Extension of Observed Flood Series by Combining a Distributed Hydro-Meteorological Model and a Copula-Based Model

Requena Rodríguez, Ana Isabel; Flores Montoya, Isabel; Mediero Orduña, Luis Jesús y Garrote de Marcos, Luis (2016). Extension of Observed Flood Series by Combining a Distributed Hydro-Meteorological Model and a Copula-Based Model. "Stochastic Environmental Research And Risk Assessment", v. 30 (n. 5); pp. 1363-1378. ISSN 1436-3259. https://doi.org/10.1007/s00477-015-1138-x.

Descripción

Título: Extension of Observed Flood Series by Combining a Distributed Hydro-Meteorological Model and a Copula-Based Model
Autor/es:
  • Requena Rodríguez, Ana Isabel
  • Flores Montoya, Isabel
  • Mediero Orduña, Luis Jesús
  • Garrote de Marcos, Luis
Tipo de Documento: Artículo
Título de Revista/Publicación: Stochastic Environmental Research And Risk Assessment
Fecha: Mayo 2016
Volumen: 30
Materias:
Palabras Clave Informales: Flood Stochastic Generation, Copulas, Rainfall-Runoff Modelling, Short Data Series, Flood Frequency Analysis
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Ingeniería Civil: Hidráulica y Energética [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa

Resumen

Long flood series are required to accurately estimate flood quantiles associated with high return periods, in order to design and assess the risk in hydraulic structures such as dams. However, observed flood series are commonly short. Flood series can be extended through hydro-meteorological modelling, yet the computational effort can be very demanding in case of a distributed model with a short time step is considered to obtain an accurate flood hydrograph characterisation. Statistical models can also be used, where the copula approach is spreading for performing multivariate flood frequency analyses. Nevertheless, the selection of the copula to characterise the dependence structure of short data series involves a large uncertainty. In the present study, a methodology to extend flood series by combining both approaches is introduced. First, the minimum number of flood hydrographs required to be simulated by a spatially distributed hydro-meteorological model is identified in terms of the uncertainty of quantile estimates obtained by both copula and marginal distributions. Second, a large synthetic sample is generated by a bivariate copula-based model, reducing the computation time required by the hydro-meteorological model. The hydro-meteorological modelling chain consists of the RainSim stochastic rainfall generator and the Real-time Interactive Basin Simulator (RIBS) rainfall-runoff model. The proposed procedure is applied to a case study in Spain. As a result, a large synthetic sample of peak-volume pairs is stochastically generated, keeping the statistical properties of the simulated series generated by the hydro meteorological model. This method reduces the computation time consumed. The extended sample, consisting of the joint simulated and synthetic sample, can be used for improving flood risk assessment studies.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Gobierno de EspañaCGL2011-22868Sin especificarSin especificarModelización físicamente basada para la caracterización extremal de la respuesta hidrológica de una cuenca bajo enfoque probabilístico. Aplicación a la seguridad de las presas.

Más información

ID de Registro: 51369
Identificador DC: http://oa.upm.es/51369/
Identificador OAI: oai:oa.upm.es:51369
Identificador DOI: 10.1007/s00477-015-1138-x
URL Oficial: https://link.springer.com/journal/477
Depositado por: Memoria Investigacion
Depositado el: 26 Jun 2018 16:02
Ultima Modificación: 28 Jun 2018 15:34
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM