Multiscale Modeling of Defect Formation During Solid-Phase Epitaxy Regrowth of Silicon

Prieto de Pedro, Mónica; Romero, I. y Martín-Bragado, Ignacio (2015). Multiscale Modeling of Defect Formation During Solid-Phase Epitaxy Regrowth of Silicon. "Acta Materialia", v. 82 ; pp. 115-122. ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2014.07.067.

Descripción

Título: Multiscale Modeling of Defect Formation During Solid-Phase Epitaxy Regrowth of Silicon
Autor/es:
  • Prieto de Pedro, Mónica
  • Romero, I.
  • Martín-Bragado, Ignacio
Tipo de Documento: Artículo
Título de Revista/Publicación: Acta Materialia
Fecha: 1 Enero 2015
Volumen: 82
Materias:
Palabras Clave Informales: Solid-Phase Epitaxial Regrowth, Multiscale, Finite Element Method, Molecular Dynamics, Lattice Kinetic Monte Carlo
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Ciencia de los Materiales
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB) | Vista Previa

Resumen

This work presents a multiscale approach to understanding the defect formation during the evolution of solid-phase epitaxy regrowth in Si. A molecular dynamics (MD) simulation technique has been used to elucidate the defect formation mechanisms, as well as to determine their nature. A hybrid lattice kinetic Monte Carlo (LKMC)-finite element method (FEM) model fed by the outcome of MD was subsequently implemented. It scales up the simulation times and sizes, while reproducing the important features of the defected regrowth predicted previously. FEM calculations provide the strain pattern due to the density variation between the amorphous and crystalline phases, which is then taken into account by the LKMC model by including the effect of the strain in the rates of recrystallization. Overall, this multiscale modeling provides a physical explanation of the generation of defects and its relation with the presence of strain. The model also captures the character of formed defects. It distinguishes two types: twins formed at {111} planes and dislocations produced by the collapse of the two recrystallization fronts. Simulation results are validated by comparing them with significant experiments reported in the literature.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Gobierno de EspañaRYC-2012-10639Sin especificarSin especificarSin especificar
FP7293783MASTICFUNDACION IMDEA MATERIALESMulti Atomistic Monte Carlo Simulation of Technologically Important Crystals

Más información

ID de Registro: 52157
Identificador DC: http://oa.upm.es/52157/
Identificador OAI: oai:oa.upm.es:52157
Identificador DOI: 10.1016/j.actamat.2014.07.067
URL Oficial: https://www.sciencedirect.com/science/article/pii/S1359645414005850
Depositado por: Memoria Investigacion
Depositado el: 13 Sep 2018 09:59
Ultima Modificación: 14 Sep 2018 08:42
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM