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Abstract: Lyotropic liquid crystals play an important role in many biological environments, 
such as micelles, liposomes, and phospholipid bilayers of cell membranes. In this work, we 
explore the performance of lyotropic liquid crystals as biosensors for macromolecules, 
proteins and whole microorganisms in hydrophilic media, i.e., the natural media where these 
specimens exist. The aim is to detect specific targets employing simple, unpowered sensors 
that can be used in the field, with minimum additional equipment. A number of different 
structures have been explored. The novelty in this work is the inclusion of a new optical 
effect, flow enhanced amplification, that allows for the semiquantitative detection of 
microscopic targets in lyotropic liquid crystal cells using the naked eye only. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Biosensors are an extremely ample R&D area, with applications in many diverse sectors. At 
present, biological and biochemical laboratories possess a panoply of instruments and 
detection procedures that provide qualitative detection and quantitative measurement of 
almost any target, from ions and molecules to full microorganisms like bacteria and viruses. 

A quite different scenario, however, shows up when immediate results are needed. In this 
case, the detection must be done in the field or at the Point of Care (POC) where the target is 
generated or scrutinized. Often the detection is carried by non-specialists. POC equipment 
must be portable, and tests should ideally be simple, sensitive, fast and carried out with low 
power consumption –ideally powerless– using inexpensive disposable elements. These 
restrictions often hinder the use of sophisticated equipment and lead to new proposals of 
alternative procedures for POC controls. 

The European project Raptadiag [1] had the overall objective of finding simple, reliable 
biosensors and procedures for POC detection of pathogens (specifically Meningococcus, but 
the results could be extended to other microorganisms). The approach was to test three 
different detection procedures –gravimetric sensors made of piezoelectric crystals or thin-
films, laser-induced evanescent fluorescence, and liquid crystals–, while aptamers and 
antibodies were employed for selective binding of targets through surface functionalization. 
Aptamers are short single-stranded oligonucleotides from DNA or RNA have unique 3D 
structures which are highly selective and have high affinity towards a desired target [2,3]. 
Compared to conventional antibodies, aptamers are more thermally stable, less costly, and 
faster to develop and to produce. 

This work focuses on detection with liquid crystals (LCs). Liquid crystals are a state of the 
matter with intermediate properties between solids and liquids: they are ordered and 
birefringent –properties typically associated to solids– but they can flow, like liquids. LCs are 
anisotropic for a number of physical properties including viscosity, dielectric permittivity, 
magnetic permeability and optical refractive index [4]. This has paved the way to applying 
LC materials to a startling number of applications, among them electronic and photonic 
devices for modulation and control of light and other electromagnetic waves like THz and 
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microwaves [5]. Additionally, LCs show an extraordinary sensitivity to external electric and 
magnetic fields, as well as changes in boundary surface conditions which may be transduced 
into optical signals, visible between in polarized light. 

Liquid crystal biosensors usually take advantage of this sensitivity. A typical LC 
biosensor detects the presence of small molecular compounds by adsorbing them on an 
aqueous/lipidic interface. LCs can also detect microparticles of a certain size. In either case, 
the visual signal usually arises from disordered LC regions of an otherwise ordered LC, due 
to the presence of the target. The ordered LC can be made dark between crossed polarizers, 
while disordered regions show up as bright colored spots. 

An interesting feature of LC sensors is amplification [6]. The disorder propagates to an 
area considerably larger than the original target size, making it possible to observe 
submicron- or micron-sized targets with a standard polarized microscope; in some cases, 
amplification can be high enough to allow defects to be visible at naked eye. Different LC 
materials and procedures have been proposed for biosensing of DNA [7], enzymes [8], 
antigens [9] and even full microorganisms like viruses and bacteria [10], as well as 
biologically relevant compounds such as environmental pollutants and gases [11]. 

Most proposed LC biosensors are based on nematic LCs [12] and other thermotropic 
liquid crystals, like cholesterics [13,14], blue-phase [15], and smectics [16]. All these LCs 
feature a common issue, their immiscibility in aqueous media. As many biological samples 
are solved or suspended in water, biosensing with thermotropic LCs requires alternative 
solutions to achieve interactions between targets and LCs [17]. Free-standing LC droplets 
[18,19] or surfaces suspended in sub-mm grids [20] have been proposed to procure an 
interface for interactions between the hydrophobic LC layer and the aqueous sample being 
examined [21]. The LC spontaneously orients homeotropically (perpendicular) to the free-
standing surface for surface tension. Adsorption of targets on the interface modifies such 
orientation, and the change can be observed in a microscope between crossed polarizers. 

A different straightforward approach to overcome these difficulties is to use lyotropic, 
rather than thermotropic, liquid crystals. Lyotropic liquid crystals (LLC) are stable and 
soluble in aqueous media since they mostly derive from amphiphilic molecules. LLC phases 
exist in a range of temperatures, and within a range of concentrations of the material in a 
solvent, usually water. LLCs are ubiquitous in biological media, forming for example the 
lipidic bilayer of cell membranes. However, their interest as materials for technical 
applications is largely overtaken by thermotropic liquid crystals, particularly calamitic 
nematics. Nevertheless, water based lyotropics are the preferred alternative in some biological 
applications, in general, those whose actual working conditions imply the use of hydrophilic 
media [22]. LLCs have been proposed, for example, as biomimetic vehicles for delivery of 
sparingly soluble drugs or medical contrast agents [23]. 

The use of LLCs for biosensing of microparticles and microorganisms is known for some 
time [24]. In this case, the aqueous solvent where the targets are suspended is mixed with the 
LLC –taking into account the concentration range where the desired lyotropic phase is 
formed. A cell is formed by two transparent surfaces (glass, rigid polymers) with a small gap 
(some µm) between them. The inner cell surfaces are conditioned in advance to induce a 
certain orientation on the LLC. The element can be integrated in a microfluidic system. In the 
absence of targets, surface preconditioning makes the LLC to orient as the surfaces dictate. If 
targets are present, they may induce defects in the overall orientation; these defects can be 
visualized between crossed polarizers in a microscope. 

Visualizing director defects is possible when the object in the medium is larger than the 
extrapolation length [17] 

 /b K W=  (1) 

where K is the distortion elastic constant and W is the anchoring strength of the LLC with the 
microparticle. Typically [10], K is in the range of 1–10 pN, while W is in the range of 10–
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1000 µJ/m2; therefore b is in the µm–tenths of µm range, which is appropriate for detection of 
bacteria. The technique has become commercial [25], allowing fast detection of 
microorganisms. Nevertheless, specific sensing cannot be achieved with this procedure. 

To achieve specific sensing it is necessary, after adding the alignment layer, to 
functionalize at least one of the inner surfaces of the cell with some reagent specific for a 
given target, e.g., an antibody, and to include a washing process in the sampling protocol. 
Bound microorganisms are then revealed as defects in alignment. An alternative procedure is 
to coat only one of the plates with the alignment layer and to employ the other plate as 
functionalized surface. This requires the alignment anchoring to be strong enough for the 
sample to be aligned with just one surface. 

In this work, the optimization of LLC biosensors for selective detection of 
microorganisms has been undertaken. Several aspects have been considered: seeking 
alternatives of antibodies for selective detection, providing good alignment conditioning for 
LLCs, and increasing the amplification, with the ultimate goal of performing the test without 
optical aids, i.e. with naked eye. 

2. Experimental 

The optimization of LLC biosensors includes the selection of binding agents, manufacturing 
of alignment layers, and enhancing amplification. Anyhow, the aim of this work is to evaluate 
the performance of LLCs in biodetection; this will wrap up the whole set of activities. 

