ﬂ SCeNSors @\py

Atrticle
A Comparison of FPGA and GPGPU Designs for
Bayesian Occupancy Filters

Luis Medina 1, Miguel Diez-Ochoa 2 Raul Correal 2, Sergio Cuenca-Asensi 1

Alejandro Serrano ', Jorge Godoy 3, Antonio Martinez-Alvarez ! and Jorge Villagra *

1 University Institute for Computing Research, University of Alicante, 03690 San Vicente del Raspeig, Spain;

Imedina@dtic.ua.es (L.M.); sergio@dtic.ua.es (S.C.-A.); aserrano@dtic.ua.es (A.S.);
amartinez@dtic.ua.es (A.M.-A.)

2 Ixion Industry & Aerospace SL, Julian Camarilo 21B, 28037 Madrid, Spain; mdiezochoa@ixion.es (M.D.-O.);
rcorreal@ixion.es (R.C.)

3 Centre for Automation and Robotics (UPM-CSIC), 28500 Arganda del Rey, Spain; jorge.godoy@csic.es

* Correspondence: jorge.villagra@csic.es; Tel.: +34-918-711-900

Received: 15 September 2017 ; Accepted: 6 November 2017 ; Published: 11 November 2017

Abstract: Grid-based perception techniques in the automotive sector based on fusing information
from different sensors and their robust perceptions of the environment are proliferating in the
industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive,
high computing performance that is required for embedded automotive systems. In this work,
the capabilities of new computing architectures that embed these algorithms are assessed in a real
car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for
General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate
Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy
and performance, using datasets from a realistic simulator and from a real automated vehicle.

Keywords: Bayesian occupancy filter; FPGA; GPGPU; embedded system; ADAS

1. Introduction

Intelligent vehicle technology is advancing at a vertiginous pace. However, the complexity of
some highly uncertain and dynamic urban driving scenarios still hampers the deployment of fully
automated vehicles. One of the most important challenges in those scenarios is the accurate perception
of static and moving objects, to properly understand the spatio-temporal relationship between the
subject vehicle and the relevant entities.

In well structured driving environments, such as highways, the types of static and dynamic
objects are easily modeled and tracked using geometrical models and their parameters. However,
urban driving scenarios are so heterogeneous and unpredictable that they are extremely complex to
manage under a feature-based perception paradigm. In addition, the associated tracking methodology
raises the classic problem of object association and state estimation, which are highly coupled.

Occupancy grids [1] overcome these difficulties, and in particular the Bayesian Occupancy Filter
(BOF) [2] by projecting objects onto a compact regularly subdivided probabilistic grid, and tracking
them as a set of occupied or dynamic cells. Under this paradigm, there is no need for higher level
object models, resulting in: (i) a much higher insensitivity to the extreme variability of objects; and,
(ii) avoidance of the association problem. In addition, it produces a compact representation model,
as empty space is also conveniently represented for proper situational awareness.

The main drawback of this approach is its computational cost, unaffordable for automotive
embedded systems [3]. Currently, common Electronic Control Unit (ECU), based on single or multicore
microcontrollers (MCUs) [4] are used for low to medium-speed sensor data processing. The overall

Sensors 2017, 17, 2599; d0i:10.3390/s17112599 www.mdpi.com/journal/sensors

Sensors 2017, 17, 2599 2 of 24

performance of these systems depends on the number of cores, their operating frequencies, memory
bandwidth, and size. However, they are in general insufficient for processing high-demand algorithms
in parallel with other data. As a result, MCU resource sharing (data acquisition, memory bus
limitations, number of cores, frequency limitations etc.) to fuse data from high bandwidth sensors is
prohibitive and the data are frequently fed into an occupancy grid that models the environment.

Likewise, current ECUs are dedicated embedded components, each one subject to a series of
functional and safety requirements. As a result, state-of-the art vehicles can carry up to 100 ECUs on
board using 5 km cable lengths. This situation creates a significant series of disadvantages, such as
material costs, communication bandwidth limitations, latency problems, higher power consumption,
potential robustness issues and high development and maintenance costs.

The integration of high-performance computing units are needed to overcome current limitations,
fed by multiple sensor technologies such as radar, computer vision systems, LIDARs (Light Detection
and Ranging) or even ultrasounds, complementing and reinforcing each other, and communicating
over a reliable high-bandwidth network. Optimal usage of a huge amount of heterogeneous
information requires the use of novel computing platforms and powerful algorithms that exploit
their architecture as best they can.

Heterogeneous System on Chip (SoC) platforms can efficiently use different sensors for multiple
functions and interconnect them with other systems—e.g., a camera is used for object detection and
recognition, localization, and lane estimation. Additionally, parallel-processing resources offered by
FPGA and GPGPU can be exploited to implement highly parallelizable computations. As a result,
different functions, which, when available, are currently implemented in separate ECUs, can potentially
be integrated within a single domain of a high-performance computing unit.

An in-depth study in this paper of the parallelization opportunities of new heterogeneous SoCs
addresses the specific problem of object detection and tracking using the BOF paradigm. Although
some previous works have optimized BOF designs for GPGPU platforms, in this paper, to the best
of our knowledge, we are presenting the first implementation of the BOF using FPGA. In addition,
a thorough comparison of BOF between heterogeneous SoCs using GPGPU (Nvidia Tegra K1) and
FPGA (Xylinx Zynq) was carried out, using both synthetic sensor data from simulated and experimental
datasets gathered by a real automated vehicle on open roads.

The remainder of this paper is as follows. Section 2 introduces and analyzes previous work on
embedded systems for Advanced Driver Assistance Systems (ADAS), particularly those using multiple
range sensors for object detection, world modeling and driving situation understanding. Then, a brief
summary of the BOF is presented in Section 3, serving as the foundation for a description of the
problem and the methodology that is followed, both of which are detailed in Section 4. The two chosen
computing platforms are introduced in Sections 5 and 6, where specific requirements and constraints
are detailed, followed by a complete description of the design solution that is adopted. The results of
such implementations are compared and analyzed with simulated and experimental data in Section 7.
Finally, the paper draws to a close with some concluding remarks and directions for future work in
Section 8.

2. State of the Art in Embedded Systems for Multi-Sensor Perception

On-road object detection, classification, and tracking has been a topic of intense interest over
recent years [5]. The complexity of such tasks where vehicles and Vulnerable Road Users (VRU) (often
pedestrians, motorcyclists, and cyclists ...) coexist in uncertain and heterogeneous environments makes
the use of multi-sensor architectures very necessary for automated driving systems. Indeed, a variety
of sensing modalities have become available for on-road vehicle detection, including radar, LiDAR,
ultrasounds and computer vision.

While LiDARs have high accuracy under optimal conditions, wide angle coverage, and precise
target location, their performance is less accurate in inclement weather and /or when dirt collects on
a sensor lens [6]. Most radars use some form of beam scanning to determine whether targets are in

Sensors 2017, 17, 2599 3 of 24

the same or adjacent roadways, or in oncoming lanes. Microwave radars have a lengthy detection
range and are able to operate in inclement weather, but they have a narrow field of view and are not
robust enough for multi-target precise motion estimation [7], particularly around road curves. The
images from a video camera can provide information on the presence of obstacles at short/medium
distances [8]. These sensors have a wider field of vision and can recognize and categorize objects.
However, they are not as reliable as radar when ascertaining depth-perception information. In addition,
as humans vary significantly in size and shape, VRU detection is not robust enough, especially in
crowded areas. Moreover, extreme lighting conditions (day/night) can dramatically reduce the
effectiveness of the detection algorithms.

Modern ADAS applications use sensor fusion to take full advantage of the information that each
sensor collects, so that the strengths of all these technologies can be intelligently combined. In some
approaches, a radar or LiDAR is used to detect potential candidates, and then, during a second stage,
Computer Vision is applied to analyze the objects that are detected. Other strategies claim the use
of multiple-range sensors at a very low level to facilitate data fusion and ulterior object tracking.
The Bayesian Occupancy Filter presents very good behavior under the latter paradigm. However,
multiple-range sensors and other related grid-based approaches have typically been intractable for
automotive embedded systems. Indeed, the commonly used MCU in the vehicle has insufficient
processing power to process the various sensor inputs from multiple radars, cameras, laser scanners,
and ultra-sonic sensors.

Future embedded solutions for perception will need to process high levels of throughput from
heterogeneous sensors, providing real-time processing capabilities for computationally demanding
algorithms while guaranteeing several non-functional properties such as reliability, real-time performance,
low-cost, spatial constraints, low-power constraints, flexibility and short time-to-market [4].

The existing hardware (HW) technologies to cope with all the above requirements are as follows:
(i) Application-Specific Integrated Circuits (ASIC), customized ciruits for particular uses, (ii) FPGA,
(iii) GPGPU, (iv) Digital Signal Processors (DSP), and (v) microprocessors (uP). Table 1 summarizes the
main advantages and drawbacks of each technology and provides some specific examples of ADAS
applications where the perception of the environment plays a key role.

Table 1. Examples of latest-generation embedded ADAS using different HW technologies.

Tech. Pros Cons Examples
ASIC High performance Expensive for prototyping Disparity maps [9]
Low-power consumption Not reconfigurable Object and lane detection [10]
FPGA Low-power consumption Poor for serial processing Lane departure warning [11]
Good at low-level computing Complex to program Pedestrian recognition [12]
GPGPU Highly parallelizable Power-hungry Pedestrian detection [13]
Programming flexibility Complex to program Road detection [14]
DSP Well suited for image processing ~Medium speed performance Object detection [15,16]
Good price to performance ratio Complex to program Lane departure warning [17]
uP Best for high-level processing Poor parallelization Lane departure warning [18]
Easy to program High power consumption Vehicle detection [19]

Note that most of these recent works use (mono or stereo) computer vision. The use of multi-sensor
architectures and high-level functionalities is still very limited in the state-of-the-art embedded systems
for intelligent vehicles. A limitation that is mainly due to both a lack of computing resources and
very specific, rigid designs, unable to combine different functional components on a single computing
platform. These difficulties have forced a shift from homogeneous machines relying on a single kind
of fast-processing element to heterogeneous architectures combining different kinds of processors

Sensors 2017, 17, 2599 4 of 24

(such as MCUs, GPGPUs, DSPs, and FPGA), each specialized for certain tasks and programmed in a
highly parallel fashion. Their weak points are poor optimization of available resources for performance
and low energy consumption. Some examples of this new trend combine (i) multi-cores with FPGA
for lane departure warning [20] and traffic sign recognition [21,22]; (ii) multi-cores with GPGPU [13];
and even, (iii) FPGA and GPGPU [23].

These new platforms allow us to consider traditionally prohibitive high-level processing for object
detection and tracking using heterogeneous sensors. BOF real-time implementations are now realistic
in this new context. One specific feature is that cells are independent, permitting dedicated hardware
implementations leading to increased performance. Indeed, the cell independence hypothesis and
sensor measurements tolerate loops in the Occupancy Grid algorithm that are implemented in a
parallel manner. As a result, some prior works have explored the power of GPGPUs to implement
different perception strategies based on occupancy grids, using multi-layer LiDARs [24] and fusing
LiDAR and radar [25].

More recently, the integration of the occupancy grid multi-sensor fusion algorithm into
low-power multi-core architectures has also been investigated [26,27]. These attempts use floating-point
representation for probability estimation and fusion, but highly constrained embedded platforms will
not often feature a floating-point unit. A fixed point design of an occupancy grid representation—BOF
preprocessing step—was introduced by [28] to overcome that limitation. It shows good behavior,
thereby opening the door to more HW-oriented implementations of the BOF (e.g., using FPGA). Indeed,
in contrast to GPGPU architecture, FPGAs are designed for extreme customization. The current FPGA
fine-grain architecture still takes advantage of irregular parallelism and non-standard data types.
In addition, recent improvements are extending their applicability to different high-performance
applications. This brings FPGAs closer in raw performance to state-of-the-art GPGPU-based SoC
devices, as will be shown in Section 7.

3. Bayesian Occupancy Filter

Perception is one of the main processes that an autonomous vehicle has to perform. Within this
process, data from the on-board sensors, typically multi-layer LIDARs and stereo cameras, are fed into
the system for processing. The main purpose of the BOF framework when using those data feeds is to
identify dynamic objects in a driving situation, estimating the position, trajectory, and velocity of each
mobile object. These are then used for subsequent risk assessment and collision avoidance.

The BOF implementation is based on the work of INRIA (Institut National de Recherche
en Informatique et en Automatique). A detailed description of its complexity and extension is
unfortunately outside the scope of this paper. This section presents an overview of the framework;
further details can be found in [29-32], also cited throughout the section.

