Co-integration of acoustic simulation software and GIS for speech intelligibility analysis in complex multi-source acoustic environments. Application to Toledo's Cathedral

Antonio Pedrero, Luis Iglesias, Rogelio Ruiz and Cesar Díaz
Grupo de Investigación en Acústica Arquitectónica, Technical University of Madrid,

Speech intelligibility in multi-speaker environments

Assessment criteria

- Privacy distance, \(r_p \): distance from speaker where the speech transmission index falls below 0.20.
- Distraction distance, \(r_D \): distance from speaker where the speech transmission index falls below 0.50.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Distance from target speaker</th>
<th>Distance from interf. speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>(d_{ts} < r_D)</td>
<td>(d_{ts} > r_p)</td>
</tr>
<tr>
<td>Acceptable</td>
<td>(d_{ts} < r_p)</td>
<td>(d_{ts} > r_p)</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>Any distance</td>
<td>(d_{ts} < r_p)</td>
</tr>
</tbody>
</table>

Methodology

Limitations of acoustic simulation programs

- For the STI calculation, a single background noise value is set for the entire room.
- Normally, they do not allow differentiation between useful and interfering sound sources

Advantages of GIS programs

- Possibility of automating complex calculations with the data of each of the raster points.
- Multiple geographical calculation options (areas, distances, etc.).

Case Study

Study of the simultaneity of liturgical activities in the Cathedral of Toledo (S XVI)

According to historical documentation, 30,000 annual masses (100 masses / day)

Analysis of possible activity at 08:00 am