Linear instability analysis of low-pressure turbine flows

Abdessemed, Nadir; Sherwin, Spencer y Theofilis, Vassilios (2009). Linear instability analysis of low-pressure turbine flows. "Journal of Fluid Mechanics", v. 628 ; pp. 57-83. ISSN 0022-1120.


Título: Linear instability analysis of low-pressure turbine flows
  • Abdessemed, Nadir
  • Sherwin, Spencer
  • Theofilis, Vassilios
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Fluid Mechanics
Fecha: Junio 2009
Volumen: 628
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Motopropulsión y Termofluidodinámica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa


Three-dimensional linear BiGlobal instability of two-dimensional states over a periodic array of T-106/300 low-pressure turbine (LPT) blades is investigated for Reynolds numbers below 5000. The analyses are based on a high-order spectral/hp element discretization using a hybrid mesh. Steady basic states are investigated by solution of the partial-derivative eigenvalue problem, while Floquet theory is used to analyse time-periodic flow set-up past the first bifurcation. The leading mode is associated with the wake and long-wavelength perturbations, while a second short-wavelength mode can be associated with the separation bubble at the tralling edge. The leading eigenvalues and Floquet multipliers of the LPT flow have been obtained in a range of spanwise wavenumbers. For the most general configuration all secondary modes were observed to be stable in the Reynolds number regime considered. When a single LPT blade with top to bottom periodicity is considered as a base flow, the imposed periodicity forces the wakes of adjacent blades to be synchronized. This enforced synchronization can produce a linear instability due to long-wavelength disturbances. However, relaxing the periodic restrictions is shown to remove this instability. A pseudo-spectrum analysis shows that the eigenvalues can become unstable due to the non-orthogonal properties of the eigenmodes. Three-dimensional direct numerical simulations confirm all perturbations identified herein, All optimum growth analysis based on singular-value decomposition identifies perturbations with energy growths O(10(5)).

Más información

ID de Registro: 5316
Identificador DC:
Identificador OAI:
Identificador DOI: 10.1017/S0022112009006272
URL Oficial:
Depositado por: Memoria Investigacion
Depositado el: 01 Dic 2010 12:51
Ultima Modificación: 20 Abr 2016 14:09
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM