Effect of a DC Electric field on the melting temperature, nucleation and ice growth rate of the TIP4P/ICE water model

Ramírez, Jorge; Zaragoza, A.; Espinosa, J. R.; Ramos Hortal, Regina; Cobos Márquez, José Antonio; Vega, C.; Sanz, E. y Valeriani, C. (2017). Effect of a DC Electric field on the melting temperature, nucleation and ice growth rate of the TIP4P/ICE water model. En: "American Chemical Society Division of Medicinal Chemistry 254th ACS National Meeting", August 20-24, 2017, Washington DC. p. 1.

Descripción

Título: Effect of a DC Electric field on the melting temperature, nucleation and ice growth rate of the TIP4P/ICE water model
Autor/es:
  • Ramírez, Jorge
  • Zaragoza, A.
  • Espinosa, J. R.
  • Ramos Hortal, Regina
  • Cobos Márquez, José Antonio
  • Vega, C.
  • Sanz, E.
  • Valeriani, C.
Tipo de Documento: Ponencia en Congreso o Jornada (Póster)
Título del Evento: American Chemical Society Division of Medicinal Chemistry 254th ACS National Meeting
Fechas del Evento: August 20-24, 2017
Lugar del Evento: Washington DC
Título del Libro: American Chemical Society Division of Medicinal Chemistry 254th ACS National Meeting
Fecha: 2017
Materias:
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa

Resumen

Understanding the effect of electric fields on the thermal stability and phase transitions of water could have potential applications in the food industry, cryopreservation, and environmental science. In this work, we investigate the effect of a static electric field on the melting temperature (Tm), ice nucleation and ice growth rate of two phases of ice, hexagonal ice (Ih) and ferroelectric cubic ice (Icf), for the TIP4P/ICE water model. By means of direct coexistence simulations, we establish that Tm of Ice Ih is shifted toward lower values, whereas Tm of Ice Icf grows, becoming the most stable ice phase for sufficiently largevalues of the applied electric field. We also investigate ice nucleation for both ice phases under an external electric field and find that, for a given supercooling with respect to Tm, while the field slows down the nucleation rate of ice Ih significantly, it barely affects that of ice Icf, due to the enhanced ability of water molecules to orient favorably along the direction of the field in the latter phase. In terms of absolute temperature, overall ice formation is promoted by the electric field because it increases the melting point of ice Icf. Finally, we show how the electric field slows down the crystal growth of Ice Ih and increases that of Ice Icf by a factor of about two.

Más información

ID de Registro: 51091
Identificador DC: http://oa.upm.es/51091/
Identificador OAI: oai:oa.upm.es:51091
URL Oficial: https://www.acsmedchem.org/?nd=ACS-NationalAbstracts
Depositado por: Memoria Investigacion
Depositado el: 07 Ago 2018 18:35
Ultima Modificación: 07 Ago 2018 18:35
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM