Percentile fragment size predictions for blasted rock and the fragmentation-energy fan

Ouchterlony, Finn; Sanchidrián Blanco, José Angel y Moser, Peter (2017). Percentile fragment size predictions for blasted rock and the fragmentation-energy fan. "Rock mechanics and rock engineering", v. 50 ; pp. 751-779. ISSN 0723-2632. https://doi.org/10.1007/s00603-016-1094-x.

Descripción

Título: Percentile fragment size predictions for blasted rock and the fragmentation-energy fan
Autor/es:
  • Ouchterlony, Finn
  • Sanchidrián Blanco, José Angel
  • Moser, Peter
Tipo de Documento: Artículo
Título de Revista/Publicación: Rock mechanics and rock engineering
Fecha: Abril 2017
Volumen: 50
Materias:
Escuela: E.T.S.I. de Minas y Energía (UPM)
Departamento: Ingeniería Geológica y Minera
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

It is shown that blast fragmentation data in the form of sets of percentile fragment sizes xP, as function of specific charge (powder factor, q) often form a set of straight lines in a log(xP) vs. log(q) diagram that tend to converge on a common focal point. This is clear for single-hole shots with normal specific charge values in specimens of virgin material and the phenomenon is called the fragmentation-energy fan. Field data from bench blasting with several holes in single or multiple rows in rock give data that scatter much more but examples show that the fragmentation data tend to form such fans. The fan behavior implies that the slopes of the straight size vs. specific charge lines in log-log space depend only on the percentile level in a given test set-up. It is shown that this property can be derived for size distribution functions of the form P[ln(x/xmax)/ln(xmax/x50)]. An example is the Swebrec function; for it to comply with the fragmentation-energy fan properties, the undulation parameter b must be constant. The existence of the fragmentation-energy fan contradicts two basic assumptions of the Kuz-Ram model; i) that the Rosin-Rammler function reproduces the sieving data well and ii) that the uniformity index n is a constant, independent of q. This favors formulating the prediction formulas instead in terms of the percentile fragment size xP for arbitrary P-values, parameters that by definition are independent of any size distribution, be it the Rosin-Rammler, Swebrec or other. A generalization of the fan behavior to include non-dimensional fragment sizes and an energy term with implicit size dependence seems possible to make.

Más información

ID de Registro: 50717
Identificador DC: http://oa.upm.es/50717/
Identificador OAI: oai:oa.upm.es:50717
Identificador DOI: 10.1007/s00603-016-1094-x
URL Oficial: https://link.springer.com/journal/603
Depositado por: Memoria Investigacion
Depositado el: 11 May 2018 08:24
Ultima Modificación: 11 May 2018 08:28
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM