Crystallization behaviour of PHBV/WS₂ inorganic nanotube nanocomposites

Tyler Silverman, Mohammed Naffakh, Carlos Marco and Gary Ellis

ETSI Industriales, UPM (tsilverman1@gmail.com)
Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)

Abstract

Using tungsten disulphide inorganic nanotubes (INT-WS₂) in organic-inorganic hybrid composite materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites [1]. Recent results have raised new expectations, since it has been observed that well-dispersed INT-WS₂ exhibit a much more prominent nucleation activity, improving the overall crystallization process of poly(L-lactic acid) (PLLA) and poly(3-hydroxybutyrate) (PHB) than specific nucleating agents or other reported nano-sized fillers, such as carbon nanotubes and graphene [2,3]. Similarly, good dispersion and interfacial adhesion of INT-WS₂ in a poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) matrix significantly influence the crystallizability of PHBV. These features may be advantageous for the enhancement of the mechanical properties and processability of this new class of WS₂-based composite materials.

Results and discussion

The major issue in expanding commercial opportunities for PLLA, PHB and related polymer materials (PHBV) is their crystallization behavior. Incorporating well-dispersed nanoparticles like INT-WS₂ into biopolymer can modify the crystallization behavior. Therefore, it is of great interest to investigate the nucleation, crystallization, and structural development of the matrix in INT-reinforced biopolymer materials. In this regard, the non-isothermal melt-crystallization of neat PHBV and its nanocomposites obtained with different INTs loadings, using a simple solution blending method, was investigated by DSC using a Perkin Elmer DSC7/Pyris differential scanning calorimeter. The results of revealed that the incorporation of INT-WS₂ in small weight percents (≤ 1.0 wt.%) dramatically accelerated the crystallization rate compared to the pure biopolymer (Figure 1). Nevertheless, for the same nanofiller loading, the improvements in crystallization temperature peak (Tₚ) for the PHBV(PLLA)-based samples are lower than those observed for the corresponding binary PHB-INT nanocomposites (Figure 2). In particular, incorporating 1.0 wt.% INT-WS₂ effectively increased the Tₚ of PHBV to a value comparable to that of BN, and greater than all other NAs. BN is currently estimated to be more expensive than INT-WS₂ and, like talc, is not a nanoparticle filler, also possibly leading to deficient mechanical reinforcement qualities that are observed with other nano-sized filler materials.

Conclusions

The results obtained from the DSC crystallization experiments, along with the good materials processability, economic and sustainability benefits, encourage further investigations in order to evaluate the full potential of these new bionanocomposites for their potential use in eco-friendly and medical applications.

Acknowledgments

This work was supported by the Spanish Ministry Economy and Competitiveness (MINECO), Project MAT2013-41021-P. MN would also like to acknowledge the MINECO for a ‘Ramón y Cajal’ Senior Research Fellowship.

References