Monitoring maize N status with airborne and ground level sensors

M. QUEMADA, J.L. GABRIEL, P. ZARCO-TEJADA, J. LÓPEZ-HERRERA, E. PÉREZ-MARTÍN, M. ALONSO-AYUSO

School of Agricultural Engineering, Technical University of Madrid, Spain
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
Instituto de Agricultura Sostenible (IAS-CSIC), Córdoba, Spain

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
Outline

I. Introduction:
 - Maize N dynamic
 - Available N sensors

II. Experimental setup

III. Results:
 - Fertiliser rate vs. N uptake
 - Remote sensor predicting N content
 - Scale resolution effect

IV. Conclusions

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
I. Maize N dynamic

Maize yield:
- vs. crop N uptake
- vs. N applied as fertilizer

\[y = 0.0497x - 0.349 \]
\[R^2 = 0.93 \]

\[N \text{ applied} \leq 160: \quad \text{Yield} = 5.12 + 0.045 \text{ N applied} \]
\[N \text{ applied} > 160: \quad \text{Yield} = 12.32 \]
\[R^2 = 0.96 \]

From: Quemada et al. 2014. Remote Sensing 6, 2940-2962
I. Maize N dynamic

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
I. Available N sensors

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
II. Experimental setup

Field Station “La Chimenea”
Zone: Tajo river basin
Climatic conditions:
- Mediterranean semiarid
- Monoxeric with 4 dry months (June to September)
- Average annual temperatures:
 - 20.5 ºC maximum
 - 14 ºC mean
 - 6.5 ºC minimum
- Average annual rainfall: 350 mm
- ETo 753 mm

Classification

Typic calcixerept (Soil Survey Staff, 2003)
Haplic calcisol (FAO-UNESCO, 1988)

- Silty clay loam texture pH≈8 OM≈2%
- Polygenic origin soil appropriate for irrigation
- Friable structure and porous along the profile
- Without erosion, compaction, inundation, and with low stone content throughout the profile
Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE

II. Experimental setup
II. Experimental setup

Index Definition

<table>
<thead>
<tr>
<th>Index</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAD</td>
<td>Ratio of transmitted light at the red and infrared wavelengths</td>
</tr>
<tr>
<td>Dualex® Scientific</td>
<td></td>
</tr>
<tr>
<td>Chl</td>
<td>Ratio of transmitted light at two infrared wavelengths</td>
</tr>
<tr>
<td>Flav</td>
<td>Log of the fluorescence emission ratio at the red and UV wavelengths</td>
</tr>
<tr>
<td>NBI</td>
<td>Nitrogen Balance Index = Chl / FlavI</td>
</tr>
</tbody>
</table>

Innovative solutions for a sustainable management of N in agriculture

AARHUS 26-28 JUNE
II. Experimental setup

<table>
<thead>
<tr>
<th>Index</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized difference vegetation index (NDVI)</td>
<td>$NDVI = \frac{(R_{800} - R_{670})}{(R_{800} + R_{670})}$</td>
</tr>
<tr>
<td>Renormalized difference vegetation index (RDVI)</td>
<td>$RDVI = \frac{(R_{800} - R_{670})}{(R_{800} + R_{670})^{0.5}}$</td>
</tr>
<tr>
<td>Optimized soil-adjusted vegetation index (OSAVI)</td>
<td>$OSAVI = (1 + 0.16) \times \frac{(R_{800} - R_{670})}{(R_{800} + R_{670} + 0.16)}$</td>
</tr>
<tr>
<td>Red edge reflectance index (DCNI)</td>
<td>$DCNI = \frac{R_{750}/R_{710}}{(R_{720} - R_{700})/(R_{700} - R_{670})/(R_{720} - R_{760} + 0.16)}$</td>
</tr>
<tr>
<td>Transformed Chlorophyll absorption in reflectance index (TCARI)</td>
<td>$TCARI = 3 \left[\frac{(R_{700} - R_{670})}{R_{700} - R_{550}} \right] - 0.2 \left(\frac{R_{700} - R_{550}}{R_{700}/R_{670}} \right)$</td>
</tr>
<tr>
<td>Combined TCARI/OSAVI</td>
<td>$TCARI/OSAVI$</td>
</tr>
<tr>
<td>Photochemical reflectance index (PRI)</td>
<td>$PRI = \frac{(R_{570} - R_{539})}{(R_{570} + R_{539})}$</td>
</tr>
<tr>
<td>Normalized photochemical reflectance Index (PRI norm)</td>
<td>$PRI \ norm = \frac{(R_{515} - R_{531})}{(R_{515} + R_{531})}$</td>
</tr>
<tr>
<td>Blue/green/red ratio indices</td>
<td></td>
</tr>
<tr>
<td>BGI_1</td>
<td>$BGI_1 = \frac{R_{400}}{R_{550}}$</td>
</tr>
<tr>
<td>BGI_2</td>
<td>$BGI_2 = \frac{R_{450}}{R_{550}}$</td>
</tr>
<tr>
<td>Fluorescence retrieval</td>
<td>$FLD3$ method using 2 reference bands (750; 762; 780)</td>
</tr>
</tbody>
</table>

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
III. Fertiliser rate vs. N uptake

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
III. Remote sensor predicting N content

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
III. Scale resolution effect

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE
• Proximal and airborne sensors provided useful information for the assessment of maize N nutritional status.

• Higher accuracy was obtained with indexes combining chlorophyll estimation with canopy structure (i.e. TCARI/OSAVI for airborne sensors) or with polyphenol indexes (NBI for proximal sensors, avoiding index saturation).

• The spatial resolution (SR) of the acquired image had an effect on the indexes performance: Structural indexes (NDVI, RDVI or OSAVI) presented low dependency of image SR, whereas pigment indexes (as TCARI) were highly influenced by SR because of the background and shadow effect.

• Further research is needed to identify robust indexes across species and stress levels related to plant N concentration for better monitoring crop N nutritional status.
Thank you for your attention
gabriel.jose@inia.es

Innovative solutions for a sustainable management of N in agriculture
AARHUS 26-28 JUNE