Fully Stochastic Distributed Methodology for Multivariate Flood Frequency Analysis

Flores Montoya, Isabel; Sordo Ward, Álvaro Francisco; Mediero Orduña, Luis Jesús y Garrote de Marcos, Luis (2016). Fully Stochastic Distributed Methodology for Multivariate Flood Frequency Analysis. "Water", v. 8 (n. 6); p. 225. ISSN 2073-4441. https://doi.org/10.3390/w8060225.

Descripción

Título: Fully Stochastic Distributed Methodology for Multivariate Flood Frequency Analysis
Autor/es:
  • Flores Montoya, Isabel
  • Sordo Ward, Álvaro Francisco
  • Mediero Orduña, Luis Jesús
  • Garrote de Marcos, Luis
Tipo de Documento: Artículo
Título de Revista/Publicación: Water
Fecha: 27 Mayo 2016
Volumen: 8
Materias:
Palabras Clave Informales: Derived Flood Frequency Curve, Stochastic Rainfall Model, Distributed, Event-Based, Rainfall–Runoff Model, Probabilistic, Initial Soil Moisture
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Ingeniería Civil: Hidráulica y Energética [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (5MB) | Vista Previa

Resumen

An adequate estimation of the extreme behavior of basin response is essential both for designing river structures and for evaluating their risk. The aim of this paper is to develop a new methodology to generate extreme hydrograph series of thousands of years using an event-based model. To this end, a spatial-temporal synthetic rainfall generator (RainSimV3) is combined with a distributed physically-based rainfall?runoff event-based model (RIBS). The use of an event-based model allows simulating longer hydrograph series with less computational and data requirements but need to characterize the initial basis state, which depends on the initial basin moisture distribution. To overcome this problem, this paper proposed a probabilistic calibration simulation approach, which considers the initial state and the model parameters as random variables characterized by a probability distribution though a Monte Carlo simulation. This approach is compared with two other approaches, the deterministic and the semi-deterministic approaches. Both approaches use a unique initial state. The deterministic approach also uses a unique value of the model parameters while the semi-deterministic approach obtains these values from its probability distribution through a Monte Carlo simulation, considering the basin variability. This methodology has been applied to the Corbès and Générargues basins, in the Southeast of France. The results show that the probabilistic approach offers the best fit. That means that the proposed methodology can be successfully used to characterize the extreme behavior of the basin considering the basin variability and overcoming the basin initial state problem.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Gobierno de EspañaCGL2011-22868Sin especificarSin especificarModelación físicamente basada para la caracterización extremal de la respuesta hidrológica de una cuenca bajo enfoque probabilístico. Aplición a la seguridad de presas.
FP7283568DRIHM WebsiteCentro Internazionale in Monitoraggio Ambientale - Fondazione CIMADistributed Research Infrastructure for Hydro-Meteorology

Más información

ID de Registro: 51370
Identificador DC: http://oa.upm.es/51370/
Identificador OAI: oai:oa.upm.es:51370
Identificador DOI: 10.3390/w8060225
URL Oficial: http://www.mdpi.com/2073-4441/8/6/225
Depositado por: Memoria Investigacion
Depositado el: 26 Jun 2018 18:10
Ultima Modificación: 28 Jun 2018 08:28
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM