Multi-dimensional Bayesian network classifier trees

Gil Begue, Santiago and Larrañaga Múgica, Pedro María and Bielza Lozoya, María Concepción (2018). Multi-dimensional Bayesian network classifier trees. In: "19th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2018)", 21-23 Nov 2018, Madrid, España. ISBN 978-3-030-03492-4. pp. 354-363. https://doi.org/10.1007/978-3-030-03493-1_38.

Description

Title: Multi-dimensional Bayesian network classifier trees
Author/s:
  • Gil Begue, Santiago
  • Larrañaga Múgica, Pedro María
  • Bielza Lozoya, María Concepción
Item Type: Presentation at Congress or Conference (Article)
Event Title: 19th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2018)
Event Dates: 21-23 Nov 2018
Event Location: Madrid, España
Title of Book: Intelligent Data Engineering and Automated Learning (IDEAL 2018)
Date: 2018
ISBN: 978-3-030-03492-4
Volume: 1
Subjects:
Freetext Keywords: Multi-dimensional and multi-label supervised classification problems; Bayesian networks; Classification trees Meta-classifiers; Hybrid classifiers; Performance evaluation measures
Faculty: E.T.S. de Ingenieros Informáticos (UPM)
Department: Inteligencia Artificial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (550kB) | Preview

Abstract

Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models tailored to solving multi-dimensional classification problems, where an instance has to be assigned to multiple class variables. In this paper, we propose a novel multi-dimensional classifier that consists of a classification tree with MBCs in the leaves. We present a wrapper approach for learning this classifier from data. An experimental study carried out on randomly generated synthetic data sets shows encouraging results in terms of predictive accuracy.

Funding Projects

TypeCodeAcronymLeaderTitle
Government of SpainC080020-09UnspecifiedUnspecifiedCajal Blue Brain
Government of SpainTIN2016-79684-PUnspecifiedUniversidad Politécnica de MadridAvances en clasificación multidimensional y detección de anomalías con redes bayesianas
Madrid Regional GovernmentS2013/ICE-2845CASI – CAMUnspecifiedConceptos y aplicaciones de los sistemas inteligentes

More information

Item ID: 54650
DC Identifier: http://oa.upm.es/54650/
OAI Identifier: oai:oa.upm.es:54650
DOI: 10.1007/978-3-030-03493-1_38
Official URL: https://link.springer.com/chapter/10.1007/978-3-030-03493-1_38
Deposited by: Memoria Investigacion
Deposited on: 07 May 2019 06:45
Last Modified: 07 May 2019 06:45
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM