Full text
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview |
Tomé Alonso, Adrián and Salgado Álvarez de Sotomayor, Luis (2017). Detection of anomalies in surveillance scenarios using mixture models. In: "International Carnahan Conference on Security Technology (ICCST), 2017", 23/10/2017 - 26/10/2017, Madrid, España. ISBN 978-1-5386-1585-0. pp. 1-4. https://doi.org/10.1109/CCST.2017.8167830.
Title: | Detection of anomalies in surveillance scenarios using mixture models |
---|---|
Author/s: |
|
Item Type: | Presentation at Congress or Conference (Article) |
Event Title: | International Carnahan Conference on Security Technology (ICCST), 2017 |
Event Dates: | 23/10/2017 - 26/10/2017 |
Event Location: | Madrid, España |
Title of Book: | Proceedings of International Carnahan Conference on Security Technology (ICCST), 2017 |
Título de Revista/Publicación: | 2017 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST) |
Date: | December 2017 |
ISBN: | 978-1-5386-1585-0 |
ISSN: | 1071-6572 |
Subjects: | |
Freetext Keywords: | Anomaly detection, Gaussian mixture model, robust optical flow, video-surveillance |
Faculty: | E.T.S.I. Telecomunicación (UPM) |
Department: | Señales, Sistemas y Radiocomunicaciones |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview |
In this paper we present a robust and simple method for the detection of anomalies in surveillance scenarios. We use a “bottom-up” approach that avoids any object tracking, making the system suitable for anomaly detection in crowds. A robust optical flow method is used for the extraction of accurate spatio-temporal motion information, which allows to get simple but discriminative descriptors that are employed to train a Gaussian mixture model. We evaluate our system in a publicly available dataset, concluding that our method outperforms similar anomaly detection approaches but with a simpler model and low-sized descriptors.
Type | Code | Acronym | Leader | Title |
---|---|---|---|---|
Government of Spain | project RTC-2015-3527-1 | BEGISE | Unspecified | Unspecified |
Item ID: | 50878 |
---|---|
DC Identifier: | http://oa.upm.es/50878/ |
OAI Identifier: | oai:oa.upm.es:50878 |
DOI: | 10.1109/CCST.2017.8167830 |
Official URL: | https://ieeexplore.ieee.org/document/8167830/ |
Deposited by: | Memoria Investigacion |
Deposited on: | 29 May 2018 16:52 |
Last Modified: | 29 May 2018 16:52 |