BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies

Kitsios, Vassili; Rodriguez, Daniel; Theofilis, Vassilios; Ooi, Andrew y Soria, Julio (2009). BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies. "Journal of Computational Physics", v. 228 (n. 19); pp. 7181-7196. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2009.06.011.

Descripción

Título: BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies
Autor/es:
  • Kitsios, Vassili
  • Rodriguez, Daniel
  • Theofilis, Vassilios
  • Ooi, Andrew
  • Soria, Julio
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Computational Physics
Fecha: Octubre 2009
Volumen: 228
Materias:
Palabras Clave Informales: BiGlobal; Stability; Airfoil; Ellipse; Separation; Conformal mapping
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Motopropulsión y Termofluidodinámica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

A methodology based on spectral collocation numerical methods for global flow stability analysis of incompressible external flows is presented. A potential shortcoming of spectral methods, namely the handling of the complex geometries encountered in global stability analysis, has been dealt with successfully in past works by the development of spectral-element methods on unstructured meshes. The present contribution shows that a certain degree of regularity of the geometry may be exploited in order to build a global stability analysis approach based on a regular spectral rectangular grid in curvilinear coordinates and conformal mappings. The derivation of the stability linear operator in curvilinear coordinates is presented along with the discretisation method. Unlike common practice to the solution of the same problem, the matrix discretising the eigenvalue problem is formed and stored. Subspace iteration and massive parallelisation are used in order to recover a wide window of its leading Ritz system. The method is applied to two external flows, both of which are lifting bodies with separation occurring just downstream of the leading edge. Specifically the flow configurations are a NACA 0015 airfoil, and an ellipse of aspect ratio 8 chosen to closely approximate the geometry of the airfoil. Both flow configurations are at an angle of attack of 18, with a Reynolds number based on the chord length of 200. The results of the stability analysis for both geometries are presented and illustrate analogous features.

Más información

ID de Registro: 5318
Identificador DC: http://oa.upm.es/5318/
Identificador OAI: oai:oa.upm.es:5318
Identificador DOI: 10.1016/j.jcp.2009.06.011
URL Oficial: http://www.sciencedirect.com/science/journal/00219991
Depositado por: Memoria Investigacion
Depositado el: 01 Dic 2010 11:51
Ultima Modificación: 20 Abr 2016 14:09
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM