Applicability of radon emanometry in lithologically discontinuous sites contaminated by organic chemicals

Eduardo De Miguel1 • Fernando Barrio-Parra1 • Javier Elío1,2 • Miguel Izquierdo-Díaz1 • Jerónimo Emilio García-González1 • Luis Felipe Mazadiego1 • Rafael Medina1

Abstract
The applicability of radon (222Rn) measurements to delineate non-aqueous phase liquids (NAPL) contamination in subsoil is discussed at a site with lithological discontinuities through a blind test. Three alpha spectroscopy monitors were used to measure radon in soil air in a 25,000-2 area, following a regular sampling design with a 20-2 grid. Repeatability and reproducibility of the results were assessed by means of duplicate measurements in six sampling positions. Furthermore, three points not affected by oil spills were sampled to estimate radon background concentration in soil air. Data histograms, Q-Q plots, variograms, and cluster analysis allowed to recognize two data populations, associated with the possible path of a fault and a lithological discontinuity. Even though the concentration of radon in soil air was dominated by this discontinuity, the characterization of the background emanation in each lithological unit allowed to distinguish areas potentially affected by NAPL, thus justifying the application of radon emanometry as a screening technique for the delineation of NAPL plumes in sites with lithological discontinuities.

Keywords Non-aqueous phase liquids · Radon · Subsurface contamination · Soil-air · Spatial analysis

Introduction
Pollution of subsurface soil and groundwater by non-aqueous phase liquids (NAPL) from spills and leaks coming from industrial facilities or landfills has become a global concern as it poses a serious risk to human health and the environment (USEPA 2003; ITRC 2009; USEPA 2015). The delineation of the plume extension is essential in planning the contaminated site remediation, as well as in monitoring the evolution and effectiveness of decontamination works. However, field investigations have faced significant challenges to date. Conventionally, these operations have been carried out by drilling and establishing a network of piezometers and wells in order to take samples of soil, groundwater, and NAPL. In the absence of preliminary site assessment studies, intrusive sampling campaigns are high-cost and, even worse, could be unsuccessful for the initial purpose (García-González et al. 2008; Cohen et al. 2016). Alternatively, screening methods have been developed to provide semiquantitative information about the extent of the plume and location of hot spots, i.e., soil gas analysis (e.g., Bishop et al. 1990), geophysical methods (e.g., Ajo-Franklin et al. 2002; Schwartz and Furman 2010, 2011; Schwartz et al. 2012; Sogade et al. 2006), or Rn activity measurements.

Emanometry has been validated as an exploration technique of sites affected by NAPL where there is a homogeneous geospatial subsurface structure (García-González et al. 2008; Schubert et al. 2011; Galhardi and Bonotto 2012; Yoon et al. 2013; Barbosa et al. 2014; De Simone et al. 2017), taking advantage of the existence of natural tracers—U and Ra—to detect the presence of organic

1 Prospecting & Environment Laboratory (PROMEDIAM), Universidad Politécnica de Madrid, c/ Alenza 4, 28003 Madrid, Spain

2 Geology, School of Natural Sciences, Trinity College Dublin 2, Dublin, Ireland

1
Fernando Barrio-Parra
fernando.barrio@upm.es
compounds and delineate the extent of subsurface hydrocarbon accumulations. Rn emanometry is based on the superficial reduction of radon (222Rn) signal due to its preferential distribution in the organic phase (Höhener and Surbeck 2004). In this regard, the accumulation of NAPL in the subsoil acts as geochemical traps for 222Rn, due to a different partition coefficient between water, air, and NAPL phases (e.g., De Simone et al. 2015; Schubert et al. 2005, 2007a). Rn solubility in pure organic phases has been extensively studied (e.g., Clever and Battino 1979) and the partition coefficients ($K_{\text{NAPL/w}}$ and $K_{\text{NAPL/air}}$) for commercial hydrocarbon mixtures have been experimentally determined (e.g. Schubert et al. 2002a, b, 2007a). As a result, the spatial characterization of radon activity is useful to define areas affected by hydrocarbon spills. A reduced Rn concentration in soil air with respect to the local background values may be associated with the presence of regions highly saturated with NAPL (e.g., Hunkeler et al. 1997; Semprini et al. 2000; Schubert et al. 2001, 2002a, b, 2005, 2007b; García-González et al. 2008).

Due to its relatively low half-life (3.8 days), 222Rn is expected to have a low mobility in the vadose zone through diffusion processes (Cothern and Smith 1987; Martinelli 1998). However, co-advective transport processes with carrier gases (mainly CO$_2$) (Durrance and Gregory 1990; Toutain and Baubron 1999; Etiope and Martinelli 2002; Yang et al. 2003; Etiope et al. 2005; Voltattomi et al. 2009) may be responsible of the ascent of 222Rn from deeper formations (Kristiansson and Malmqvist 1987; Etiope and Lombardi 1996; Etiope and Martinelli 2002) making the “radon-deficit technique” suitable for the detection of NAPL in the vadose and saturated zones (Semprini et al. 2000; De Simone et al. 2017).
Table 1: Concentration of Rn in soil air

<table>
<thead>
<tr>
<th>Point</th>
<th>Rn (Bq m⁻³)</th>
<th>Point</th>
<th>Rn (Bq m⁻³)</th>
<th>Point</th>
<th>Rn (Bq m⁻³)</th>
<th>Point</th>
<th>Rn (Bq m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34,470</td>
<td>15</td>
<td>12,238</td>
<td>29</td>
<td>43,296</td>
<td>43</td>
<td>7240</td>
</tr>
<tr>
<td>2</td>
<td>50,000</td>
<td>16</td>
<td>19,685</td>
<td>30</td>
<td>35,570</td>
<td>44</td>
<td>6285</td>
</tr>
<tr>
<td>3</td>
<td>16,454</td>
<td>17</td>
<td>27,604</td>
<td>31</td>
<td>37,760</td>
<td>45</td>
<td>19,290</td>
</tr>
<tr>
<td>4</td>
<td>39,850</td>
<td>18</td>
<td>31,437</td>
<td>32</td>
<td>30,945</td>
<td>46</td>
<td>10,871</td>
</tr>
<tr>
<td>5</td>
<td>31,732</td>
<td>19</td>
<td>33,079</td>
<td>33</td>
<td>20,415</td>
<td>47</td>
<td>5140</td>
</tr>
<tr>
<td>6</td>
<td>38,686</td>
<td>20</td>
<td>14,718</td>
<td>34</td>
<td>19,439</td>
<td>48</td>
<td>6235</td>
</tr>
<tr>
<td>7</td>
<td>26,237</td>
<td>21</td>
<td>30,097</td>
<td>35</td>
<td>12,888</td>
<td>49</td>
<td>5555</td>
</tr>
<tr>
<td>8</td>
<td>24,425</td>
<td>22</td>
<td>32,933</td>
<td>36</td>
<td>19,082</td>
<td>50</td>
<td>13,447</td>
</tr>
<tr>
<td>9</td>
<td>26,435</td>
<td>23</td>
<td>50,000</td>
<td>37</td>
<td>27,319</td>
<td>51</td>
<td>B1 4362</td>
</tr>
<tr>
<td>10</td>
<td>16,870</td>
<td>24</td>
<td>22,641</td>
<td>38</td>
<td>13,031</td>
<td>B2</td>
<td>25,524</td>
</tr>
<tr>
<td>11</td>
<td>27,969</td>
<td>25</td>
<td>30,485</td>
<td>39</td>
<td>5140</td>
<td>B3</td>
<td>4063</td>
</tr>
<tr>
<td>12</td>
<td>41,073</td>
<td>26</td>
<td>32,315</td>
<td>40</td>
<td>8758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>50,000</td>
<td>27</td>
<td>36,992</td>
<td>41</td>
<td>5957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>43,744</td>
<td>28</td>
<td>50,000</td>
<td>42</td>
<td>7084</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In fractured zones, there is an intensification of the Rn signal due to the increase in soil permeability. In fact, the Rn emanometry has been amply used in the characterization of fractured systems (e.g., Fu et al. 2005, 2008; Gascoyne et al. 1993; Ioannides et al. 2003; Walia et al. 2005). Abrupt changes in soil-air Rn concentrations may also occur in these areas as a result of the variation in the lithological composition on both sides of the fault, with different contents of U and Ra in the geological matrix (e.g., Gascoyne et al. 1993; King et al. 1996; Moussa and A.G.M. EA 2003). Thus, lithological discontinuities may generate misinterpretations of the NAPL plume delineation (Schubert et al. 2002a; Barbosa et al. 2014) especially when the age of the spill is great enough to result in a significant loss of volatile compounds in the subsurface.

Following the above discussion, the objectives of the present study are (1) to develop and apply a data analysis methodology to spatially associate radon data to lithological units and (2) to discuss the applicability of emanometry for delineating NAPL plumes at sites with a priori unknown lithological spatial variations.

Materials and methods

The sampling campaign was carried out using three alpha spectroscopy monitors (two SARAD® RTM-2100 and one RTM-2010 models). Soil air was aspirated through hollow rods buried 75–100 cm in the subsoil in order to avoid the influence of atmospheric variables (Garcia-Gonzalez et al. 2008). ²²²Rn measurements were performed by setting the devices in “Fast” mode (only the emissions of alpha particles from the decay of ²¹⁸Po are considered for the quantification of ²²²Rn concentration in Bq m⁻³) with integration times of 10 min and a recording duration of 40 min. The analytical uncertainties associated with the Rn measurement procedure was approximately 10% and the instrumental detection limit was 1 KBq m⁻³ (SARAD 2002). If radon levels in the sample reached 50,000 Bq m⁻³ before the end of the 40-min measure interval, sampling was stopped and a value of 50,000 Bq m⁻³ was assigned to these points. After each measurement, the internal pump was operated at high flow for 20–30 min to clean the ionization chamber before the next sample. As far as it was possible, the determinations were carried out

Table 2: Results of Rn measurement repeatability assessment

<table>
<thead>
<tr>
<th>Point</th>
<th>Instrument</th>
<th>Model</th>
<th>Rn (Bq m⁻³)</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>RTM 2100</td>
<td>14,757</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>RTM 2010</td>
<td>22,477</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>RTM 2100</td>
<td>34,257</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>RTM 2100</td>
<td>36,592</td>
<td>22</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>RTM 2100</td>
<td>26,878</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>RTM 2100</td>
<td>19,614</td>
<td>2</td>
</tr>
<tr>
<td>B1</td>
<td>3</td>
<td>RTM 2100</td>
<td>4635</td>
<td>6</td>
</tr>
<tr>
<td>B2</td>
<td>3</td>
<td>RTM 2100</td>
<td>27,297</td>
<td>20</td>
</tr>
<tr>
<td>B3</td>
<td>3</td>
<td>RTM 2100</td>
<td>4218</td>
<td>5</td>
</tr>
</tbody>
</table>
Fig. 2 W-E Rn concentration profiles (KBq m^-3). Labels indicate sampling point following a sequence from low to high radon concentrations in soil air to shorten cleaning times.

All Rn activity determinations were made under similar conditions of soil pore water saturation. In addition to Rn concentrations, other environmental variables were also recorded at the same time, i.e., atmospheric temperature, barometric pressure, relative humidity, and wind speed. Concentrations of volatile organic compounds (VOCs) in soil air were measured using a photoionization detector (PID, Industrial Scientific) making use of the same sampling grid.

The study area is located just south of a petrochemical plant built in 1972 and approximately 3.5 km from the Portuguese west coast line (specific location and coordinates are omitted because of a confidentiality agreement). The area is affected by a light NAPL spill in the vadose zone, but no additional information about the extent or composition of the plume was provided. The complex is situated on a sequence of sedimentary materials from the Paleozoic to the Holocene, mostly separated by a discordant contact between each other (Chambel et al. 2010). An outcrop of limestones and clays from the Miocene, corresponding to the transition between the sea and the river basin (located about 5.6 km to the south), is found in the southern part of the site. To the east, there is a fault with a North-West orientation that is active at present (Cabral and Ribeiro 1988). In order to develop a blind experiment, the information about the fracture system associated with this fault was not provided until the field campaign was finished, and only then was this data used to validate the results.

A systematic sampling grid was adopted, with NS and EW transects every 20 m, covering an area of approximately 25,000 m^2 (Fig. 1). After the first east-west and north-south profiles were completed, measurements along successive transects were initially taken at 40-m intervals (one node out of
two of the grid). The remaining grid locations were sampled following an adaptive approach, based on previously obtained values. All measurements in each profile were performed with a single instrument. Radon measurements were duplicated in six sampling points of the grid to assess the repeatability and reproducibility of the results. Once the initial results were obtained and interpreted, two new NS profiles were added at the eastern end of the original grid, while the two westernmost profiles were discarded, for a total of 50 sampling points and 68 radon-in-soil-air determinations. Background levels of Rn in soil air were determined in triplicate at three points located in areas which presumably were not affected by the spill: One was positioned northwest of the grid (B2), another to the east (B3), and the last one to the southeast (B1).
To determine whether the acquired data belong to one or two different populations (associated with two different lithological compositions or the presence of a fault), histograms and Q-Q plots were constructed and analyzed. A Q-Q plot is a graphical method to assess the differences between the probability distribution function of a sample and a theoretical distribution. It can be employed to compare the inferred distribution of two sets of observations with different sample size. Variography was used to assess the spatial relationship between measurements of Rn activity. Statistical and geostatistical analysis of data was carried out with the GeoR (Ribeiro and Diggle 2015) and Stats libraries in the R environment (R Development Core Team 2015). The spatial delineation of two populations of data was of special interest because it could indicate the presence of a lithological discontinuity or a fault. Spatial data clustering was investigated with the Grouping Analysis tool in ArcGIS 10.1 (ESRI Developer Network 2016).

Results

Determinations of Rn activity in the sampled soil air are summarized in Table 1. Results ranged between a minimum of 5140 Bq m⁻³ (point 47) and values above 50,000 Bq m⁻³ (points 2, 13, 23, 28). To the West of the study area, the background value (B2) was approximately 25,000 Bq m⁻³, while in the East, background Rn activity decreased to values around 4000 Bq m⁻³ (B3). VOC determinations did not show significant differences with atmospheric air anywhere within the sampling grid, and therefore could not be used as an indicator of NAPL pollution.

To assess the repeatability of the records, replicates of Rn determinations were carried out using the three monitoring instruments in four points of the sampling grid and in the three background points in different days (Table 2). To assess the repeatability of the most frequently used instrument (Instrument 1), measurements were replicated in two sampling points (points 3 and 45). The relative standard deviation (RSD) between replicates with different instruments varied between 2 and 20%. The RSD of Instrument 1 varied between 2 and 15%. These results validate the joint interpretation of all Rn measurements, independently of the instrument or date of the measurement.

Discussion

The remarkable difference between background Rn emanation to the West (25,000 Bq m⁻³) and East (4000 Bq m⁻³) of the industrial plant suggests a change in the lithological characteristics of the subsurface matrix, with disparate Rn emanation values due the presence of a lithological discontinuity.

Figure 2 shows the Rn activity results grouped by West-East profiles. Profile No. 1 was the northern-most one, placed immediately to the south of the facilities, and the rest of profiles were sequentially located every 20 m southwards (Fig. 1). The most notable feature, observable in all six profiles, is the sharp decline in Rn concentration in the 160-200-m fringe (marked with dashed blue lines). Rn concentrations to the west of this fringe fluctuate between 15,000 and 50,000 Bq m⁻³ while in the east, they reach relatively stable values near the background level (B1–B3; 4000–5000 Bq m⁻³).

The histogram, normal Q-Q plot, and variograms of the data of Rn concentration in soil air are shown in Fig. 3. The histogram shows a bimodal distribution (Fig. 3a) and the Q-Q plot (Fig. 3b) suggests the existence of two populations of Rn activity data. These populations are spatially separated by the 160-200-m fringe (Figs. 2 and 4). In a separate study of the spatial relationship within each population (Fig. 3c, d), it was observed that the experimental variograms (points) fell inside the envelope of all variograms generated by random permutation of the observations (dashed lines). For a statistically significant spatial relationship, the actual semivariance should lie outside these random bounds at a specific distance (range). The absence of a significant semivariance at any
distance indicates a spatially random process, with no spatial correlation between the different concentrations of radon in soil air (Bivand et al. 2008).

This lack of significant variograms precludes the construction of surface and isovalue maps employing geostatistical models (i.e., Kriging). Consequently, a Spline interpolation (ESRI Developer Network 2007) was chosen for a 2-D representation of Rn concentration (Fig. 4). The lateral discontinuity was confirmed with a spatial cluster analysis (ESRI Developer Network 2016) which resulted in a grouping of all samples in two populations again separated by the discontinuity fringe (red [Cluster 1] and blue [Cluster 2] dots in Fig. 4). Rn activity levels in the eastern section of the study area were below 10,000 Bq m$^{-3}$, except in the North East boundary, where values of 19,000 Bq m$^{-3}$ were reached. In the western section, Rn determinations were highly variable, but consistently higher than in the East.

In the absence of lateral changes in the mineralogical matrix in the subsoil or far from any preferential pathways of Rn migration, the clear decrease in the Rn activity in the eastern third of the sampled area could be interpreted as a manifestation of the presence of NAPL in the unsaturated zone or the subsoil or far from any preferential pathways of Rn. However, the value registered at B3 (located sideways and not downflow with respect to the facilities area, where the source of contamination is located, and thus far from any possible NAPL sources) was in the same order of magnitude as the concentrations in the sampling points of the eastern third of the sampled grid. If a pollutant plume associated with low concentrations of Rn were indeed present, it should then extend at least to the B3 position, something that seems highly unlikely.

The sharp decrease in Rn concentrations is more probably due to a lateral discontinuity in the subsurface materials. This hypothesis is validated with information on the lithological profile of the area derived from drilling cores retrieved in the study zone (Fig. 5). The interpretation of these data seems to indicate the presence of a fault in that area. Therefore, Rn emanation rates and resistivity to gas flow are different on each side of the discontinuity, and, as a consequence, radon background concentrations vary significantly between both areas. Consequently, the interpretation of Rn levels should be done separately for each geologic matrix, each with different natural Rn emanation levels and different air permeabilities, which result in two different natural backgrounds, i.e., 25,000 Bq m$^{-3}$ in the west zone (B2) and 4000 Bq m$^{-3}$ in the east zone (B3).

In the western area, there were records below the background value. Dotted areas in Fig. 4 show zones with Rn activity below the mean B2 value of 25,000 Bq m$^{-3}$, within red contours, and below the maximum B2 value plus 1 standard deviation (Table 2) of 35,000 Bq m$^{-3}$, within black contours, that could be interpreted as the manifestation of a process of contamination in depth. These areas were flanked by measurements clearly above the local background, and even exceeding 50,000 Bq m$^{-3}$. The occurrence of these maxima can be explained if they are associated with the presence of a fracture system in the subsoil and if these fractures constitute a preferential pathway for gas migration, enhancing the advective transport processes with the flow of CO$_2$ and CH$_4$ (Durrance and Gregory 1990; Toutain and Baubron 1999; Etiope and Martinelli 2002; Yang et al. 2003; Etiope et al. 2005; Voltattorni et al. 2009). Another possible interpretation for those high values may be the formation of a radon emanation halo around a hydrocarbon pool. Previous works (e.g., E Q Barbosa et al. 2014; García-González et al. 2008) have also obtained Rn activity measurements higher than the local background around an NAPL-affected area. This may occur by the accumulation of precipitated U at the edges of the hydrocarbon plume that begins to disintegrate and to produce Rn. This process has been documented in geochemical prospecting for petroleum deposits (e.g., Bell 1960; Mazadio 1994; Morse et al. 1982) where the presence of hydrocarbons in the subsurface produces a reducing environment around the area where they accumulate. The reducing environment causes the uranyl ion (UO$_2$$^{2+}$) dissolved in groundwater to reduce from a (+6) to a (+4) oxidation state and to precipitate as UO$_2$ around the pool of hydrocarbons. U(+6) has a strong affinity for organics with high molecular weight, being able to form complex under acidic to alkaline pH conditions retaining it migration to the aqueous phase (Zavodska et al. 2008). Uranium speciation strongly depends on pH and oxidation/reduction (redox) conditions (Szecsody et al. 1998; Zavodska et al. 2008; Kim et al. 2009). However, uncertainties about the kinetics that control these U precipitation processes make it difficult to assess its importance in the formation of a Rn halo around NAPL-affected areas. For example, Nakashima et al. (1999) studied the reduction kinetics of uranyl cations to uraninite in aqueous solution by two limestones under diagenetic or hydrothermal conditions. They estimated the half-life of U precipitation as a function of temperature. Under modest thermal conditions (200–100 °C), the half-life of U precipitation is in the order of 3 h to 1 year, 340 years for radioactive waste repositories (50 °C), and 104 to 105 years at the Earth’s surface (25–4 °C). Since the geothermal gradient in the study area is not very high, it is unlikely that uranium precipitation was the cause of the large increase in soil-air radon concentrations. However, more research should be undertaken in order to better understand the effect of uranium precipitation in oil spills and the possible associated radon anomalies over time.

Conclusions

This study has tested the applicability of Rn emanometry to delineate NAPL affection in the subsoil of a site with non-
uniform lithology. Radon (222Rn) concentrations in soil air were dominated by a fault and a lithological discontinuity. The results showed a clear decrease in the concentration of Rn on the eastern section of the sampled area which seems to respond to a sharp lateral discontinuity in the mineralogical properties of the matrix subsurface rather than a possible NAPL contamination process. On the other hand, radon concentrations lower than the local background were found in the western sector, suggesting that this area could actually be affected by NAPL contamination. Radon emanation above background levels were also observed in the western sector. The most plausible explanation for these observations is the presence of a fractured system that enhances Rn migration through co-advecive transport.

The data analysis undertaken in this study has allowed to identify two different radon-in-soil-air data populations, showing a spatial clustering associated with the lithological discontinuity. The information from two boreholes confirmed the presence of these two zones, separated by a fault. In this regard, the study of the radon concentration in soil air has been useful to characterize the lithological discontinuity and to identify the fault.

The effective implementation of the application of Rn activity determinations as a screening technique for the delineation of NAPL plumes in sites with lithological discontinuities requires (i) the correct characterization of the radon natural background variations due to the different lithologies and (ii) a proper statistical/geostatistical analysis of the radon measurements.

Funding information This study was funded through the CARESOIL–CM (S2013/MAE-2739) and CAREDENSE/DENSOIL (CTM2016-77151-C2-2-R) research grants of the Regional Government of Madrid (Comunidad de Madrid) and the Spanish Ministry of Economy, Industry and Competitiveness, respectively. J Elio was supported by the Irish Research Council (IRC), through the Enterprise Partnership Scheme Postdoctoral Fellowship 2015 [EPSPD/2015/46], and co-financed by the Geological Survey of Ireland (GSI).

References

Bell KG (1960) Uranium and other trace elements in petroleums and rock asphalts. Geol Surv Prof Pap 356