2.1 LLC cell manufacturing 

LLC cell geometry is the same as in standard LC cells with a few differences. Two parallel 
glass plates separated 10 µm were assembled using a photocurable adhesive. Opposite ends of 
the cell were left open to allow filling by capillarity or microfluidics. Spacers were only 
added to the adhesive layer framing the cell, since any microparticle inside the cell would 
lead to a false positive. 

One of the inner surfaces was functionalized either with an aptamer or an antibody so that 
a specific pathogen would be bound to the surface. The other surface was used to induce an 
alignment to the LLC. The alignment was homogeneous –i.e., parallel to the surfaces– and 
oriented along the flow direction when the cell is filling up. 

2.2 Lyotropic liquid crystals 

Two LLCs have been chosen for the experiments: Sunset Yellow FCF (disodium 6-hydroxy-
5-[(4-sulphonatophenyl)azo]naphthalene-2-sulphonate) and Cromolyn (sodium cromoglycate) 
(Sigma-Aldrich). These two materials are among the most studied LLCs. Both are water-
soluble salts of organic acids, and possess a nematic (N) phase at room temperature in the 
concentration range 27% < N < 35% w:w for Sunset Yellow (SSY) and 13% < N < 17% w:w 
for Cromolyn. Despite Cromolyn is the most used and studied, the work ultimately focused 
on SSY since it showed several advantages: a wider nematic range, a lower variation of this 
range with temperature, and a lower viscosity, which resulted essential for dynamic studies 
shown below. 

2.3 Aptamers 

Most of the work on LLCs has been carried out employing aptamers [26]. Specific aptamers 
(80–120 bases) for Meningococcus (the original target), and foodborne pathogens such as 
Salmonella, Listeria, and Campylobacter have been prepared within the project by the 
iterative SELEX method [27]. Legionella, prepared outside the project, has been employed as 
well. Once sequenced and replicated, aptamers were bound to one inner surface of the LLC 
cell, making the surface functional to specifically trap a target –in our case, a pathogen. 
Details of fabrication and characterization of these aptamers are beyond the scope of this 
work. 
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Nevertheless, our rates of false positives with aptamers are still unacceptable for actual 
working biosensors; this issue is under study. The results of this work have been obtained 
employing either antibodies or artificial samples with just one, or a few, kinds of 
microorganisms. Figure 2 shows preliminary results testing the detection procedure. A 10µm 
thick SSY/SiO2 cell was filled with a clean solution and with a doped solution. No surface 
functionalization has been performed. 

 

Fig. 2. Microscopic view of SSY/SiO2 sample without (left) and with targets. 

The targets were silica microspheres of 2.5 µm diameter. Targets are clearly visible as 
bright spots in a dark field (the residual brightness of the undoped sample is due to the 
automatic gain of the camera; actually both pictures are equally dark). The visible field width 
is about 1 mm. The estimated size of the spots is 20–25 µm; therefore, the amplification 
factor is about 8–10. Similar results have been published by other authors [10]. 

The targets, or the agglomerates in the case of functionalized surfaces, produce a disorder 
in the neighboring LC molecules since they must adapt to the new anchoring condition 
imposed by the target [24]. Disorder propagates a certain distance while the influence of the 
anchoring energy fades out. Indeed, the distance would depend on several external 
parameters, such as LLC concentration and temperature, the solution’s ionic strength and, 
obviously, the physical characteristics of the targets and their size. However, for a given 
target and a specific set of experimental conditions, the distorted area, hence the amplification 
factor, is apparently fixed. 

3.2 Measurements under flow: wake formation 

In the above scenario the LLC organization and orientation are static, i.e., performed once the 
cell has been filled up with the mixture of target and LLC solutions. The situation is 
drastically modified if the LLC is studied under a controlled flow. If the sample is 
homogeneous, and the imposed orientation is parallel to the flowing direction, the LLC 
spontaneously orients upon flowing. This phenomenon [30] was known since the dawn of 
liquid crystals and is due to the anisotropy of LC viscosity. 
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