The process follows a series of sequential steps, where the output of each one is fed as input
into the following one; see Figure 1. The emphasis on acceleration and parallelizable opportunities
has been focused on the system core, which comprises the heaviest computational processes. This
core updates the prior state, according to the dynamics of the vehicle, by applying motion detection
filtering [29], by computing the posterior state from new observations, and by updating and computing
new velocity estimations of the cells, described below in further detail. Other processes, such as the
creation of a representation of the environment [31]—the probability occupancy map, the clustering
process, to move from cell level to object level [32] and the identification/classification of each object
[30] are not included in the initial acceleration and parallelization efforts.

Sensors 2017, 17, 2599 5 of 24

Object ‘

Probabilistic . Motion Compute - .)
| sensor Occupancy Updsat DLy Detection Posterior CEeaII_Veh_clty Object |
data Map tate Filtering State timation Classification] List

Figure 1. Bayesian Occupancy Filter process flow diagram and core system.

Initially, a representation of the environment must be created. A probabilistic occupancy map
is built from sensor observations. The space in this grid-based map is discretized into M x N cells.
Each cell contains the probability for the area that will be occupied. In the case of having multiple
sensors, or a multi-layer LIDAR, an independent occupancy map is computed for each sensor/layer,
see Figure 2. These multiple observations, and their corresponding occupancy maps, are then fused
together into a unique representation of the environment, using a sophisticated weighted sum of
observations, a mechanism known as Linear Opinion Pools [31]. The system uses that mechanism
to compute an integrated probability value over the occupancy of each cell of the grid, given the
opinion of a number of sensors. Also, a measure of the confidence for such estimations is also
computed and taken into account to calculate the integrated occupancy probability for each cell.
Factors such as confidence in each LiDAR measurement in frontal and rear areas of each potential hit
and the inclination angle of each LiDAR plane layer—with respect to the road—influence the overall
confidence level of each observation.

Layer 3 Layer 2
180 100 50 150 100 50

Layer 1 Layer 0
150 100 S0 150 100 50

(a) (b)

Figure 2. (a) Probabilistic occupancy map for each LiDAR layer, (b) integrated occupancy map. Dark
areas represent empty space, white areas represent objects/occupied parts and unknown regions are

in gray.

Figure 3 shows the BOF general dataflow. The algorithm calculates, for every time step (t), the state
of the M x N cells in the occupancy grid (i.e., their Probability of occupancy P, and their distribution
of velocity BOF4D), based on the previous state (t — 1), the observed occupancy probabilities (Z), and
the linear and angular velocities of the vehicle (U). The computation cycle takes place in two steps:
UpdatePrior step and UpdatePosterior step. The results are notated with the corresponding subscripts
prand po.

Sensors 2017, 17, 2599 6 of 24

UpdatePrior: During the UpdatePrior step, a new prediction is created from the estimation of the
previous state (Py,, BOF4D,,)" 1. This prediction is computed by transforming previous data according
to the odometry, linear and angular velocities (U), over a given period of time. In a first process named
CellTransform, every cell, represented by the coordinates of its central point, is transformed according
to this dynamic data and projected onto a new position on the predicted map.

Odometry

(Ppo, BOFAD,,)"

.

Prediction

Observation
Sensor fusion

Zt

R P,

UpdatePrior

{Ocpr: {Dcpo)
Fey)' Fepo)™

Motion
Detection

Mo' Ij/ J,_{Pph BOF4Dy,)"

Estimation
UpdatePoster.

A\
(Ppo, BOFAD,,)'

Figure 3. Bayesian Occupancy Framework general dataflow.

Localization errors may occur, due to uncertainty, sensor inaccuracy and external hazards such as
skidding, where the dynamics of the vehicle might not be precisely represented through proprioceptive
information. A second process, OdomFix, is applied to deal with that uncertainty problem and to
update the Prior step data with greater accuracy. Instead of simply computing one transformation
according to the vehicle dynamics based on sensor information, a series of potential transformations
were calculated. Each transformation is then compared with the new observed occupancy grid (Z) and
evaluated according to a score function. This function maintains a series of counters on the number of
times each cell was observed as either empty (free) or occupied in the past (Fc, Oc) [29]. The candidate
transformation with the highest score is then chosen as the prediction of the prior state information
(Ppr, BOF4Dpr)t, and the free and occupied counters are updated according to this transformation
(Ocpr,Fepr).

UpdatePosterior: Once a prediction from the previous state has been computed, an estimation
on the current state can be calculated, fusing that prediction with new observations. It is important
to note this framework is designed to detect moving objects. However, most of the map or most of
its cells turn out to contain information regarding static areas/objects. There is therefore no need to
estimate the velocity for all those cells, which means that there is no need to update their velocity
distribution, resulting in a huge saving of computation time. Therefore, a Motion Detection filtering
step is all that is needed to make those savings through an heuristic function that classifies the cells as
either static or dynamic, considering the values on either the free or the occupied counters. Therefore,
if a given cell has been recorded as empty over some time in the past, in accordance with the free and
occupied counter, and then appears as occupied in the most recent observation, it will be considered
as a dynamic cell. A specific ratio has to be met between the number of times the cell was observed to
be either empty or occupied, according to the counters, before it may be considered as dynamic. As a

Sensors 2017, 17, 2599 7 of 24

result, only those cells, marked in the Mot grid, will be taken into account to compute the posterior
state (Ppo, BOF4D,,)".

A series of hypotheses on the velocity of every dynamic cell are proposed, to estimate the
velocity and trajectory of dynamic objects from occupancy probabilities. An initial 2D uniform
probability distribution on the velocity hypotheses, vx and vy, is created for each cell Figure 4a (top).
The distribution is discretized into V x V values and initialized to 1/<number of cells> (1/2500 in
the example). At each time step, besides updating the previous occupancy map to create a prediction,
as previously described, a new probabilistic occupancy map is computed from new observations.
They are then both fused together, obtaining an updated probabilistic occupancy map. The new
observation data is also used to update the probability distribution on the velocity of each dynamic
cell, propagating the probabilities using a Bayesian filtering mechanism [2]. In this propagation, each
velocity hypothesis is updated according to the occupancy probability and probability distribution
of the velocities of the anterior, which is the cell providing the prediction. The information on this
cell is taken from the previous time step to establish whether a given velocity hypothesis is true for a
given cell.

Over time, the distribution probabilities converge and, in some cases, one of them is prominent,
see Figure 4a (bottom). The most prominent probability is then taken as the estimated velocity for that
cell, provided its value is over a given minimum threshold to be considered, obtaining its module
and trajectory from vx and vy. It is important to note that only the probability distribution of the
dynamic cells are updated and propagated at each time step. The velocity hypotheses of the cells that
are considered static cells are set to a uniform distribution.

(@)

Figure 4. (a) Initial uniform probability distribution on the velocities (top) and convergence of
probabilities (bottom), (b) clustering process grouping independent dynamic cells into objects.

So far the core of the BOF framework has been described. However, two processes still remain
that are worth mentioning. The environment representation and tracking process have up until now
been performed at the cell level. A process that is convenient, as it eliminates the data association and
occlusion problems. However, the expected output of the system is a list of dynamic objects along with
their associated position, trajectory, and velocity. Therefore, an object-level representation is necessary.
To do so, a clustering process is applied to group independent cells into objects, see Figure 4b. A set of

Sensors 2017, 17, 2599 8 of 24

cells that belong to the same object can only be considered if they meet two conditions: the condition
of spatial constraint, meaning that the cells have to be close enough to be considered part of the
same object, according to a configurable distance parameter; and, similarity of their trajectories and
velocities, implying that all the cells follow a similar trajectory at a similar velocity. Such a similarity is
computed according to some configurable parameter relating to the maximum permitted differences
in their trajectory orientations and velocity modules. The combination of both constraints avoids
grouping together cells that belong to different objects, despite their physical proximity, as in the case
of observing two cars at an intersection that will cross the path of the host vehicle from two opposing
perpendicular directions.

Finally, accurate classification of a moving object in urban traffic scenarios is a key element for safe
decision-making in intelligent vehicles. An object identification process, using a classifier combining
grid-based footprints and speed estimations, aims to recognize each detected object at the scene and
to classify them into different categories, such as vehicles or pedestrians [30]. As a result, the BOF
framework delivers a list of dynamic objects that have been identified at the scene, along with their
position and trajectory in relation to our vehicle, velocity and type of object.

All this information is then fed into a risk assessment module, part of the control subsystem,
in charge of decision processes on directions and the computation of vehicle maneuvering.

4. Problem Description

The work described in the following 3 sections aims to compare different performance and
functional metrics of the BOF design and implementation using on the one hand a Multi-processor
System on Chip (MPSoC) with a GPGPU and on the other hand a MPSoC with an FPGA.
This comparison will be conducted using synthetic data from a realistic simulation environment
and experimental data from an automated vehicle driving on open roads.

The inputs to both designs are a set of measurements from the CAN (Controller Area Network)
bus of the vehicle , including the linear velocity and heading of the vehicle in the given period of
time (so-called odometry in Section 3), and those transmitted by the multi-layer LiDAR sensing
the environment. The precision and the frequency at which these sensors update are specified
in the following two sub-sections, where simulation and experimentation settings are described.
In addition, the algorithmic output is expected to be the same in both approximations, namely a matrix
of 240 x 160 cells including occupancy probability and 2D velocity estimation—from a discretized
distribution of 15 x 15 values).

Simulation: SCANeR studio is a complete software tool meeting all the challenges of driving
simulation. It includes models of sensors, vehicles and traffic interactions. With regard to the sensor
models, the framework can simulate GPS, Camera, Radar, LIDAR and ultrasonic sensors. In particular
for the LiDAR sensor, the simulation tool uses the ray tracing method to compute the results. Each ray
is drawn in the graphic display and the rays are regularly drawn inside the detection arc (defined by
the sensor position and a depth measurement).

Figure 5 shows a simulated driving situation and how a vehicle, equipped with an emulated
multi-layer IBEO Lux LiDAR, perceives the environment and other vehicles. This device consist of
4 different layers vertically separated at intervals of 0.8° from each other, pointing from 1.2° above
the horizontal plane (top left image in Figure 5) to —1.2° below (bottom right image in Figure 5).
The data generated by this multi-layer LIDAR model is used to generate an integrated occupancy grid,
as illustrated in Figure 2, and to extract the relevant footprints of the scene (Figure 6).

The dataset generated with this simulation framework is recorded from a pre-defined route of
650 m, which is completed at a variable speed after 120 s. The ego-vehicle always follows traffic
regulations and it encounters other vehicles (7141 samples) or pedestrians (1861 samples). Note that
all of the 1554 observations in the datatset may contain one or several of these samples. The LiDAR
frequency is 12.5 Hz, while the longitudinal and angular speed of the vehicle is measured at 25 Hz.

Sensors 2017, 17, 2599 9 of 24

Figure 5. Fields of view of each LiDAR’s layer in each subfigure. Red rays are those that do not find
any target, whose length is the LIDAR maximum depth (200 m for the IBEO Lux); green rays refer to
those that collide in the 3D space, with a length that is the distance between the sensor and the target.

(b) (c)

Figure 6. (a) Snapshot of a scene taken from the dataset where pedestrians and vehicles are detected
(red boxes); (b) Image from camera, occupancy grid combining the 4 layers of the LiDAR; (c) the
resulting set of footprints at the scene.

Sensors 2017, 17, 2599 10 of 24

Experimentation: A dataset has been recorded using an automated vehicle, to complement the
results obtained using the simulation environment. The picture on the left-hand-side of Figure 7 shows
the architecture of the vehicle, where the most relevant equipments are zoomed and numbered (note the
IBEO Lux LiDAR in number 2). In addition to these visible parts, the SW architecture integrates the data
from internal sensors (steering wheel, yaw rate, wheel speed, lateral and longitudinal accelerometers)
that circulate through the CAN bus. The sampling frequency of these data is identical to those
described in the simulation framework, parameterized to be consistent with the real on-board sensors.

AUTOPIA's vehicle equipment

s - A/DIO
(1) Camera (6

=~ modules
(2) LIDAR @ Touch
3) GPS =~ screen
@) MU ® Aquators
= switches
@) P

Figure 7. Automated vehicle architecture.

The experimental recording consisted of a 3350.3 m urban and inter-urban route (Figure 8a),
during 356 s, where different types of vehicles and pedestrians appear in the vehicle driving scene
throughout the 4447 cycles/observations. As can be appreciated in Figure 8b, the vehicle speed never
exceeds 70.8 km/h, but there are several stretches where there is a meaningful steering angle variation
(a maximum of 284° /s), leading to demanding angular speed for the BOF computation.

20) Vo ‘ ! W |/ hol 200
| '|r I..I ¥ \ 1

ﬁf’i \ e
Enm Wi
e e

0 50 100 150 200 250 300 350 400
time (s)

(b)

Figure 8. (a) Path followed by the vehicle (b) Speed and steering angle of the vehicle.

Steering angle rate (°/h)

