
Context Management in Mobile Environments: a Semantic
Approach

Alejandro Cadenas
Telefónica I+D

Emilio Vargas, 6
28043 Madrid, Spain
cadenas@tid.es

Carlos Ruiz
iSOCO

Pedro Valdivia, 10
28006 Madrid, Spain
cruiz@isoco.com

Iker Larizgoitia
Universidad de Deusto
Av. Universidades, 24
48007 Bilbao, Spain

ilarizgo@tecnologico.deusto.es

Raúl García-Castro
Universidad Politécnica de Madrid

Campus de Montegancedo, s/n
28660 Boadilla del Monte, Spain

rgarcia@fi.upm.es

Carlos Lamsfus
CICtourGUNE

Paseo Mikeletegi, 56 - 201
20009 San Sebastián, Spain

carloslamsfus@tourgune.org

Iñaki Vázquez
Universidad de Deusto
Av. Universidades, 24
48007 Bilbao, Spain

ivazquez@eside.deusto.es
Marta González
Robotiker-Tecnalia

Parque Tecnológico de Vizcaya, #202
48170 Zamudio, Spain
marta@robotiker.es

David Martín
CICtourGUNE

Paseo Mikeletegi, 56 - 201
20009 San Sebastián, Spain

davidmartin@tourgune.org

María Poveda
Universidad Politécnica de Madrid

Campus de Montegancedo, s/n
28660 Boadilla del Monte, Spain

mpoveda@delicias.dia.fi.upm.es

ABSTRACT
This paper presents a first draft of a context management model
and architecture in the scope of mobile end-user services, paying
special attention to mobile scenarios and specific mobility
environments. The paper describes our notion of context and
presents the process followed for developing the ontologies for
representing context, providing an overview of the first version of
these ontologies. Besides, we propose an architecture for
managing context in mobile environments, including high-level
descriptions of the components that compose it, as well as some
low level details regarding the contextual interfaces involved. To
show the way all these components interoperate and the
advantages of the defined architecture and semantic model, we
describe a use case with specific implementation details.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Software Architectures – domain-
specific architectures; I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods – semantic networks;
C.2.2 [Computer Communication Networks]: Network
Architecture and Design – Wireless communication.

General Terms
Design, Experimentation, Standardization, Languages, Theory.

Keywords
Context, context management, context ontology, context-aware
services.

1. INTRODUCTION
Context-aware applications are one of the coming paradigms in
telecommunication environments, going from the strictly research
environment to the commercial deployment arena. The amount of
devices around the user that can capture information about his/her
context is progressively increasing due to the enhanced hardware
and software functionalities of the mobile communication
terminals as well as to specific sensor devices. And, on the other
hand, the diversity of the ways that the user context can be used
by different services or context consumers is growing fast. This is
due to the increasing number of service delivery or provider
entities that can be accessed by the user.
Such environment makes the perfect timing to conduct a rigorous
multidisciplinary research project, focused both on the modelling
area as well as on the architectural analysis, such as the directions
presented in this paper, that outlines the work in progress of the
project.
This work specifically focuses on mobile environments, where the
user will own a mobile terminal that will behave both as source of
context information and consumer of such information processed,
via the services that may be executed on the mobile terminal
itself. The global use case is the prosumer scenario, in which the
user both generates and consumes services and context
information. In this environment, the user will move from one
specific situation to another, immersed in his/her own changing
context.
An important research work has been performed in the area of
services’ context, due to the fact that services directly provided to

Permission to make digital or hard copies of part or all of
this work or personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission
and/or a fee.
Proceedings of the 1st Workshop on Context, Information
and Ontologies, June 1, 2009, Heraklion, Greece
© ACM 2009 ISBN: 978-1-60558-528-4...$10.00

the user has been labelled as “services mIO!” and defined as “a
context-aware software entity with an user interface that is
executed in a network or user’s terminal server, and that provides
value to the user”
Such user’s context will need to be modelled to be able to process
and use it to configure, discover, executed and enhance different
services that the user may request or that the user may even
publish from his/her own device for others to consume. Such
model structure needs to be fully defined as a first step to build
such ambitious final objective and, to this end, we will follow a
semantic approach because of the advantages provided by
ontologies. A fully methodological iterative stepwise procedure is
followed, involving a wide set of experts not only on ontological
engineering but also on very different domains of the mobility
environment (such as experts in mobility infrastructure, service
development, device connectivity, interface design, etc.). This
collaborative approach will produce a reliable and consensual
model.
Once the model is defined, an architecture is required to obtain,
aggregate, process, and progress context information as well as to
execute the corresponding services based on such processing
results of aggregated context. Such architecture will include all
the necessary modules to perform such actions in a modular and
interoperable way, taking as a premise the computing and storing
limitations of mobile terminals. The objective is to propose a
contextual framework that is flexible and fully future-proof to
support any requirement, service or scenario that may be defined
in the future. The state-of-the art is analysed to make use of it, and
the specific enhancements and designs are performed based on the
particular characteristics of the mobile environment.
And, finally, in order to show the execution procedures and the
actual capabilities and flexibility of both the model and the
architecture proposed, a use case is described and presented at a
technical level. The interaction between the captured user’s
context and the management infrastructure is described, including
interactions among the different entities described in previous
sections.
The following sections of the paper are structured as follows.
Section 2 describes the definition of context and the first version
of the context ontologies produced. Section 3 provides the
description of the context management architecture, and section 4
provides the details of the use case to show the interaction
between elements. Finally, the conclusions and future work lines
are provided.

2. THE mIO! ONTOLOGY NETWORK
In our work, we adapt Dey’s definition of context [1] to cover our
needs for modelling user-centric context. This way, we define
context as any information that can be used to characterise the
situation of an end user with the goal of selecting the services that
are relevant to this situation and to adapt their functionality. This
information will include the user characteristics in terms of
profiles and preferences, near and remote environments, devices
and services available, as well as any knowledge based on user
interaction.
We aim to reuse as much as possible existing contextual models
that are supported by a significant number of practitioners and to
cover the evolution of these models as well as of our ontologies.
Therefore, we will not develop a single ontology but an ontology
network, that is, a collection of ontologies related together via a

variety of different relationships such as mapping, modularization,
version, and dependency relationships [2].
Currently, ontologies for modelling context are still in an
experimental phase; they have been defined for different specific
uses and cover different domains. Hence, no consensual model
exists that can be broadly reused for modelling context in
applications. Furthermore, even if there have been plenty of
efforts for developing context ontologies, only few of them are
available to be studied in detail and reused; these are the
CoDAMoS [3], GUMO [4] and SOUPA/COBRA-ONT [5]
ontologies.

2.1 Methodological Approach
In this section we describe the methodological approach adopted
to build the mIO! ontology network. This approach follows the
NeOn methodology for developing ontology networks [6]. The
mIO! ontology network will be implemented in three consecutive
iterations, each of them providing a working prototype of the
ontology network. Clearly, modelling the complex domain of
context will involve modelling the different subdomains that
compose it.
At the moment of writing this paper, we have completed the first
iteration of the ontology network development. In this iteration,
due to time restrictions, our goal was to obtain a first set of
ontology requirements and a first prototype of the ontology
network that could be used in early stages of the project. In the
next iterations this prototype will evolve as well as the ontology
requirements, producing improved versions of the ontology
network. The main activities that we carried out in this first
iteration of the ontology development process are the following:
• Ontology specification. We defined the scope of the ontology

network, its intended users, and the ontology requirements. For
extracting these requirements we involved end users and experts
in each of the subdomains covered by our definition of context;
this way, for each subdomain we obtained as requirements a
mix of domain characteristics in Natural Language and
competency questions.

• Scheduling. We identified the different activities to carry out
during the development process and organized them in time
according to the existing requirements and restrictions. In our
case, the development will comprise three iterations where
incremental prototypes of the ontology will be produced.

• Ontological resource reuse. We searched existing ontologies
and selected those that a) covered parts of our requirements and
b) had been developed consensually by a group of people. In
some cases, we pruned the ontologies to remove specific class
hierarchies that were not relevant.
Ontology reuse was not straightforward because, as mentioned
above, most of the context ontologies described in the literature
are not available on the Web. In addition, some of the candidate
ontologies to be reused had reasoning problems. Thus, we had
to take a decision between reusing a different ontology,
developing a new ontology from scratch, or repairing the
inconsistent ontology.

• Ontology implementation. In the first iteration of ontology
development, because of time restrictions, we limited the
implementation of the ontology network to the concepts and
properties needed to link the ontologies to be reused.

• Ontology evaluation. Finally, we performed a verification of
the first prototype of the ontology network according to the
ontology requirements.

The next sections present an overview of the ontology network
developed and of the evaluation performed according to the
ontology requirements.

2.2 Overview of the mIO! Ontology Network
The goal of the mIO! ontology network is to represent knowledge
related to context. Because the domain of context is quite broad,
the mIO! ontology network consists of a core ontology that
interlinks different ontology modules that describe the different
subdomains needed for modelling context. Moreover,
modularization allows using only the modules that are involved in
a given use case, instead of using the whole ontology network.

Figure 1. Overview of the mIO! ontology network.

Figure 1 presents the high-level conceptual model of the ontology
network that contains ten modular ontologies: User, Role,
Environment, Location, Time, Service, Provider, Device,
Interface, and Network. The figure also includes those ontologies
that were reused for building some ontologies as well as the
connections between the ontologies by means of properties.
The first prototype of the mIO! ontology network has been
implemented in the OWL ontology language [7] and contains 277
classes, 130 object properties, 116 datatype properties, and 83
instances.
Next, we present a brief description of each of the ontology
modules including the ontologies that were reused in each module
that satisfied our requirements:

• User ontology. It models knowledge about users, groups,
organizations, etc. It reuses the CoDAMoS1 and FOAF2
ontologies.

1http://www2.cs.kuleuven.be/~distrinet/projects/CoDAMoS/ontol

ogy/context.owl
2 http://xmlns.com/foaf/spec/

• Role ontology. It models knowledge about roles, profiles,
preferences, etc.

• Environment ontology. It models knowledge about
environments including their humidity, luminosity, noise, etc. It
reuses the CoDAMoS ontology.

• Location ontology. It models knowledge about locations such
as buildings, location coordinates, spatial entities, distance, etc.
It reuses the space module of the SOUPA3 ontology.

• Time ontology. It models knowledge about time such as
temporal units, temporal entities, instants, intervals, etc. It
reuses the ontology time-entry of OWL-Time4.

• Service ontology. This ontology models knowledge about
services.

• Provider ontology. This ontology models knowledge about
service providers.

• Device ontology. It models knowledge about devices, including
hardware information, software and platform, and reuses the
CoDAMoS ontology.

• Interface ontology. This ontology models knowledge about the
user interfaces that the different devices can provide.

• Network ontology. It models knowledge about communication
networks.

The FOAF ontology was completely reused but, in the other
cases, the ontologies were pruned because they contain a lot of
unnecessary concepts. This selection of concepts was carried out
according to the ontology requirements.

2.3 Ontology verification
For performing a verification of the first prototype of the ontology
network, we analysed up to what extent the ontology network
developed covered our requirements. This verification was carried
out manually, checking whether existing classes and properties
cover user requirements.
Table 1 shows, for each of the subdomains covered in the
ontology network, the number of requirements specified (in form
of domain characteristics in Natural Language and competency
questions) and the number of requirements covered by the first
prototype of the ontology network.
As mentioned before, in this first iteration of the ontology
development process, because of time restrictions, the focus was
on extracting consensual ontology requirements from the different
experts and users and on providing a first version of the ontology
network by reusing existing ontologies with minimal changes.
As a conclusion we can mention that, while we were able to
obtain a first prototype of the ontology network in a short time by
reusing existing ontologies, this prototype only very partially
covers our ontological needs, as can be seen in the table, because
our ontology requirements are specific to our domain and use
cases.

3 http://cobra.umbc.edu/ont/soupa-ont.tar.gz
4 http://www.w3.org/TR/owl-time

Table 1. Analysis of the requirements covered by the ontology
network

 Domain characteristics Competency questions
Subdomain Specified Covered Specified Covered

User 7 0 20 0

Role 20 5 0 0

Environment 4 2 17 4

Location 7 1 14 2

Time 2 1 8 6

Service 13 0 12 0

Provider 13 6 15 9

Device 2 1 6 2

Interface 3 0 8 0

Network 12 1 19 0

TOTAL 83 17 119 23

3. CONTEXT MANAGEMENT
ARCHITECTURE
The context management architecture plays an important role in
the definition of any context-aware platform. Context-awareness
is related to using context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task
[8]. The context architecture presented in this paper provides the
foundations for the different entities to deal with context (how to
discover it, how to store it, how to access it and how to take
advantage of the information it provides) in a mobile
environment.
The first step to define a context-management architecture is to
have a common and shared context model definition for all the
entities of the system. This aspect has already been covered in the
definition of the mIO! ontology network in the previous section.
Unfortunately, this shared model is not enough to materialise a
real context-aware application. There is usually a need for
architectural services and abstractions whose primary objective is
to provide suitable mechanisms for managing the context by the
correspondent participants (e.g., sensors, actuators and
applications).
The spread of mobile devices in this kind of architectures makes it
necessary to consider some extra issues regarding this mobile
world. Surprisingly, the physical limitations of these devices are
not an impediment by themselves but because of the additional
issues that have to be considered (e.g., distribution, scalability,
modularity, mobility, privacy, fault tolerance, and even battery
life and network connections).
Due to these aspects, many existent platforms choose to develop
middleware for context-aware systems, such as [9] and [10]
among others. A middleware infrastructure enables the definition
of standard abstractions and common services that facilitates the
interaction of the different context-aware entities.
Our work deals with these kinds of aspects and therefore we have
pre-defined a context management architecture that gathers the
different entities our context-management architecture is going to
handle. This logical architecture is a first step towards the

definition of a comprehensive context-management architecture.
Figure 2 shows this logical architecture, where the specific
deployment and internals of each component are yet to be defined.

Figure 2. Overview of the mIO! Context-Management

Architecture.
Next, we present a brief description of each of the components of
the architecture.

3.1 Context Providers
The context provider (or source) is a computational entity able to
provide certain context information following an ontological
model. Context Providers consider are very diverse such as sensor
data in objects located in the user’s surroundings, context
information provided by the mobile terminal (e.g. SW & HW
capabilities, temporal data, etc), user’s emotional state (gathered
by ad-hoc devices), user’s instantaneous privacy statements,
user’s social network/s, mIO! Services’ functionalities, mIO!
services’ popularity, etc.

3.2 Context Consumers
The context consumer is a component that uses context
information (instantaneous and historical) to carry out its
functionality. Context consumers, for instance, are the intelligent
agents that provide at every moment the most appropriate mIO!
services to the user taking as input data the context of the user and
the mIO! services.
Once a user decides to execute a mIO! service, such service
access the context to self-personalisation and to achieve its target.

3.3 Context Manager
The context manager is a central element that will manage the
context information generated by diverse context providers and
will handle the requests from the context consumers. This element
will have the following submodules:

• Context Gateway. The previous definition of context source
implies that every provider is able to provide its information
using a semantic definition. Bearing in mind that for limited
mobile devices or platforms this is not always possible, a
context gateway figure has been defined. This gateway acts as a
semantic enabler for limited devices, transparently acting as a
context source for the rest of the components of the architecture.

• Context Broker. It defines a common access interface to the
current context acting as a façade for the context consumers.
This element will coordinate the underlying mechanisms for
retrieving the context inside the architecture. It will have two
main components, a query engine and a subscription manager.

• Context Source Directory. Because of the characteristics of the
mobile environments, not all the context information will be
locally available to the context-consumer. This is the reason
why a directory element has been included. For global context
sources (those available on the Internet) a context source
directory will host the definition and access mechanism of these
sources. In local environments, a directory will make the
discovery of context sources easier.
When adding a directory element to a context-management
architecture, there is usually a trade-off between the flexibility
and the complexity of the system. Besides, it is unlikely that a
directory element can be deployed in any real scenario.
Therefore it is advisable to make this component optional in
highly dynamic environments such as in the scope of our work.

• Current Context. This component stores the instantaneous
context in a suitable semantic representation as defined earlier.

• Context History or Life-flow. As important as the current
context information is the history or flow of that information.
Often underestimated, context history has proven to be priceless
information in order to analyze patterns, behaviours or trends.
Therefore, we need a mechanism to define that information, to
generate, maintain and access it.

3.4 Basic Interactions
Once the main elements of the context-management architecture
and their functionalities have been presented, the basic
interactions must be defined in order to obtain a general overview
of how the system is expected to work. The operation of the mIO!
context architecture can be summarized in four main aspects:
discovery mechanism, context access, context processing, and
context history.

3.4.1 Discovery Mechanism
Any dynamic context-aware environment needs a discovery
mechanism for the different components to start interactions
among them. In our proposed architecture, context-sources have
to be accessible by the context-consumers through the context-
broker element. This dynamic discovery will be carried out in the
local environment of the context-consumers. Global discovery
does not apply, apart from the access to a preconfigured directory
which has the definition of globally accessible sources. Many
discovery mechanisms have been proposed so far for context-
aware systems (see [11] or [12]). Regardless the concrete protocol
or selected implementation, the discovery protocol in our work
will take into account the following aspects:

• Context source definition language. Context sources need to
be defined using a common language to announce themselves to
the rest of the components. This language must at least support
primitives for defining the characteristics of the context source,
the information it provides, and the endpoint from where the
information can be retrieved.

• Context source publication mechanism. Context sources will
announce themselves periodically and those announcements are
going to be processed by the interested entities (e.g., the local
directories or the context brokers). The context sources might be
very heterogeneous and dynamic, so they just announce
themselves and provide an endpoint for the communication with
the rest of the entities.

• Context source directories. Context sources can be
automatically discovered using the publication mechanism. In
addition to this discovery method, the mIO! system will support
the definition of context source directories. These directories
can be either local or global. When a context source needs to be
discovered, a context-broker can use either this announcements
or query a local directory (if it exists) for an appropriate
context-source. This local directory will store the locally
discoverable context-sources (locally meaning in the physical
surroundings of the context-broker). Global directories will be
accessible through a global access network and its address will
be previously known. The directory owner or administrator will
register global context sources that fulfil certain characteristics
or predefined policies. Local and remote directories have the
same structure and philosophy; they just differ in the way they
are discovered. The former is discovered dynamically and the
latter’s address is preconfigured.

3.4.2 Context Access
Another important interaction in a context-aware system is how
the context is accessed by the different consumers. This access is
going to be independent of the different underlying concrete
mechanisms, that is, we have chosen to follow a data-centric
approach where the consumers just ask for information, regardless
the source the information came from. This kind of approach
leverages the practical knowledge that a consumer needs to know
in order to access the context, simplifying the communication
interfaces. In contrast, we need to define a context-query language
descriptive enough for the consumers to define their context
needs.

This query interface is complemented by a subscription
mechanism where consumers can register for changes or updates
in certain context-values or expressions. This subscription
mechanism will also be built over the context query language used
in the query interface.

3.4.3 Context Processing
Context is useful not only for the information it directly provides
but also for the information that can be deduced from it. Deducing
information from context can be done in several ways, the most
common of which are semantic reasoning, interpretation of
context, and aggregation of context. Regardless of how context is
processed, the objective is to generate new relevant information
that is useful for the consumers. The context-processing in mIO!
will be based on (but not be limited to) semantic reasoning, taking
advantage of the possibilities this representation provides.
Virtually any processor can be added to the platform because of
the interfaces it will provide.

The main challenge we are facing with context-processing is that
any complex reasoning process is bound to be computationally
hard and seldom do mobile devices have the needed capabilities to
support them. However, we will try to explore the possibilities of
adapting this reasoning process to the mobile world and its
feasibility within currently available mobile devices.

3.4.4 Context History Analysis
Context can be seen as something immediate that is constantly
changing. Many systems focus on that immediacy for the
development of context-aware applications. However, the
evolution of the context is valuable information that might be

fruitfully analysed, using data mining techniques. The only
problem with context history is the information explosion it leads
to, so special attention has to be drawn to what the history is going
to be used for and where it is going to be stored. We are exploring
the use of context history to detect behavioural patterns of the
users, her/his profile and the high-level situation the user is in,
e.g., using machine learning techniques drove by scenarios
requirements.

4. Context Execution Use Case
The following use case scenario has been designed in order to
validate both the proposed context models obtained in the
modelling phase as well as the architecture that shall support
context-aware services. As shown in previous sections, the notion
of context itself along with the contextual architecture have been
designed considering the general goal of providing services to
people in mobility scenarios through their mobile devices, being
those services provided from another user’s device (prosumer
mode), or from an application server platform (hosted mode).

The proposed architectural framework can support a wide variety
of applications. But, among such diversity, a single use case is
presented in this paper, although many others are currently being
investigated.

The tourism domain is widely considered to be one of the
emerging industrial sectors where mobile services are highly
demanded. In fact, in 2015 there will be more than 3 billion
travellers around the globe and they will demand more ubiquitous
services, specific to the situation of each individual, as well as to
their personal preferences in specific circumstances. Surveys
reveal that over 90% of travellers carry a mobile device with
them. Time will be a very scarce resource and connectivity to all
kinds of services in mobility will be highly demanded and
required.

Accordingly, tourism turns out to be a very adequate application
domain for the kind of services that will be developed within the
ongoing research paper, given the dynamic changing situations
that tourists experience, that can be followed by an appropriate
context management model. In this use case scenario, service is
defined as follows: service is a context-aware software entity that
provides added value assistance to the user. The service has a user
interface and is executed in a server hosted either at another user’s
mobile device or at the network.

The selected service that can potentially enhance the tourism
experience is related to the selection of tourist information
depending on the tourist’s mobility and preferences. That means,
among other activities, providing directions to locations within an
unknown city and/or descriptions of the points that could be of
interest for the tourist according to user’s profile and role with
respect to his/her context at one particular moment. Based on
contextual modelling of the user, recommendations of services,
commercial offers or even adaptation of the interface used to
present the results to the user in the mobile device can be adapted.
Such a service can be driven to support the user’s mobility while
an individual is in a particular city.

4.1 Use Case Description
Let us consider a particular individual that has arrived in a city for
the first time and that is travelling along with his wife. That
information can be obtained from the location of the mobile

devices and querying the context history database. Both devices
have been located in the same bearings at the same time (the
system concludes through reasoning that these two individuals are
located together in the same place). Moreover, based upon the
information stored in the context history database, the system
finds out that this is the first time this couple visits the city, as the
coordinates found in the mobile devices have not been found in
the database.

In addition, based on the time and date, as well as on the fact that
the individual is with his wife, the contextual infrastructure
assigns to these users the role of “tourists”. Following, the tourist
recommendation service is automatically informed about such a
decision and considers the previous information to provide
sightseeing alternatives. As the individuals are not familiar with
the city, different possible places to visit are selected by the tourist
recommender service based on the user’s combined preferences
(topics that the users were interested in previous similar situations,
i.e., while visiting new cities in the past) taken from the context
history.

Therefore, a first place to visit is presented on the mobile device,
along with the public transport options available (given that the
users arrived to the city by train, so it is clear that they do not have
a car to use to move in the city). While on the bus, the users might
not have a clear idea of the best bus stop to take. The service will
keep the users informed about such topics, specific to route events
while visiting the city. The users may also get information about
nearby museums compatible with the user’s preferences or
hobbies. Specifically, the users may get special last-minute offers,
based on the fact that they can be very close to the museum. For
instance, a museum that might be interesting for the users is
displayed on the mobile phone. In ten minutes time, a visit group
is available with two free places to complete the group. Given that
the museum is interested in completing the visit group, the users
subscribed to the contextual recommendation service get special
lat-minute discounts if they are close to the museum.

As it was previously stated, the individual has a context history,
obtained from previous actions of the user. Apart from other types
of information, the system has stored the types of actions or
preferences of this specific user in similar situations. Eventually,
the actions taken by friends or relatives are also considered,
through a reputation-based validation process. Such information is
stored in the context history element, presented in the section 3.

4.2 Use Case Contextual Interactions
Figure 3 presents all different entities described in the architecture
section as well as the transactions among them.

The mobile device has a Context Provider agent running, as it was
introduced in the section 3. Such an agent is capturing information
about the user and progressing that to the Context Manager
element that includes several of the entities presented in section 3.
The User device will also run the User Application (that can be a
simple browser to present the information to the user).

Such context information is progressed via standard transport
protocols. In the case of a mobile device with PS (Packet
Switched) connectivity through a GPRS access node, that
transport can be implemented over IP protocol, in the case when
the implementation is a web service implementation
(HTTP/SOAP), or directly through standard operator network
protocols, like SIP (Session Initiation Protocol [13]). The specific

API used to progress that information is still under discussion, but
given the nature of the context information and the allowed
latency, a protocol based on XML schema (XSD) fits perfectly
with such purpose. Although only one Context Provider is shown
on figure 3, several providers or sources could exist, both at the
mobile device as well as on the infrastructure. Each one of them
can progress specific information that will be aggregated.

The Context Manager gets the information from all context
providers and aggregates that based on the modelling, reasoning
and inference principles presented in previous sections. High-level
context information of the situation of the user is obtained. Such
context is stored at the context history log to be used later for
machine learning procedures that will optimize a user model.
Such area means an active research area, but such details fall out
of the scope of this paper.

Figure 3. Interactions among contextual entities.

At a given moment, and following again network protocols and
basically the same contextual API, the context consumer running
at the service platform request to be informed about specific
events or contextual situations for a given user. Such request,
although can be transported over same options as with the Context
Provider, shall be potentially much richer on the nature of the
information requested. That is due to the fact that the Context
Consumer requests to be informed about specific situations of
users, and accordingly those shall be described in the request
message generated by the Context Consumer. A semantic
approach based on RDFS/OWL semantics can be followed, being
fully compatible with the transport options presented in the
previous paragraph.

Finally, when the context manager gets low-level context
information from the context providers and gets the context of the
user that matches the conditions for which the context consumer
has requested to be reported, the context manager generates a
notification to the consumer. That notification will include the
user identifier for which such notification is generated, along with
any additional data that may be considered necessary. Given that
the context consumer is running at the application server itself
(although other architectures of the application server modules
can be studied), the service business logic is informed about the
situation of the user, and the service is delivered to the user
device.

This way the context provider may report the specific location of
the terminal, local agenda information, etc. The Context manager
can process such low level information into context information
that may match the context consumer conditions (“User A is on
tourist mode, is near museum M, and has at least 1 hour available
ahead before lunch time to visit the museum”). The contextual
recommendation service can then generate a notification of
special offers, etc, directly to the user device, as part of the
business logic, specific to the service.

This basic context-aware service delivery can be enhanced in
different ways. For example, the contextual service is able to
automatically detect tourist comments and services generated by
other people with similar profile and characteristics with respect
to the exhibition in the museum. As the original route of the
traveller has changed due to the last minute decision to visit the
museum, a new route of buses has automatically been
reconfigured and new options are also shown in the display: other
lines and location of bus stops as well as schedules in which the
individual can take other buses to get to his original point of
interest.

This same philosophy can be reused to mostly any service that
may be proposed, just by implementing a Context Consumer API
at the service platform to integrate that with the contextual
architecture. Through such API, the service will get information
relevant for the service itself that will enhance the service
delivery, as shown in this use case.

5. CONCLUSIONS AND FUTURE WORK
This paper presents a complete context management framework,
focused on user mobility that consists of a semantic model for
representing context and a complete architecture to implement
such model and enhance end-user services, by defining specific
modules to do so. Finally, a use case is presented, in which both
the previous model and architecture are used to implement a
specific service in a mobility tourist environment.

While this is a first step in the development of the framework, our
future challenge is to obtain a set of resources that can be easily
reused in general application environments to manage context.
Being our main focus mobile users, we require coping with a
continuously evolving environment in all aspects, from end-user
applications to network or device capabilities. Therefore, our
work (ontologies and architecture) tries to be as extensible and
maintainable as possible.

The next steps are twofold. On the one hand, the development of
the mIO! ontology network will continue with a second iteration
of the development process where the existing requirements will
be validated and refined as well as the ontology network, which
will be further developed and evaluated not only according to
ontology requirements but also from a user perspective. On the
other hand, the development of the mIO! context-management
architecture is going to be focused on the low-level definition of
each element of the architecture, extracting a common API for the
main functionalities of the system. As part of such definition, the
generation of demonstrator setups where the principles presented
in this paper are verified will be a key step, in order to explore the
possibilities of implementing that functionality for mobile
environments, analysing its benefits and its drawbacks.

6. ACKNOWLEDGMENTS
This research work is being supported by the CENIT Spanish
National Research Program, as part of the INGENIO2010 Spanish
National Fund.

7. REFERENCES
[1] Dey, A. K. 2001. Understanding and using context, Personal

and Ubiquitous Computing Journal, 5(1), 5–7.
[2] Haase, P., Rudolph, S., Wang, Y., Brockmans, S., Palma, R.,

Euzenat, J. and d'Aquin, M. November 2006. NeOn
Deliverable D1.1.1 Networked Ontology Model.

[3] Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges,
A., Rigole, P., Clerckx, T., Berbers, Y., Connix, K.,
Jonckers, V. and de Bosschere, K. 2004. Towards an
Extensible Context Ontology for Ambient Intelligence.

[4] Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M.
and von Wilamowitz-Moellendorff, M. 2005. Gumo – The
General User Model Ontology. In User Modeling, 428-432.

[5] Chen, H., Finin, T. and Josh, A. 2005. The SOUPA Ontology
for Pervasive Computing. In Ontologies for Agents: Theory
and Experiences, 233-258.

[6] Suárez-Figueroa, M. C., Aguado de Cea, G., Buil, C.,
Dellschaft, K., Fernández-López, M., García, A., Gómez-
Pérez, A., Herrero, G., Montiel-Ponsoda, E., Sabou, M.,
Villazón-Terrazas, B. and Yufei, Z. February 2008. NeOn
D5.4.1: NeOn Methodology for Building Contextualized
Ontology Networks. NeOn project.

[7] McGuiness, D. and van Harmelen, F. February 2004. OWL
Web Ontology Language overview. W3C Recommendation.

[8] Dey, A. K. and Abowd, G. D. 2000. Towards a better
understanding of context and context-awareness. Proceedings
of the Workshop on the What, Who, Where, When and How
of Context-Awareness, ACM Press, New York.

[9] Manuel, R., Christopher, H., Renato, C., et al. 2002. A
Middleware Infrastructure for Active Spaces. IEEE
Pervasive Computing, vol. 1, no. 4, pp. 74-83.

[10] Hofer, T., Schwinger, W., Pichler, M. et al. 2003. Context-
Awareness on Mobile Devices - the Hydrogen Approach. In
Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS'03) - Track 9 -
Volume 9.

[11] Marin-Perianu, R., Hartel, P., and Scholten, H. 2005. A
Classification of Service Discovery Protocols, Centre for
Telematics and Information Technology, University of
Twente, Enschede.

[12] Edwards, W. K. 2006. Discovery Systems in Ubiquitous
Computing. IEEE Pervasive Computing, vol. 5, no. 2, pp. 70-
77.

[13] IETF RFC 3261. SIP: Session Initiation Protocol.

