Identificador DOI: 10.1016/j.media.2017.06.001
URL Oficial: https://www.sciencedirect.com/science/article/pii/S1361841517300889?via%3Dihub
Depositado por: Memoria Investigacion
Depositado el: 14 May 2018 16:43
Ultima Modificación: 14 May 2018 16:43
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM